--- # For reference on model card metadata, see the spec: https://github.com/huggingface/hub-docs/blob/main/modelcard.md?plain=1 # Doc / guide: https://huggingface.co/docs/hub/model-cards base_model: - Qwen/Qwen2.5-0.5B datasets: [] languages: - en metrics: [] pipeline_tag: text-generation --- # Model Card for ldp72/Test-Qwen-Marcel.5-0.5B-it This model was finetuned by performing instruct tuning on Telco domain datatsets. ## Model Details ### Model Description - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** English - **License:** [More Information Needed] - **Finetuned from model [optional]:** ['Qwen/Qwen2.5-0.5B'] - **Date [optional]:** 2025-07-16 14:40:15 ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use This model can be used with the `transformers` library using `pipeline` abstraction as follows: ```python import torch from transformers import pipeline model_id = "ldp72/Test-Qwen-Marcel.5-0.5B-it" pipe = pipeline( "text-generation", model=model_id, torch_dtype=torch.bfloat16, device_map="auto", ) messages = [ {"role": "system", "content": "You are chatbot specialized on Telco domain."}, {"role": "user", "content": "Can you give a sample of your specialized knowledge?"}, ] outputs = pipe( messages, max_new_tokens=256, ) print(outputs[0]["generated_text"][-1]) ``` ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. [More Information Needed] ## Training Details This model was finetuned with [Orange internal fine tuning tools](https://gitlab.tech.orange/NEPAL/knowledge/orangelm/lm-adaptation/) with the Docker Image tagged `0.1.1` in the [registry](https://gitlab.tech.orange/NEPAL/knowledge/orangelm/lm-adaptation/container_registry/84664) and the following configuration file: ```yaml data: dataset_name: train: - path: telco-lm/arxiv-abstract-generation-telco-instructions revision: legacy - path: telco-lm/synthetic-dsp.stackexchange.com-multi-task-telco-instructions revision: legacy - path: telco-lm/synthetic-networkengineering.stackexchange.com-multi-task-telco-instructions revision: legacy - path: telco-lm/synthetic-security.stackexchange.com-multi-task-telco-instructions revision: legacy - path: telco-lm/synthetic-technical-3gpp-multi-task-telco-instructions revision: legacy - path: telco-lm/synthetic-technical-5gamericas-multi-task-telco-instructions revision: legacy - path: telco-lm/synthetic-technical-huawei-multi-task-telco-instructions revision: legacy - path: telco-lm/synthetic-technical-itu-multi-task-telco-instructions revision: legacy - path: telco-lm/synthetic-technical-mef-multi-task-telco-instructions revision: legacy - path: telco-lm/synthetic-technical-ngmn-multi-task-telco-instructions revision: legacy - path: telco-lm/synthetic-technical-rfc-multi-task-telco-instructions revision: legacy - path: telco-lm/teleqna-mcqa-cot-telco-instructions revision: legacy - path: telco-lm/tii-huawei-qa-open-qa-telco-instructions revision: legacy validation_abstract_generation: - path: telco-lm/arxiv-abstract-generation-telco-instructions revision: legacy split: validation validation_general: - path: telco-lm/slim-orca-multi-task-general-instructions revision: legacy split: validation validation_synthetic: - path: telco-lm/synthetic-dsp.stackexchange.com-multi-task-telco-instructions revision: legacy split: validation - path: telco-lm/synthetic-security.stackexchange.com-multi-task-telco-instructions revision: legacy split: validation - path: telco-lm/synthetic-networkengineering.stackexchange.com-multi-task-telco-instructions revision: legacy split: validation - path: telco-lm/synthetic-technical-rfc-multi-task-telco-instructions revision: legacy split: validation - path: telco-lm/synthetic-technical-3gpp-multi-task-telco-instructions revision: legacy split: validation - path: telco-lm/synthetic-technical-5gamericas-multi-task-telco-instructions revision: legacy split: validation - path: telco-lm/synthetic-technical-itu-multi-task-telco-instructions revision: legacy split: validation - path: telco-lm/synthetic-technical-mef-multi-task-telco-instructions revision: legacy split: validation - path: telco-lm/synthetic-technical-huawei-multi-task-telco-instructions revision: legacy split: validation - path: telco-lm/synthetic-technical-ngmn-multi-task-telco-instructions revision: legacy split: validation validation_telco_qa: - path: telco-lm/tii-huawei-qa-open-qa-telco-instructions revision: legacy split: validation validation_telco_qcm: - path: telco-lm/teleqna-mcqa-cot-telco-instructions revision: legacy split: validation debug: true implementation_name: instructions description: contributors: - email: loic.fosse@orange.com first_name: Loïc last_name: Fosse - email: lionel.delphinpoulat@orange.com first_name: Lionel last_name: Delphin-Poulat - email: ismael.rousseau@orange.com first_name: Ismaël last_name: Rousseau domain: Telco languages: - en model_name: ldp72/Test-Qwen-Marcel.5-0.5B-it image: version: 0.1.1 model: attn_implementation: flash_attention_2 chat_template_tokenizer: Qwen/Qwen2.5-0.5B-Instruct model_name_or_path: Qwen/Qwen2.5-0.5B trust_remote_code: true training: bf16: true dataloader_num_workers: 4 dataloader_persistent_workers: true dataloader_pin_memory: true dataloader_prefetch_factor: 2 disable_tqdm: true eval_accumulation_steps: 1 eval_steps: 10 eval_strategy: steps fp16: false gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false learning_rate: 2.0e-05 log_level: debug logging_dir: /outputs/Telco-Qwen2.5-0.5B-it-profiling-nodeepspeed-1gpu-2/logs logging_steps: 10 lr_scheduler_type: cosine max_grad_norm: 1.0 max_steps: -1 num_train_epochs: 2 optim: paged_adamw_32bit output_dir: /outputs/Telco-Qwen2.5-0.5B-it-profiling-nodeepspeed-1gpu-2 per_device_eval_batch_size: 2 per_device_train_batch_size: 2 push_to_hub: false report_to: tensorboard save_steps: 0 save_strategy: epoch save_total_limit: 1 seed: 42 torch_compile: false training_type: instruct-tuning use_liger_kernel: false warmup_ratio: 0.05 weight_decay: 0.1 ``` ### Training Data This model was trained on the following datasets: ```yaml - path: telco-lm/arxiv-abstract-generation-telco-instructions revision: legacy - path: telco-lm/synthetic-dsp.stackexchange.com-multi-task-telco-instructions revision: legacy - path: telco-lm/synthetic-networkengineering.stackexchange.com-multi-task-telco-instructions revision: legacy - path: telco-lm/synthetic-security.stackexchange.com-multi-task-telco-instructions revision: legacy - path: telco-lm/synthetic-technical-3gpp-multi-task-telco-instructions revision: legacy - path: telco-lm/synthetic-technical-5gamericas-multi-task-telco-instructions revision: legacy - path: telco-lm/synthetic-technical-huawei-multi-task-telco-instructions revision: legacy - path: telco-lm/synthetic-technical-itu-multi-task-telco-instructions revision: legacy - path: telco-lm/synthetic-technical-mef-multi-task-telco-instructions revision: legacy - path: telco-lm/synthetic-technical-ngmn-multi-task-telco-instructions revision: legacy - path: telco-lm/synthetic-technical-rfc-multi-task-telco-instructions revision: legacy - path: telco-lm/teleqna-mcqa-cot-telco-instructions revision: legacy - path: telco-lm/tii-huawei-qa-open-qa-telco-instructions revision: legacy ``` ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** This model was trained with the following hyperparameters for `SFTTrainer`,other parameters were set as default: ```yaml bf16: true dataloader_num_workers: 4 dataloader_persistent_workers: true dataloader_pin_memory: true dataloader_prefetch_factor: 2 disable_tqdm: true eval_accumulation_steps: 1 eval_steps: 10 eval_strategy: steps fp16: false gradient_accumulation_steps: 2 gradient_checkpointing: true group_by_length: false learning_rate: 2.0e-05 log_level: debug logging_dir: /outputs/Telco-Qwen2.5-0.5B-it-profiling-nodeepspeed-1gpu-2/logs logging_steps: 10 lr_scheduler_type: cosine max_grad_norm: 1.0 max_steps: -1 num_train_epochs: 2 optim: paged_adamw_32bit output_dir: /outputs/Telco-Qwen2.5-0.5B-it-profiling-nodeepspeed-1gpu-2 per_device_eval_batch_size: 2 per_device_train_batch_size: 2 push_to_hub: false report_to: tensorboard save_steps: 0 save_strategy: epoch save_total_limit: 1 seed: 42 torch_compile: false use_liger_kernel: false warmup_ratio: 0.05 weight_decay: 0.1 ``` #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective [More Information Needed] ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact Thanks to [Loïc Fosse](mailto:loic.fosse@orange.com), [Lionel Delphin-Poulat](mailto:lionel.delphinpoulat@orange.com), [Ismaël Rousseau](mailto:ismael.rousseau@orange.com) for adding this model.