PPO MLP VERSION 3
Browse files- Mlp.zip +2 -2
- Mlp/data +21 -21
- Mlp/policy.optimizer.pth +1 -1
- Mlp/policy.pth +1 -1
- README.md +1 -1
- config.json +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
Mlp.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2973ea4a345c7b2bde7bf9cb6f1478af5ff7d74ec26eb11ac23272e045255523
|
3 |
+
size 143986
|
Mlp/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -42,12 +42,12 @@
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,7 +56,7 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,24 +66,24 @@
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
-
"batch_size":
|
86 |
-
"n_epochs":
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f47e4531200>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f47e4531290>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f47e4531320>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f47e45313b0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f47e4531440>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f47e45314d0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f47e4531560>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f47e45315f0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f47e4531680>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f47e4531710>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f47e45317a0>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f47e4585120>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
42 |
"_np_random": null
|
43 |
},
|
44 |
"n_envs": 16,
|
45 |
+
"num_timesteps": 5013504,
|
46 |
+
"_total_timesteps": 5000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1652267056.2254035,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOPghj4ajSQ/4hwWvZWhP79jw+s+hhKHOQAAAAAAAAAAmgMlvpPeYj9zOca9lRAiv5bK4L6KCsS7AAAAAAAAAAAzp9+7FFjcuqpYeb5zQUA9HY9QvHLOCT4AAIA/AACAP6aEPz6X3FE/ag2CPkRlLr9Y5sQ+/yvLPQAAAAAAAAAApq88vv8MbT/gOba+DicWv0QNxL6gSsO+AAAAAAAAAAAzvhC+d+U6PxkFir3aBzy/Ar3HvpEDtD0AAAAAAAAAAJqjYLw9DXq7Ftn7vUEvtjzECNW8Vg6aPQAAgD8AAIA/zZl5vaRDLT4hehY+MswFv7sKjb3qOM09AAAAAAAAAAB6WAa+vLUCP/Do7D2ZTCu/oIWMvrCyQD4AAAAAAAAAAJpOn7xGYLU/vhGBvbf/777iSoS+nYGBvQAAAAAAAAAAzYJIvUMTfj+D7xa+Scx+v0cfJL7W99C9AAAAAAAAAAAaaLu9WAGnPar6uj6AwOG+BUryPcsfjD4AAAAAAAAAAHOQkL0sgck+nSzMPARhM7/aqTu+9u7UPQAAAAAAAAAAZuidPFJwvrubObm9EKabPEKWI718IIM9AACAPwAAgD+aOQY+xcCZP4zJHz86Qzu/WBgfPrMVyT4AAAAAAAAAALMIKj2Uy7c/aEzYPZvwx741khK+PYlpPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.0027007999999999477,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3ze+9gxjckCUhpRSlIwBbJRLrIwBdJRHQMCu6wxWT5h1fZQoaAZoCWgPQwhRL/g0JzdNQJSGlFKUaBVLkmgWR0DArvOE7GNrdX2UKGgGaAloD0MILsbAOo55cECUhpRSlGgVS7BoFkdAwK74OTaCc3V9lChoBmgJaA9DCB4aFqMuRHNAlIaUUpRoFUvKaBZHQMCu/OTA31l1fZQoaAZoCWgPQwiQLcvXpWlzQJSGlFKUaBVLtWgWR0DArwjjtG/fdX2UKGgGaAloD0MIUwWjkrqlckCUhpRSlGgVS6poFkdAwLkCViWmg3V9lChoBmgJaA9DCMhCdAhcaXNAlIaUUpRoFUu6aBZHQMC5Gecpb2V1fZQoaAZoCWgPQwh8e9egr3lyQJSGlFKUaBVLl2gWR0DAuSJvP1L8dX2UKGgGaAloD0MIV+nuOltgc0CUhpRSlGgVS6toFkdAwLkoFFlTWHV9lChoBmgJaA9DCGFUUidg1HJAlIaUUpRoFUuyaBZHQMC5OE1VHWl1fZQoaAZoCWgPQwhpdAex82ZyQJSGlFKUaBVLsWgWR0DAuTfPRiPRdX2UKGgGaAloD0MIMdP2r+ztcUCUhpRSlGgVS7ZoFkdAwLk73bmEG3V9lChoBmgJaA9DCPt2EhG+QnRAlIaUUpRoFUvWaBZHQMC5P9iDujR1fZQoaAZoCWgPQwjSqpZ0lA1zQJSGlFKUaBVLt2gWR0DAuVmac7QtdX2UKGgGaAloD0MIFhQGZRpOcECUhpRSlGgVS6JoFkdAwLldd5Y5k3V9lChoBmgJaA9DCHcSEf7F4XFAlIaUUpRoFUujaBZHQMC5ZqHXVb11fZQoaAZoCWgPQwgk0GBTp9BxQJSGlFKUaBVLl2gWR0DAuXHwG4ZudX2UKGgGaAloD0MI+DJRhFRYc0CUhpRSlGgVS7toFkdAwLl0j/MnqnV9lChoBmgJaA9DCDWbx2Gw8XFAlIaUUpRoFUulaBZHQMC5khAfMfR1fZQoaAZoCWgPQwibWUsB6W1yQJSGlFKUaBVL+GgWR0DAuZW40/GEdX2UKGgGaAloD0MIeO3ShgMsc0CUhpRSlGgVS9NoFkdAwLmUZYxL03V9lChoBmgJaA9DCJjCg2aXfHNAlIaUUpRoFUvWaBZHQMC5m/FaSs91fZQoaAZoCWgPQwgNGCR9mmpwQJSGlFKUaBVLoWgWR0DAua1gBtDVdX2UKGgGaAloD0MIiLmkavv6cUCUhpRSlGgVS6hoFkdAwLm5NIK+jHV9lChoBmgJaA9DCAMGSZ9WZXNAlIaUUpRoFUvFaBZHQMC5w3tKIzp1fZQoaAZoCWgPQwhEh8CRQGR0QJSGlFKUaBVLq2gWR0DAucl2JSBLdX2UKGgGaAloD0MIzuMwmH/5ckCUhpRSlGgVS7BoFkdAwLnQksSTQnV9lChoBmgJaA9DCNJT5BAxDHFAlIaUUpRoFUuyaBZHQMC51W9DhLp1fZQoaAZoCWgPQwjvcDs0rDhyQJSGlFKUaBVLm2gWR0DAud+87IT5dX2UKGgGaAloD0MIqoHmc+4dckCUhpRSlGgVS5FoFkdAwLngpx3mm3V9lChoBmgJaA9DCPbSFAHO1XJAlIaUUpRoFUvKaBZHQMC54k+X7ch1fZQoaAZoCWgPQwhjQzf7Q2ByQJSGlFKUaBVLh2gWR0DAueWuRs/IdX2UKGgGaAloD0MIIO7qVeQ8c0CUhpRSlGgVS8doFkdAwLn+ZeAuqXV9lChoBmgJaA9DCHP3OT6aOnFAlIaUUpRoFUu7aBZHQMC6DEFW4mV1fZQoaAZoCWgPQwjDnKBNjk1wQJSGlFKUaBVLnGgWR0DAuhD8pCrtdX2UKGgGaAloD0MI2QjE67oIc0CUhpRSlGgVS6FoFkdAwLoXeizsyHV9lChoBmgJaA9DCBxF1hpKjXJAlIaUUpRoFUumaBZHQMC6IoaLn9x1fZQoaAZoCWgPQwiOyk3UUtFyQJSGlFKUaBVLvmgWR0DAujBqynk1dX2UKGgGaAloD0MICwkYXd7Qb0CUhpRSlGgVS5xoFkdAwLo3mRNh3XV9lChoBmgJaA9DCGoWaHfIOnNAlIaUUpRoFUu8aBZHQMC6RvLX+VF1fZQoaAZoCWgPQwi6h4Tv/QFxQJSGlFKUaBVLpmgWR0DAulBDXvphdX2UKGgGaAloD0MIwk8cQL/zcUCUhpRSlGgVS65oFkdAwLpRGmUGFHV9lChoBmgJaA9DCMb3xaXqv3FAlIaUUpRoFUufaBZHQMC6VlfzBhx1fZQoaAZoCWgPQwj9ogT9xf5wQJSGlFKUaBVLp2gWR0DAumiSLZSOdX2UKGgGaAloD0MIMPFHUScUcUCUhpRSlGgVS7FoFkdAwLpx8Rcu8XV9lChoBmgJaA9DCNwSueDMh3JAlIaUUpRoFUvOaBZHQMC6eLuQZGd1fZQoaAZoCWgPQwjfiO5ZF6JyQJSGlFKUaBVLyGgWR0DAuojx0+1SdX2UKGgGaAloD0MI2h8ot609c0CUhpRSlGgVS9RoFkdAwLqMz+FUQ3V9lChoBmgJaA9DCCpwsg2cXnFAlIaUUpRoFUuuaBZHQMC6jegDifh1fZQoaAZoCWgPQwjGwaVjzhdzQJSGlFKUaBVLqGgWR0DAupcR3/xUdX2UKGgGaAloD0MIQplGkwvTb0CUhpRSlGgVS6RoFkdAwLqYZuQ6qHV9lChoBmgJaA9DCDm536EolXFAlIaUUpRoFUumaBZHQMC6nxxtHhF1fZQoaAZoCWgPQwghByXMNJNxQJSGlFKUaBVLnWgWR0DAuqK/VRUFdX2UKGgGaAloD0MIwW7YtqhbckCUhpRSlGgVS4hoFkdAwLqzY02tMnV9lChoBmgJaA9DCBubHan+K3NAlIaUUpRoFUu1aBZHQMC6wr0aqCJ1fZQoaAZoCWgPQwhAMh06/StzQJSGlFKUaBVLsWgWR0DAusWJaaCudX2UKGgGaAloD0MI5zbhXhmMcUCUhpRSlGgVS6VoFkdAwLrUO09hZ3V9lChoBmgJaA9DCCB8KNHSAnJAlIaUUpRoFUuxaBZHQMC63WXsw+N1fZQoaAZoCWgPQwgc746MlQRyQJSGlFKUaBVLrGgWR0DAuvHqs2ehdX2UKGgGaAloD0MIigRTzWzEckCUhpRSlGgVS8NoFkdAwLrywLVnVXV9lChoBmgJaA9DCPUqMjogkHJAlIaUUpRoFUuFaBZHQMC7AhFd9lV1fZQoaAZoCWgPQwjSjht+98JxQJSGlFKUaBVLumgWR0DAuw2y7f52dX2UKGgGaAloD0MIaydKQiJkdECUhpRSlGgVS8ZoFkdAwLsROpsGgXV9lChoBmgJaA9DCGuZDMdzVXJAlIaUUpRoFUuraBZHQMC7Ed8Z1mt1fZQoaAZoCWgPQwjnbWx25HdxQJSGlFKUaBVLq2gWR0DAuxbZQHiWdX2UKGgGaAloD0MIyAkTRrN2cUCUhpRSlGgVS7JoFkdAwLsbai9Iw3V9lChoBmgJaA9DCJUnEHYKaXFAlIaUUpRoFUuraBZHQMC7LSC4Bmx1fZQoaAZoCWgPQwg6XKs9LIlzQJSGlFKUaBVLv2gWR0DAuzC4vvjPdX2UKGgGaAloD0MIsI14studcUCUhpRSlGgVS7VoFkdAwLsyASWZ7XV9lChoBmgJaA9DCII8u3yrcHBAlIaUUpRoFUuwaBZHQMC7RXAVO9F1fZQoaAZoCWgPQwhA9+XM9pZxQJSGlFKUaBVLqGgWR0DAu1EKRdQgdX2UKGgGaAloD0MIpnwIqkaRc0CUhpRSlGgVS7doFkdAwLtaVzIV/XV9lChoBmgJaA9DCMAlAP9UgHNAlIaUUpRoFUu6aBZHQMC7cMzuWrx1fZQoaAZoCWgPQwime53UlyZzQJSGlFKUaBVLpmgWR0DAu37DGcWkdX2UKGgGaAloD0MIH9rHCv4OckCUhpRSlGgVS6ZoFkdAwLt/pcophHV9lChoBmgJaA9DCA+1bRiF8HFAlIaUUpRoFUuQaBZHQMC7lVCPZIx1fZQoaAZoCWgPQwiwjA3d7IRzQJSGlFKUaBVLtGgWR0DAu5rhzeXSdX2UKGgGaAloD0MInG1uTI9YdECUhpRSlGgVS7BoFkdAwLuj0dRzinV9lChoBmgJaA9DCI9U3/mFq3JAlIaUUpRoFUuzaBZHQMC7qdQfp2V1fZQoaAZoCWgPQwjdtBmnYUt0QJSGlFKUaBVL+GgWR0DAu692C/XYdX2UKGgGaAloD0MIobyPo/nlcECUhpRSlGgVS7FoFkdAwLuttRekYXV9lChoBmgJaA9DCEAWokNgR3JAlIaUUpRoFUuhaBZHQMC7uebmU4d1fZQoaAZoCWgPQwhS7dPxGBNzQJSGlFKUaBVLxmgWR0DAu7m5xzaLdX2UKGgGaAloD0MIryMO2YAKckCUhpRSlGgVS6poFkdAwLu967dzn3V9lChoBmgJaA9DCOXQItv5DHNAlIaUUpRoFUvLaBZHQMC73Tz3AVR1fZQoaAZoCWgPQwglICbhgvpzQJSGlFKUaBVLuGgWR0DAu+A2VE/jdX2UKGgGaAloD0MI/oFy234qcUCUhpRSlGgVS59oFkdAwLv2hBZ6lnV9lChoBmgJaA9DCGq8dJOYzXNAlIaUUpRoFUvFaBZHQMC795lWfbt1fZQoaAZoCWgPQwjCNXf0v+9yQJSGlFKUaBVL22gWR0DAvBOLrHENdX2UKGgGaAloD0MIcceb/NaPc0CUhpRSlGgVS7BoFkdAwLwSKG+K0nV9lChoBmgJaA9DCAH6ff8mXHFAlIaUUpRoFUu/aBZHQMC8H8Qyylh1fZQoaAZoCWgPQwgsRl1rrzFxQJSGlFKUaBVLoWgWR0DAvCICSzPbdX2UKGgGaAloD0MIf8Fu2PZAckCUhpRSlGgVS5FoFkdAwLwoam4y5HV9lChoBmgJaA9DCGTnbWz2QHJAlIaUUpRoFUuCaBZHQMC8KuryUcJ1fZQoaAZoCWgPQwg+Qs2Q6qhyQJSGlFKUaBVLumgWR0DAvDGOZLIxdX2UKGgGaAloD0MIuoJtxBP1cUCUhpRSlGgVS6JoFkdAwLwwyHEdenV9lChoBmgJaA9DCB2wq8kTJ3JAlIaUUpRoFUuhaBZHQMC8M4p+c6N1fZQoaAZoCWgPQwhlAKjiRjVxQJSGlFKUaBVLrmgWR0DAvDS5wwTNdX2UKGgGaAloD0MIjlph+h7RcECUhpRSlGgVS5ZoFkdAwLw3Ktga33V9lChoBmgJaA9DCAR1yqMbpXJAlIaUUpRoFUugaBZHQMC8Pa3I+4d1ZS4="
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 6120,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 128,
|
86 |
+
"n_epochs": 20,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
Mlp/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84893
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e4da159803b7a2e73f67d8814e08866142df796d8b1734d1e58b1801a8ca8e11
|
3 |
size 84893
|
Mlp/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2d4ec9f3f40f5d64d92ccba35e6eee44149ce177b37588827825371fa7628c50
|
3 |
size 43201
|
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 290.28 +/- 18.58
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6dad9f18c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6dad9f1950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6dad9f19e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6dad9f1a70>", "_build": "<function ActorCriticPolicy._build at 0x7f6dad9f1b00>", "forward": "<function ActorCriticPolicy.forward at 0x7f6dad9f1b90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6dad9f1c20>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6dad9f1cb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6dad9f1d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6dad9f1dd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6dad9f1e60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6dada47210>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 3014656, "_total_timesteps": 3000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652185591.2667496, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGYOLjyuWZ+6BjVdOkvVUDU03lw5ZvZ+uQAAgD8AAIA/M1qDPEgHmLoS2yW4lXsIs3fCk7rSXz83AACAPwAAgD8z+Ym8Kbhnuj2K2zWVQfgwMDpDu8v997QAAIA/AACAPxrYxz1PTXi8dYiQvp39vL0Lj4g9xQrUPgAAAAAAAIA/M+EcPE5UjT2WbXS+lOyqvi9wdr2NQTG+AAAAAAAAAABmnjO7nMygPyLoqbxFKzi//WV6O7rNXbsAAAAAAAAAAKZ1yj1FgSc+6QSgvqXD877WnwC+44hvvQAAAAAAAAAAmgK6PPP8uD9aeeM+rwuBPqNIRrzOm6w6AAAAAAAAAADNcCu94cyButiCbzq34wW5UdGbuRVahLkAAIA/AACAPyaiir32vEa6TuGXt/chwLHCNEO7gK2xNgAAgD8AAIA/2nPfPfQcOD+o43c9qvQuvwDcZz7SUwe9AAAAAAAAAACaODi93RsJP3L/Qr0lbSG/qfLRvN6RYL0AAAAAAAAAAE1ep73zfos//c6nvmF1Nr/gXjG+0k52vgAAAAAAAAAAGhCsvWxXoj5Csr09r3zsvq4oLr1goV89AAAAAAAAAAAAenC9hEc3PgJpZj0pEgu/yQm5vfLkWT0AAAAAAAAAALOWbr3SP/O74GfGPOVVMb22bE09k2TTPgAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.004885333333333408, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJVryeBo9ckCUhpRSlIwBbJRLwYwBdJRHQLOVgrCFbml1fZQoaAZoCWgPQwimfAiqhq5zQJSGlFKUaBVL4WgWR0CzlYJ7ojfOdX2UKGgGaAloD0MINL3EWGZicUCUhpRSlGgVTY0BaBZHQLOVuSy+pOx1fZQoaAZoCWgPQwjs98Q6lQR0QJSGlFKUaBVL02gWR0CzleUAo5PudX2UKGgGaAloD0MIVg+Yh8w0dECUhpRSlGgVS+loFkdAs5XwxBVuJnV9lChoBmgJaA9DCJj3ONMEI3JAlIaUUpRoFUvGaBZHQLOWFMqjJuF1fZQoaAZoCWgPQwhO8iN+RcBvQJSGlFKUaBVLnWgWR0CzljDK1XvIdX2UKGgGaAloD0MI6Q/NPHntcECUhpRSlGgVS6poFkdAs5ZOqebut3V9lChoBmgJaA9DCETAIVSpVXFAlIaUUpRoFUutaBZHQLOWVHCGetl1fZQoaAZoCWgPQwgtzhjmxHZzQJSGlFKUaBVLu2gWR0CzlnYH9m6HdX2UKGgGaAloD0MIDafMzbcBcECUhpRSlGgVS6hoFkdAs5Z8yO7xu3V9lChoBmgJaA9DCIxl+iUirHJAlIaUUpRoFUvZaBZHQLOWf1Tzd1x1fZQoaAZoCWgPQwgpe0s5H71zQJSGlFKUaBVL62gWR0Czlos2NvOydX2UKGgGaAloD0MI6j9rfnz6cECUhpRSlGgVS6xoFkdAs5ahWbPQfXV9lChoBmgJaA9DCFwclZtoPXJAlIaUUpRoFUu+aBZHQLOWtZjx0+11fZQoaAZoCWgPQwg5mbhV0OByQJSGlFKUaBVLyGgWR0Czp47IPsiTdX2UKGgGaAloD0MIgAwdO2iAc0CUhpRSlGgVS8toFkdAs6eUXMyJsXV9lChoBmgJaA9DCM76lGNyvXJAlIaUUpRoFUu+aBZHQLOn4JJXhfl1fZQoaAZoCWgPQwjM0k7NJZ5yQJSGlFKUaBVLu2gWR0Czp+cCPp6hdX2UKGgGaAloD0MI8mCL3T5rc0CUhpRSlGgVS91oFkdAs6fr1CgK4XV9lChoBmgJaA9DCH7hlSSPFnJAlIaUUpRoFUulaBZHQLOoGh4MWoF1fZQoaAZoCWgPQwg4FakwNsByQJSGlFKUaBVLyWgWR0CzqB/MjeKsdX2UKGgGaAloD0MINxlVhnEmckCUhpRSlGgVS8hoFkdAs6g3ppvgnHV9lChoBmgJaA9DCISdYtUgzXFAlIaUUpRoFUutaBZHQLOoTgXdj5N1fZQoaAZoCWgPQwii0LLuHwZzQJSGlFKUaBVLxWgWR0CzqFbqdH2AdX2UKGgGaAloD0MImgewyK+fcUCUhpRSlGgVS5toFkdAs6hb6WPcSHV9lChoBmgJaA9DCBr9aDjlum9AlIaUUpRoFUu2aBZHQLOoY2nKnvV1fZQoaAZoCWgPQwjMYmLzMb5yQJSGlFKUaBVLt2gWR0CzqGe58Sf2dX2UKGgGaAloD0MILjiDvx91cUCUhpRSlGgVS7ZoFkdAs6ibncL0BnV9lChoBmgJaA9DCIPab+1ED3RAlIaUUpRoFUvRaBZHQLOonoESuhd1fZQoaAZoCWgPQwjni70XX+duQJSGlFKUaBVLpGgWR0CzqKd3GGVSdX2UKGgGaAloD0MIZ7XAHhNzb0CUhpRSlGgVS6doFkdAs6inPD50sHV9lChoBmgJaA9DCHu8kA5PP3FAlIaUUpRoFUueaBZHQLOo7M6RyOt1fZQoaAZoCWgPQwjLgR5q24FwQJSGlFKUaBVLsWgWR0CzqQeMVDa5dX2UKGgGaAloD0MIl3FTA40CcUCUhpRSlGgVS7poFkdAs6kinYQJ5XV9lChoBmgJaA9DCBQlIZF2M3FAlIaUUpRoFUunaBZHQLOpM0Mw1zh1fZQoaAZoCWgPQwjK4ZNOJJxzQJSGlFKUaBVLvGgWR0CzqV63AmAtdX2UKGgGaAloD0MIoik7/eDucECUhpRSlGgVS8FoFkdAs6mAB2fTTnV9lChoBmgJaA9DCA6g3/dv53JAlIaUUpRoFUuoaBZHQLOphGHHmzV1fZQoaAZoCWgPQwix+iMMA5NyQJSGlFKUaBVLq2gWR0CzqYWjKxLTdX2UKGgGaAloD0MIhQg4hOo7c0CUhpRSlGgVS7poFkdAs6mSK/EfknV9lChoBmgJaA9DCPZ698e7LXJAlIaUUpRoFUvSaBZHQLOpwOkLx7R1fZQoaAZoCWgPQwikF7X7VSFzQJSGlFKUaBVL3GgWR0CzqcRZha1UdX2UKGgGaAloD0MIpwaazzkzcUCUhpRSlGgVS6toFkdAs6nNK8L8aXV9lChoBmgJaA9DCKIOK9wyw3NAlIaUUpRoFUvBaBZHQLOp8i5/b0x1fZQoaAZoCWgPQwgktrsHqGpzQJSGlFKUaBVLxmgWR0CzqfG8Zk08dX2UKGgGaAloD0MIBrth26LEc0CUhpRSlGgVS9RoFkdAs6oHhAGB4HV9lChoBmgJaA9DCK7UsyDUo3JAlIaUUpRoFUuyaBZHQLOqIRWLgoB1fZQoaAZoCWgPQwgJxOv6he1vQJSGlFKUaBVNPgNoFkdAs6o7+rELpnV9lChoBmgJaA9DCEmcFVHTQHBAlIaUUpRoFUvAaBZHQLOqUDIikft1fZQoaAZoCWgPQwjFVWXfVcVzQJSGlFKUaBVLtmgWR0CzqliEUTL4dX2UKGgGaAloD0MIlWBxOLPsckCUhpRSlGgVS8doFkdAs6qBRR/EwXV9lChoBmgJaA9DCO6x9KHLz3FAlIaUUpRoFUucaBZHQLOqgueBg/l1fZQoaAZoCWgPQwjx89+DV89uQJSGlFKUaBVLpmgWR0CzqpaFmFrVdX2UKGgGaAloD0MI18IstDMwckCUhpRSlGgVS79oFkdAs6qbttygf3V9lChoBmgJaA9DCNF6+DKRb3BAlIaUUpRoFUu1aBZHQLOqutZFG5N1fZQoaAZoCWgPQwhEUDV6Ne1yQJSGlFKUaBVLnWgWR0CzqsqSowVTdX2UKGgGaAloD0MIe4MvTCaLckCUhpRSlGgVS8loFkdAs6rOiFj/dnV9lChoBmgJaA9DCPTEc7aAY3FAlIaUUpRoFUuwaBZHQLOq3si0OVh1fZQoaAZoCWgPQwiFBmLZDK5wQJSGlFKUaBVLv2gWR0CzqvNwrDqGdX2UKGgGaAloD0MIJF6ezlWQckCUhpRSlGgVS6RoFkdAs6r2Bd2Pk3V9lChoBmgJaA9DCHo01ZM58nFAlIaUUpRoFUuiaBZHQLOrA0k4WDZ1fZQoaAZoCWgPQwgXLquw2SVyQJSGlFKUaBVLxGgWR0CzqyEEkjX4dX2UKGgGaAloD0MIUFQ2rGmCcUCUhpRSlGgVS6xoFkdAs6snKMefZnV9lChoBmgJaA9DCJBmLJoOtHJAlIaUUpRoFUvHaBZHQLOrZ66asp51fZQoaAZoCWgPQwjpmsk3m6t0QJSGlFKUaBVLtGgWR0Czq2dBKL88dX2UKGgGaAloD0MIErwhjcp9cUCUhpRSlGgVS8FoFkdAs6tzULDyfHV9lChoBmgJaA9DCDi9i/djh3BAlIaUUpRoFUu4aBZHQLOrlkeIVM51fZQoaAZoCWgPQwgHXi135mFyQJSGlFKUaBVLvmgWR0Czq55dOZb7dX2UKGgGaAloD0MIscBXdOvUcECUhpRSlGgVS7loFkdAs6utvUBnz3V9lChoBmgJaA9DCM/3U+NlI3FAlIaUUpRoFUuwaBZHQLOr1AdGRV91fZQoaAZoCWgPQwh8J2a9GOZyQJSGlFKUaBVL1mgWR0Czq+Hcxj8UdX2UKGgGaAloD0MI0ENtG4arc0CUhpRSlGgVS9NoFkdAs6v70AcT8HV9lChoBmgJaA9DCJ1IMNVMYnJAlIaUUpRoFUvKaBZHQLOsAa9K28Z1fZQoaAZoCWgPQwjjGMkeoZpxQJSGlFKUaBVLyWgWR0CzrBBYaHbidX2UKGgGaAloD0MIg92wbZGxcUCUhpRSlGgVS59oFkdAs6wd9roGIXV9lChoBmgJaA9DCGcMc4L2s3FAlIaUUpRoFUvGaBZHQLOsIvqkdmx1fZQoaAZoCWgPQwhZhc0AV9FyQJSGlFKUaBVL0WgWR0CzrDDzI3irdX2UKGgGaAloD0MIYobGE4HicUCUhpRSlGgVS89oFkdAs6w/hBJI2HV9lChoBmgJaA9DCIHs9e7PKnJAlIaUUpRoFUvHaBZHQLOsU0bcXWR1fZQoaAZoCWgPQwhtcCL6NTNwQJSGlFKUaBVLtGgWR0CzrH7YK6WgdX2UKGgGaAloD0MI2SJpN3qNcUCUhpRSlGgVS8loFkdAs6yguL74z3V9lChoBmgJaA9DCET5ghaSVXBAlIaUUpRoFUvHaBZHQLOsq3trsSl1fZQoaAZoCWgPQwiz0M5p1vRxQJSGlFKUaBVLsWgWR0CzrMKXnhbXdX2UKGgGaAloD0MIAP+UKpEyc0CUhpRSlGgVS7loFkdAs6zCJVKf4HV9lChoBmgJaA9DCIBG6dK/qnNAlIaUUpRoFUvBaBZHQLOsxmLtNSJ1fZQoaAZoCWgPQwip3hrYasVyQJSGlFKUaBVLm2gWR0CzrO7Tc6/7dX2UKGgGaAloD0MIqRWm7/VIcECUhpRSlGgVS7NoFkdAs6z0DHOryXV9lChoBmgJaA9DCNyCpbpAPnRAlIaUUpRoFUu7aBZHQLOs8/7SApd1fZQoaAZoCWgPQwgGK0611n1zQJSGlFKUaBVLvGgWR0CzrRhgJC0GdX2UKGgGaAloD0MIDAIrh1bRcECUhpRSlGgVS7BoFkdAs60rcCYCyXV9lChoBmgJaA9DCOwYV1wcJXNAlIaUUpRoFUuuaBZHQLOtNdVea8Z1fZQoaAZoCWgPQwgDkxtFFgFxQJSGlFKUaBVLv2gWR0CzrT0tRNypdX2UKGgGaAloD0MIXOZ0WQzfc0CUhpRSlGgVS89oFkdAs61HhrFfiXV9lChoBmgJaA9DCMnnFU896HBAlIaUUpRoFUu5aBZHQLOtU51eSjh1fZQoaAZoCWgPQwhG7BNAMT5xQJSGlFKUaBVL0GgWR0CzrYoDoyKvdX2UKGgGaAloD0MIcOzZc9mWckCUhpRSlGgVS7poFkdAs62Tn6l+E3V9lChoBmgJaA9DCMDQI0ZPgW9AlIaUUpRoFUu4aBZHQLOtuQu27Wd1fZQoaAZoCWgPQwg0hc5rLP5wQJSGlFKUaBVLyGgWR0CzrclyBCladX2UKGgGaAloD0MIeuHOhdGPcUCUhpRSlGgVS7toFkdAs63TpwCKaXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1840, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f47e4531200>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f47e4531290>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f47e4531320>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f47e45313b0>", "_build": "<function ActorCriticPolicy._build at 0x7f47e4531440>", "forward": "<function ActorCriticPolicy.forward at 0x7f47e45314d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f47e4531560>", "_predict": "<function ActorCriticPolicy._predict at 0x7f47e45315f0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f47e4531680>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f47e4531710>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f47e45317a0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f47e4585120>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 5013504, "_total_timesteps": 5000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652267056.2254035, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAOPghj4ajSQ/4hwWvZWhP79jw+s+hhKHOQAAAAAAAAAAmgMlvpPeYj9zOca9lRAiv5bK4L6KCsS7AAAAAAAAAAAzp9+7FFjcuqpYeb5zQUA9HY9QvHLOCT4AAIA/AACAP6aEPz6X3FE/ag2CPkRlLr9Y5sQ+/yvLPQAAAAAAAAAApq88vv8MbT/gOba+DicWv0QNxL6gSsO+AAAAAAAAAAAzvhC+d+U6PxkFir3aBzy/Ar3HvpEDtD0AAAAAAAAAAJqjYLw9DXq7Ftn7vUEvtjzECNW8Vg6aPQAAgD8AAIA/zZl5vaRDLT4hehY+MswFv7sKjb3qOM09AAAAAAAAAAB6WAa+vLUCP/Do7D2ZTCu/oIWMvrCyQD4AAAAAAAAAAJpOn7xGYLU/vhGBvbf/777iSoS+nYGBvQAAAAAAAAAAzYJIvUMTfj+D7xa+Scx+v0cfJL7W99C9AAAAAAAAAAAaaLu9WAGnPar6uj6AwOG+BUryPcsfjD4AAAAAAAAAAHOQkL0sgck+nSzMPARhM7/aqTu+9u7UPQAAAAAAAAAAZuidPFJwvrubObm9EKabPEKWI718IIM9AACAPwAAgD+aOQY+xcCZP4zJHz86Qzu/WBgfPrMVyT4AAAAAAAAAALMIKj2Uy7c/aEzYPZvwx741khK+PYlpPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI3ze+9gxjckCUhpRSlIwBbJRLrIwBdJRHQMCu6wxWT5h1fZQoaAZoCWgPQwhRL/g0JzdNQJSGlFKUaBVLkmgWR0DArvOE7GNrdX2UKGgGaAloD0MILsbAOo55cECUhpRSlGgVS7BoFkdAwK74OTaCc3V9lChoBmgJaA9DCB4aFqMuRHNAlIaUUpRoFUvKaBZHQMCu/OTA31l1fZQoaAZoCWgPQwiQLcvXpWlzQJSGlFKUaBVLtWgWR0DArwjjtG/fdX2UKGgGaAloD0MIUwWjkrqlckCUhpRSlGgVS6poFkdAwLkCViWmg3V9lChoBmgJaA9DCMhCdAhcaXNAlIaUUpRoFUu6aBZHQMC5Gecpb2V1fZQoaAZoCWgPQwh8e9egr3lyQJSGlFKUaBVLl2gWR0DAuSJvP1L8dX2UKGgGaAloD0MIV+nuOltgc0CUhpRSlGgVS6toFkdAwLkoFFlTWHV9lChoBmgJaA9DCGFUUidg1HJAlIaUUpRoFUuyaBZHQMC5OE1VHWl1fZQoaAZoCWgPQwhpdAex82ZyQJSGlFKUaBVLsWgWR0DAuTfPRiPRdX2UKGgGaAloD0MIMdP2r+ztcUCUhpRSlGgVS7ZoFkdAwLk73bmEG3V9lChoBmgJaA9DCPt2EhG+QnRAlIaUUpRoFUvWaBZHQMC5P9iDujR1fZQoaAZoCWgPQwjSqpZ0lA1zQJSGlFKUaBVLt2gWR0DAuVmac7QtdX2UKGgGaAloD0MIFhQGZRpOcECUhpRSlGgVS6JoFkdAwLldd5Y5k3V9lChoBmgJaA9DCHcSEf7F4XFAlIaUUpRoFUujaBZHQMC5ZqHXVb11fZQoaAZoCWgPQwgk0GBTp9BxQJSGlFKUaBVLl2gWR0DAuXHwG4ZudX2UKGgGaAloD0MI+DJRhFRYc0CUhpRSlGgVS7toFkdAwLl0j/MnqnV9lChoBmgJaA9DCDWbx2Gw8XFAlIaUUpRoFUulaBZHQMC5khAfMfR1fZQoaAZoCWgPQwibWUsB6W1yQJSGlFKUaBVL+GgWR0DAuZW40/GEdX2UKGgGaAloD0MIeO3ShgMsc0CUhpRSlGgVS9NoFkdAwLmUZYxL03V9lChoBmgJaA9DCJjCg2aXfHNAlIaUUpRoFUvWaBZHQMC5m/FaSs91fZQoaAZoCWgPQwgNGCR9mmpwQJSGlFKUaBVLoWgWR0DAua1gBtDVdX2UKGgGaAloD0MIiLmkavv6cUCUhpRSlGgVS6hoFkdAwLm5NIK+jHV9lChoBmgJaA9DCAMGSZ9WZXNAlIaUUpRoFUvFaBZHQMC5w3tKIzp1fZQoaAZoCWgPQwhEh8CRQGR0QJSGlFKUaBVLq2gWR0DAucl2JSBLdX2UKGgGaAloD0MIzuMwmH/5ckCUhpRSlGgVS7BoFkdAwLnQksSTQnV9lChoBmgJaA9DCNJT5BAxDHFAlIaUUpRoFUuyaBZHQMC51W9DhLp1fZQoaAZoCWgPQwjvcDs0rDhyQJSGlFKUaBVLm2gWR0DAud+87IT5dX2UKGgGaAloD0MIqoHmc+4dckCUhpRSlGgVS5FoFkdAwLngpx3mm3V9lChoBmgJaA9DCPbSFAHO1XJAlIaUUpRoFUvKaBZHQMC54k+X7ch1fZQoaAZoCWgPQwhjQzf7Q2ByQJSGlFKUaBVLh2gWR0DAueWuRs/IdX2UKGgGaAloD0MIIO7qVeQ8c0CUhpRSlGgVS8doFkdAwLn+ZeAuqXV9lChoBmgJaA9DCHP3OT6aOnFAlIaUUpRoFUu7aBZHQMC6DEFW4mV1fZQoaAZoCWgPQwjDnKBNjk1wQJSGlFKUaBVLnGgWR0DAuhD8pCrtdX2UKGgGaAloD0MI2QjE67oIc0CUhpRSlGgVS6FoFkdAwLoXeizsyHV9lChoBmgJaA9DCBxF1hpKjXJAlIaUUpRoFUumaBZHQMC6IoaLn9x1fZQoaAZoCWgPQwiOyk3UUtFyQJSGlFKUaBVLvmgWR0DAujBqynk1dX2UKGgGaAloD0MICwkYXd7Qb0CUhpRSlGgVS5xoFkdAwLo3mRNh3XV9lChoBmgJaA9DCGoWaHfIOnNAlIaUUpRoFUu8aBZHQMC6RvLX+VF1fZQoaAZoCWgPQwi6h4Tv/QFxQJSGlFKUaBVLpmgWR0DAulBDXvphdX2UKGgGaAloD0MIwk8cQL/zcUCUhpRSlGgVS65oFkdAwLpRGmUGFHV9lChoBmgJaA9DCMb3xaXqv3FAlIaUUpRoFUufaBZHQMC6VlfzBhx1fZQoaAZoCWgPQwj9ogT9xf5wQJSGlFKUaBVLp2gWR0DAumiSLZSOdX2UKGgGaAloD0MIMPFHUScUcUCUhpRSlGgVS7FoFkdAwLpx8Rcu8XV9lChoBmgJaA9DCNwSueDMh3JAlIaUUpRoFUvOaBZHQMC6eLuQZGd1fZQoaAZoCWgPQwjfiO5ZF6JyQJSGlFKUaBVLyGgWR0DAuojx0+1SdX2UKGgGaAloD0MI2h8ot609c0CUhpRSlGgVS9RoFkdAwLqMz+FUQ3V9lChoBmgJaA9DCCpwsg2cXnFAlIaUUpRoFUuuaBZHQMC6jegDifh1fZQoaAZoCWgPQwjGwaVjzhdzQJSGlFKUaBVLqGgWR0DAupcR3/xUdX2UKGgGaAloD0MIQplGkwvTb0CUhpRSlGgVS6RoFkdAwLqYZuQ6qHV9lChoBmgJaA9DCDm536EolXFAlIaUUpRoFUumaBZHQMC6nxxtHhF1fZQoaAZoCWgPQwghByXMNJNxQJSGlFKUaBVLnWgWR0DAuqK/VRUFdX2UKGgGaAloD0MIwW7YtqhbckCUhpRSlGgVS4hoFkdAwLqzY02tMnV9lChoBmgJaA9DCBubHan+K3NAlIaUUpRoFUu1aBZHQMC6wr0aqCJ1fZQoaAZoCWgPQwhAMh06/StzQJSGlFKUaBVLsWgWR0DAusWJaaCudX2UKGgGaAloD0MI5zbhXhmMcUCUhpRSlGgVS6VoFkdAwLrUO09hZ3V9lChoBmgJaA9DCCB8KNHSAnJAlIaUUpRoFUuxaBZHQMC63WXsw+N1fZQoaAZoCWgPQwgc746MlQRyQJSGlFKUaBVLrGgWR0DAuvHqs2ehdX2UKGgGaAloD0MIigRTzWzEckCUhpRSlGgVS8NoFkdAwLrywLVnVXV9lChoBmgJaA9DCPUqMjogkHJAlIaUUpRoFUuFaBZHQMC7AhFd9lV1fZQoaAZoCWgPQwjSjht+98JxQJSGlFKUaBVLumgWR0DAuw2y7f52dX2UKGgGaAloD0MIaydKQiJkdECUhpRSlGgVS8ZoFkdAwLsROpsGgXV9lChoBmgJaA9DCGuZDMdzVXJAlIaUUpRoFUuraBZHQMC7Ed8Z1mt1fZQoaAZoCWgPQwjnbWx25HdxQJSGlFKUaBVLq2gWR0DAuxbZQHiWdX2UKGgGaAloD0MIyAkTRrN2cUCUhpRSlGgVS7JoFkdAwLsbai9Iw3V9lChoBmgJaA9DCJUnEHYKaXFAlIaUUpRoFUuraBZHQMC7LSC4Bmx1fZQoaAZoCWgPQwg6XKs9LIlzQJSGlFKUaBVLv2gWR0DAuzC4vvjPdX2UKGgGaAloD0MIsI14studcUCUhpRSlGgVS7VoFkdAwLsyASWZ7XV9lChoBmgJaA9DCII8u3yrcHBAlIaUUpRoFUuwaBZHQMC7RXAVO9F1fZQoaAZoCWgPQwhA9+XM9pZxQJSGlFKUaBVLqGgWR0DAu1EKRdQgdX2UKGgGaAloD0MIpnwIqkaRc0CUhpRSlGgVS7doFkdAwLtaVzIV/XV9lChoBmgJaA9DCMAlAP9UgHNAlIaUUpRoFUu6aBZHQMC7cMzuWrx1fZQoaAZoCWgPQwime53UlyZzQJSGlFKUaBVLpmgWR0DAu37DGcWkdX2UKGgGaAloD0MIH9rHCv4OckCUhpRSlGgVS6ZoFkdAwLt/pcophHV9lChoBmgJaA9DCA+1bRiF8HFAlIaUUpRoFUuQaBZHQMC7lVCPZIx1fZQoaAZoCWgPQwiwjA3d7IRzQJSGlFKUaBVLtGgWR0DAu5rhzeXSdX2UKGgGaAloD0MInG1uTI9YdECUhpRSlGgVS7BoFkdAwLuj0dRzinV9lChoBmgJaA9DCI9U3/mFq3JAlIaUUpRoFUuzaBZHQMC7qdQfp2V1fZQoaAZoCWgPQwjdtBmnYUt0QJSGlFKUaBVL+GgWR0DAu692C/XYdX2UKGgGaAloD0MIobyPo/nlcECUhpRSlGgVS7FoFkdAwLuttRekYXV9lChoBmgJaA9DCEAWokNgR3JAlIaUUpRoFUuhaBZHQMC7uebmU4d1fZQoaAZoCWgPQwhS7dPxGBNzQJSGlFKUaBVLxmgWR0DAu7m5xzaLdX2UKGgGaAloD0MIryMO2YAKckCUhpRSlGgVS6poFkdAwLu967dzn3V9lChoBmgJaA9DCOXQItv5DHNAlIaUUpRoFUvLaBZHQMC73Tz3AVR1fZQoaAZoCWgPQwglICbhgvpzQJSGlFKUaBVLuGgWR0DAu+A2VE/jdX2UKGgGaAloD0MI/oFy234qcUCUhpRSlGgVS59oFkdAwLv2hBZ6lnV9lChoBmgJaA9DCGq8dJOYzXNAlIaUUpRoFUvFaBZHQMC795lWfbt1fZQoaAZoCWgPQwjCNXf0v+9yQJSGlFKUaBVL22gWR0DAvBOLrHENdX2UKGgGaAloD0MIcceb/NaPc0CUhpRSlGgVS7BoFkdAwLwSKG+K0nV9lChoBmgJaA9DCAH6ff8mXHFAlIaUUpRoFUu/aBZHQMC8H8Qyylh1fZQoaAZoCWgPQwgsRl1rrzFxQJSGlFKUaBVLoWgWR0DAvCICSzPbdX2UKGgGaAloD0MIf8Fu2PZAckCUhpRSlGgVS5FoFkdAwLwoam4y5HV9lChoBmgJaA9DCGTnbWz2QHJAlIaUUpRoFUuCaBZHQMC8KuryUcJ1fZQoaAZoCWgPQwg+Qs2Q6qhyQJSGlFKUaBVLumgWR0DAvDGOZLIxdX2UKGgGaAloD0MIuoJtxBP1cUCUhpRSlGgVS6JoFkdAwLwwyHEdenV9lChoBmgJaA9DCB2wq8kTJ3JAlIaUUpRoFUuhaBZHQMC8M4p+c6N1fZQoaAZoCWgPQwhlAKjiRjVxQJSGlFKUaBVLrmgWR0DAvDS5wwTNdX2UKGgGaAloD0MIjlph+h7RcECUhpRSlGgVS5ZoFkdAwLw3Ktga33V9lChoBmgJaA9DCAR1yqMbpXJAlIaUUpRoFUugaBZHQMC8Pa3I+4d1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 6120, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 20, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d1f5945c2d784e311b4e9885f582e90c9ccce6bb885e6506396202759697913
|
3 |
+
size 194828
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 290.2770817508107, "std_reward": 18.58051322756709, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-11T13:37:02.663999"}
|