File size: 1,640 Bytes
e9e18ec 2d69308 e9e18ec 2d69308 e9e18ec 2d69308 e9e18ec 2d69308 e9e18ec 2d69308 e9e18ec 2d69308 e9e18ec 2d69308 e9e18ec 2d69308 e9e18ec 2d69308 e9e18ec 2d69308 e9e18ec 2d69308 e9e18ec 2d69308 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
library_name: transformers
tags:
- trading
- finance
- deepseek
- fine-tuning
---
# DeepSeek Trading Assistant
This is a fine-tuned version of `DeepSeek-R1-Distill-Qwen-32B` specialized for generating trading strategies and market analysis.
## Model Details
### Model Description
- **Developed by:** latchkeyChild
- **Model type:** Decoder-only language model
- **Language(s):** English
- **License:** MIT
- **Finetuned from model:** [deepseek-ai/DeepSeek-R1-Distill-Qwen-32B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B)
## Uses
### Direct Use
This model is designed to:
1. Analyze market conditions using technical indicators
2. Generate trading strategies based on market analysis
3. Implement risk management rules
4. Create Python code for strategy implementation
### Training Data
The model is trained on a custom dataset containing:
- Market analysis using technical indicators (RSI, MACD, Moving Averages)
- Trading strategy implementations
- Risk management rules
- Python code examples using QuantConnect framework
### Training Procedure
#### Training Hyperparameters
- **Number of epochs:** 3
- **Batch size:** 2
- **Learning rate:** 1e-5
- **Gradient accumulation steps:** 8
- **Warmup steps:** 100
- **Training regime:** fp16 mixed precision with gradient checkpointing
- **Temperature:** 0.6 (recommended for DeepSeek-R1 series)
## Technical Specifications
### Compute Infrastructure
- **Required Hardware:** 2x NVIDIA A10G GPUs or 1x A100 GPU
- **Training Time (estimated):** 2-4 hours
## Model Card Contact
For questions or issues, please open an issue in the repository.
|