File size: 1,880 Bytes
93b0dac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cb07dd4
93b0dac
 
 
 
 
 
 
 
 
 
cb07dd4
93b0dac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b1ff9e9
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
---
datasets:
- mhenrichsen/alpaca_2k_test
pipeline_tag: text2text-generation
---
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)

Small qlora finetune using Axolotl. Locally tested using `wikitext` perplexity test and had a small improvement over the base Llama v2 7B base model.

Axolotl config used:
```yaml
base_model: NousResearch/Llama-2-7b-hf
base_model_config: NousResearch/Llama-2-7b-hf
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
push_dataset_to_hub:
hub_model_id:

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: mhenrichsen/alpaca_2k_test
    type: alpaca
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ./checkpoints/llama-2-qlora

adapter: qlora
lora_model_dir:

sequence_len: 4096
max_packed_sequence_len: 4096
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_modules:
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project:
wandb_watch:
wandb_run_id:
wandb_log_model:

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_32bit
lr_scheduler: cosine
learning_rate: 0.0002

train_on_inputs: false
group_by_length: true
bf16: true
fp16: false
tf32: true

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention: true
flash_attention:

warmup_steps: 10
eval_steps: 20
save_steps:
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"
```

And then merged with Axolotl via:

```
accelerate launch scripts/finetune.py configs/your_config.yml --merge_lora --lora_model_dir="./completed-model" --load_in_8bit=False --load_in_4bit=False
```