laolao77 commited on
Commit
24b99ca
·
verified ·
1 Parent(s): 8188b07

Initial private model upload

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2_5_VLForConditionalGeneration"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 151643,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 3584,
10
+ "image_token_id": 151655,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 18944,
13
+ "max_position_embeddings": 128000,
14
+ "max_window_layers": 28,
15
+ "model_type": "qwen2_5_vl",
16
+ "num_attention_heads": 28,
17
+ "num_hidden_layers": 28,
18
+ "num_key_value_heads": 4,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": {
21
+ "mrope_section": [
22
+ 16,
23
+ 24,
24
+ 24
25
+ ],
26
+ "rope_type": "default",
27
+ "type": "default"
28
+ },
29
+ "rope_theta": 1000000.0,
30
+ "sliding_window": 32768,
31
+ "tie_word_embeddings": false,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.50.2",
34
+ "use_cache": false,
35
+ "use_sliding_window": false,
36
+ "video_token_id": 151656,
37
+ "vision_config": {
38
+ "depth": 32,
39
+ "fullatt_block_indexes": [
40
+ 7,
41
+ 15,
42
+ 23,
43
+ 31
44
+ ],
45
+ "hidden_act": "silu",
46
+ "hidden_size": 1280,
47
+ "in_channels": 3,
48
+ "in_chans": 3,
49
+ "intermediate_size": 3420,
50
+ "model_type": "qwen2_5_vl",
51
+ "num_heads": 16,
52
+ "out_hidden_size": 3584,
53
+ "patch_size": 14,
54
+ "spatial_merge_size": 2,
55
+ "spatial_patch_size": 14,
56
+ "temporal_patch_size": 2,
57
+ "tokens_per_second": 2,
58
+ "torch_dtype": "float32",
59
+ "window_size": 112
60
+ },
61
+ "vision_end_token_id": 151653,
62
+ "vision_start_token_id": 151652,
63
+ "vision_token_id": 151654,
64
+ "vocab_size": 152064
65
+ }
generation_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attn_implementation": "flash_attention_2",
3
+ "bos_token_id": 151643,
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 151645,
7
+ 151643
8
+ ],
9
+ "pad_token_id": 151643,
10
+ "repetition_penalty": 1.05,
11
+ "temperature": 0.1,
12
+ "top_k": 1,
13
+ "top_p": 0.001,
14
+ "transformers_version": "4.50.2",
15
+ "use_cache": false
16
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6f295bf58b944484dd91a660d808585303ada7585b0a615e52d7b16dcb689f0
3
+ size 4968243304
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9b0cd7bdce5b9f1592c8163e8fb6831841c2e50f6bbd61f343d30c6acb5a696
3
+ size 4991495816
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8f47336a9d939380a6de0a4e1e23656e42ca23c9af996944618aa465e1d9bd06
3
+ size 4932751040
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c5ed9ebaf441a2eef5079ea31703e285ba5cccca1805f627e7c58cee5d37bbd
3
+ size 1691924384
model.safetensors.index.json ADDED
@@ -0,0 +1,736 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16584333312
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00004-of-00004.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00004.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00004.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
260
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
261
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
262
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
263
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
264
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
265
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
266
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
267
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
268
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
269
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
270
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
271
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
272
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
273
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
274
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
275
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
276
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
277
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
278
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
279
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
280
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
281
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
282
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
283
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
284
+ "model.layers.5.input_layernorm.weight": "model-00002-of-00004.safetensors",
285
+ "model.layers.5.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
286
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
287
+ "model.layers.5.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
288
+ "model.layers.5.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
289
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
290
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
291
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
292
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
293
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
294
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
295
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
296
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
297
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
298
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
299
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
300
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
301
+ "model.layers.6.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
302
+ "model.layers.6.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
303
+ "model.layers.6.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
304
+ "model.layers.6.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
305
+ "model.layers.6.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
306
+ "model.layers.6.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
307
+ "model.layers.6.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
308
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
309
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
310
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
311
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
312
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
313
+ "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
314
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
315
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
316
+ "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
317
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
318
+ "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
319
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
320
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
321
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
322
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
323
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
324
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
325
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
326
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
327
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
328
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
329
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
330
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
331
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
332
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
333
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
334
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
335
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
336
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
338
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
339
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
340
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
341
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
342
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
343
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
344
+ "model.norm.weight": "model-00004-of-00004.safetensors",
345
+ "visual.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
346
+ "visual.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
347
+ "visual.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
348
+ "visual.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
349
+ "visual.blocks.0.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
350
+ "visual.blocks.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
351
+ "visual.blocks.0.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
352
+ "visual.blocks.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
353
+ "visual.blocks.0.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
354
+ "visual.blocks.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
355
+ "visual.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
356
+ "visual.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
357
+ "visual.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
358
+ "visual.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
359
+ "visual.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
360
+ "visual.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
361
+ "visual.blocks.1.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
362
+ "visual.blocks.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
363
+ "visual.blocks.1.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
364
+ "visual.blocks.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
365
+ "visual.blocks.1.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
366
+ "visual.blocks.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
367
+ "visual.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
368
+ "visual.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
369
+ "visual.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
370
+ "visual.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
371
+ "visual.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
372
+ "visual.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
373
+ "visual.blocks.10.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
374
+ "visual.blocks.10.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
375
+ "visual.blocks.10.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
376
+ "visual.blocks.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
377
+ "visual.blocks.10.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
378
+ "visual.blocks.10.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
379
+ "visual.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
380
+ "visual.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
381
+ "visual.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
382
+ "visual.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
383
+ "visual.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
384
+ "visual.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
385
+ "visual.blocks.11.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
386
+ "visual.blocks.11.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
387
+ "visual.blocks.11.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
388
+ "visual.blocks.11.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
389
+ "visual.blocks.11.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
390
+ "visual.blocks.11.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
391
+ "visual.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
392
+ "visual.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
393
+ "visual.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
394
+ "visual.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
395
+ "visual.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
396
+ "visual.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
397
+ "visual.blocks.12.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
398
+ "visual.blocks.12.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
399
+ "visual.blocks.12.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
400
+ "visual.blocks.12.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
401
+ "visual.blocks.12.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
402
+ "visual.blocks.12.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
403
+ "visual.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
404
+ "visual.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
405
+ "visual.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
406
+ "visual.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
407
+ "visual.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
408
+ "visual.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
409
+ "visual.blocks.13.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
410
+ "visual.blocks.13.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
411
+ "visual.blocks.13.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
412
+ "visual.blocks.13.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
413
+ "visual.blocks.13.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
414
+ "visual.blocks.13.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
415
+ "visual.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
416
+ "visual.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
417
+ "visual.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
418
+ "visual.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
419
+ "visual.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
420
+ "visual.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
421
+ "visual.blocks.14.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
422
+ "visual.blocks.14.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
423
+ "visual.blocks.14.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
424
+ "visual.blocks.14.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
425
+ "visual.blocks.14.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
426
+ "visual.blocks.14.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
427
+ "visual.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
428
+ "visual.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
429
+ "visual.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
430
+ "visual.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
431
+ "visual.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
432
+ "visual.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
433
+ "visual.blocks.15.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
434
+ "visual.blocks.15.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
435
+ "visual.blocks.15.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
436
+ "visual.blocks.15.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
437
+ "visual.blocks.15.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
438
+ "visual.blocks.15.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
439
+ "visual.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
440
+ "visual.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
441
+ "visual.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
442
+ "visual.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
443
+ "visual.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
444
+ "visual.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
445
+ "visual.blocks.16.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
446
+ "visual.blocks.16.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
447
+ "visual.blocks.16.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
448
+ "visual.blocks.16.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
449
+ "visual.blocks.16.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
450
+ "visual.blocks.16.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
451
+ "visual.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
452
+ "visual.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
453
+ "visual.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
454
+ "visual.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
455
+ "visual.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
456
+ "visual.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
457
+ "visual.blocks.17.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
458
+ "visual.blocks.17.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
459
+ "visual.blocks.17.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
460
+ "visual.blocks.17.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
461
+ "visual.blocks.17.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
462
+ "visual.blocks.17.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
463
+ "visual.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
464
+ "visual.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
465
+ "visual.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
466
+ "visual.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
467
+ "visual.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
468
+ "visual.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
469
+ "visual.blocks.18.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
470
+ "visual.blocks.18.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
471
+ "visual.blocks.18.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
472
+ "visual.blocks.18.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
473
+ "visual.blocks.18.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
474
+ "visual.blocks.18.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
475
+ "visual.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
476
+ "visual.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
477
+ "visual.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
478
+ "visual.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
479
+ "visual.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
480
+ "visual.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
481
+ "visual.blocks.19.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
482
+ "visual.blocks.19.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
483
+ "visual.blocks.19.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
484
+ "visual.blocks.19.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
485
+ "visual.blocks.19.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
486
+ "visual.blocks.19.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
487
+ "visual.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
488
+ "visual.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
489
+ "visual.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
490
+ "visual.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
491
+ "visual.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
492
+ "visual.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
493
+ "visual.blocks.2.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
494
+ "visual.blocks.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
495
+ "visual.blocks.2.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
496
+ "visual.blocks.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
497
+ "visual.blocks.2.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
498
+ "visual.blocks.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
499
+ "visual.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
500
+ "visual.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
501
+ "visual.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
502
+ "visual.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
503
+ "visual.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
504
+ "visual.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
505
+ "visual.blocks.20.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
506
+ "visual.blocks.20.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
507
+ "visual.blocks.20.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
508
+ "visual.blocks.20.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
509
+ "visual.blocks.20.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
510
+ "visual.blocks.20.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
511
+ "visual.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
512
+ "visual.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
513
+ "visual.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
514
+ "visual.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
515
+ "visual.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
516
+ "visual.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
517
+ "visual.blocks.21.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
518
+ "visual.blocks.21.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
519
+ "visual.blocks.21.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
520
+ "visual.blocks.21.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
521
+ "visual.blocks.21.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
522
+ "visual.blocks.21.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
523
+ "visual.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
524
+ "visual.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
525
+ "visual.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
526
+ "visual.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
527
+ "visual.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
528
+ "visual.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
529
+ "visual.blocks.22.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
530
+ "visual.blocks.22.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
531
+ "visual.blocks.22.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
532
+ "visual.blocks.22.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
533
+ "visual.blocks.22.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
534
+ "visual.blocks.22.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
535
+ "visual.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
536
+ "visual.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
537
+ "visual.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
538
+ "visual.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
539
+ "visual.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
540
+ "visual.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
541
+ "visual.blocks.23.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
542
+ "visual.blocks.23.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
543
+ "visual.blocks.23.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
544
+ "visual.blocks.23.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
545
+ "visual.blocks.23.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
546
+ "visual.blocks.23.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
547
+ "visual.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
548
+ "visual.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
549
+ "visual.blocks.24.attn.proj.bias": "model-00001-of-00004.safetensors",
550
+ "visual.blocks.24.attn.proj.weight": "model-00001-of-00004.safetensors",
551
+ "visual.blocks.24.attn.qkv.bias": "model-00001-of-00004.safetensors",
552
+ "visual.blocks.24.attn.qkv.weight": "model-00001-of-00004.safetensors",
553
+ "visual.blocks.24.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
554
+ "visual.blocks.24.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
555
+ "visual.blocks.24.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
556
+ "visual.blocks.24.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
557
+ "visual.blocks.24.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
558
+ "visual.blocks.24.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
559
+ "visual.blocks.24.norm1.weight": "model-00001-of-00004.safetensors",
560
+ "visual.blocks.24.norm2.weight": "model-00001-of-00004.safetensors",
561
+ "visual.blocks.25.attn.proj.bias": "model-00001-of-00004.safetensors",
562
+ "visual.blocks.25.attn.proj.weight": "model-00001-of-00004.safetensors",
563
+ "visual.blocks.25.attn.qkv.bias": "model-00001-of-00004.safetensors",
564
+ "visual.blocks.25.attn.qkv.weight": "model-00001-of-00004.safetensors",
565
+ "visual.blocks.25.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
566
+ "visual.blocks.25.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
567
+ "visual.blocks.25.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
568
+ "visual.blocks.25.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
569
+ "visual.blocks.25.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
570
+ "visual.blocks.25.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
571
+ "visual.blocks.25.norm1.weight": "model-00001-of-00004.safetensors",
572
+ "visual.blocks.25.norm2.weight": "model-00001-of-00004.safetensors",
573
+ "visual.blocks.26.attn.proj.bias": "model-00001-of-00004.safetensors",
574
+ "visual.blocks.26.attn.proj.weight": "model-00001-of-00004.safetensors",
575
+ "visual.blocks.26.attn.qkv.bias": "model-00001-of-00004.safetensors",
576
+ "visual.blocks.26.attn.qkv.weight": "model-00001-of-00004.safetensors",
577
+ "visual.blocks.26.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
578
+ "visual.blocks.26.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
579
+ "visual.blocks.26.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
580
+ "visual.blocks.26.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
581
+ "visual.blocks.26.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
582
+ "visual.blocks.26.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
583
+ "visual.blocks.26.norm1.weight": "model-00001-of-00004.safetensors",
584
+ "visual.blocks.26.norm2.weight": "model-00001-of-00004.safetensors",
585
+ "visual.blocks.27.attn.proj.bias": "model-00001-of-00004.safetensors",
586
+ "visual.blocks.27.attn.proj.weight": "model-00001-of-00004.safetensors",
587
+ "visual.blocks.27.attn.qkv.bias": "model-00001-of-00004.safetensors",
588
+ "visual.blocks.27.attn.qkv.weight": "model-00001-of-00004.safetensors",
589
+ "visual.blocks.27.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
590
+ "visual.blocks.27.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
591
+ "visual.blocks.27.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
592
+ "visual.blocks.27.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
593
+ "visual.blocks.27.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
594
+ "visual.blocks.27.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
595
+ "visual.blocks.27.norm1.weight": "model-00001-of-00004.safetensors",
596
+ "visual.blocks.27.norm2.weight": "model-00001-of-00004.safetensors",
597
+ "visual.blocks.28.attn.proj.bias": "model-00001-of-00004.safetensors",
598
+ "visual.blocks.28.attn.proj.weight": "model-00001-of-00004.safetensors",
599
+ "visual.blocks.28.attn.qkv.bias": "model-00001-of-00004.safetensors",
600
+ "visual.blocks.28.attn.qkv.weight": "model-00001-of-00004.safetensors",
601
+ "visual.blocks.28.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
602
+ "visual.blocks.28.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
603
+ "visual.blocks.28.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
604
+ "visual.blocks.28.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
605
+ "visual.blocks.28.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
606
+ "visual.blocks.28.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
607
+ "visual.blocks.28.norm1.weight": "model-00001-of-00004.safetensors",
608
+ "visual.blocks.28.norm2.weight": "model-00001-of-00004.safetensors",
609
+ "visual.blocks.29.attn.proj.bias": "model-00001-of-00004.safetensors",
610
+ "visual.blocks.29.attn.proj.weight": "model-00001-of-00004.safetensors",
611
+ "visual.blocks.29.attn.qkv.bias": "model-00001-of-00004.safetensors",
612
+ "visual.blocks.29.attn.qkv.weight": "model-00001-of-00004.safetensors",
613
+ "visual.blocks.29.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
614
+ "visual.blocks.29.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
615
+ "visual.blocks.29.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
616
+ "visual.blocks.29.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
617
+ "visual.blocks.29.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
618
+ "visual.blocks.29.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
619
+ "visual.blocks.29.norm1.weight": "model-00001-of-00004.safetensors",
620
+ "visual.blocks.29.norm2.weight": "model-00001-of-00004.safetensors",
621
+ "visual.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
622
+ "visual.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
623
+ "visual.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
624
+ "visual.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
625
+ "visual.blocks.3.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
626
+ "visual.blocks.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
627
+ "visual.blocks.3.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
628
+ "visual.blocks.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
629
+ "visual.blocks.3.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
630
+ "visual.blocks.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
631
+ "visual.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
632
+ "visual.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
633
+ "visual.blocks.30.attn.proj.bias": "model-00001-of-00004.safetensors",
634
+ "visual.blocks.30.attn.proj.weight": "model-00001-of-00004.safetensors",
635
+ "visual.blocks.30.attn.qkv.bias": "model-00001-of-00004.safetensors",
636
+ "visual.blocks.30.attn.qkv.weight": "model-00001-of-00004.safetensors",
637
+ "visual.blocks.30.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
638
+ "visual.blocks.30.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
639
+ "visual.blocks.30.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
640
+ "visual.blocks.30.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
641
+ "visual.blocks.30.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
642
+ "visual.blocks.30.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
643
+ "visual.blocks.30.norm1.weight": "model-00001-of-00004.safetensors",
644
+ "visual.blocks.30.norm2.weight": "model-00001-of-00004.safetensors",
645
+ "visual.blocks.31.attn.proj.bias": "model-00001-of-00004.safetensors",
646
+ "visual.blocks.31.attn.proj.weight": "model-00001-of-00004.safetensors",
647
+ "visual.blocks.31.attn.qkv.bias": "model-00001-of-00004.safetensors",
648
+ "visual.blocks.31.attn.qkv.weight": "model-00001-of-00004.safetensors",
649
+ "visual.blocks.31.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
650
+ "visual.blocks.31.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
651
+ "visual.blocks.31.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
652
+ "visual.blocks.31.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
653
+ "visual.blocks.31.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
654
+ "visual.blocks.31.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
655
+ "visual.blocks.31.norm1.weight": "model-00001-of-00004.safetensors",
656
+ "visual.blocks.31.norm2.weight": "model-00001-of-00004.safetensors",
657
+ "visual.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
658
+ "visual.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
659
+ "visual.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
660
+ "visual.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
661
+ "visual.blocks.4.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
662
+ "visual.blocks.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
663
+ "visual.blocks.4.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
664
+ "visual.blocks.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
665
+ "visual.blocks.4.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
666
+ "visual.blocks.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
667
+ "visual.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
668
+ "visual.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
669
+ "visual.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
670
+ "visual.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
671
+ "visual.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
672
+ "visual.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
673
+ "visual.blocks.5.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
674
+ "visual.blocks.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
675
+ "visual.blocks.5.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
676
+ "visual.blocks.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
677
+ "visual.blocks.5.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
678
+ "visual.blocks.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
679
+ "visual.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
680
+ "visual.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
681
+ "visual.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
682
+ "visual.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
683
+ "visual.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
684
+ "visual.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
685
+ "visual.blocks.6.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
686
+ "visual.blocks.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
687
+ "visual.blocks.6.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
688
+ "visual.blocks.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
689
+ "visual.blocks.6.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
690
+ "visual.blocks.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
691
+ "visual.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
692
+ "visual.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
693
+ "visual.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
694
+ "visual.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
695
+ "visual.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
696
+ "visual.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
697
+ "visual.blocks.7.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
698
+ "visual.blocks.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
699
+ "visual.blocks.7.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
700
+ "visual.blocks.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
701
+ "visual.blocks.7.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
702
+ "visual.blocks.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
703
+ "visual.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
704
+ "visual.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
705
+ "visual.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
706
+ "visual.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
707
+ "visual.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
708
+ "visual.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
709
+ "visual.blocks.8.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
710
+ "visual.blocks.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
711
+ "visual.blocks.8.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
712
+ "visual.blocks.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
713
+ "visual.blocks.8.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
714
+ "visual.blocks.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
715
+ "visual.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
716
+ "visual.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
717
+ "visual.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
718
+ "visual.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
719
+ "visual.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
720
+ "visual.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
721
+ "visual.blocks.9.mlp.down_proj.bias": "model-00001-of-00004.safetensors",
722
+ "visual.blocks.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
723
+ "visual.blocks.9.mlp.gate_proj.bias": "model-00001-of-00004.safetensors",
724
+ "visual.blocks.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
725
+ "visual.blocks.9.mlp.up_proj.bias": "model-00001-of-00004.safetensors",
726
+ "visual.blocks.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
727
+ "visual.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
728
+ "visual.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
729
+ "visual.merger.ln_q.weight": "model-00001-of-00004.safetensors",
730
+ "visual.merger.mlp.0.bias": "model-00001-of-00004.safetensors",
731
+ "visual.merger.mlp.0.weight": "model-00001-of-00004.safetensors",
732
+ "visual.merger.mlp.2.bias": "model-00001-of-00004.safetensors",
733
+ "visual.merger.mlp.2.weight": "model-00001-of-00004.safetensors",
734
+ "visual.patch_embed.proj.weight": "model-00001-of-00004.safetensors"
735
+ }
736
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 401408,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "Qwen2_5_VLProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "longest_edge": 12845056,
26
+ "shortest_edge": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
3
+ size 11422063
tokenizer_config.json ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "processor_class": "Qwen2_5_VLProcessor",
206
+ "split_special_tokens": false,
207
+ "tokenizer_class": "Qwen2Tokenizer",
208
+ "unk_token": null
209
+ }
trainer_state.json ADDED
@@ -0,0 +1,2634 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 50.0,
6
+ "eval_steps": 500,
7
+ "global_step": 200,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "completion_length": 89.6328125,
14
+ "epoch": 0.25,
15
+ "grad_norm": 2.560847282409668,
16
+ "kl": 0.0,
17
+ "learning_rate": 9.99375e-07,
18
+ "loss": 0.0,
19
+ "reward": 1.43950754404068,
20
+ "reward_std": 0.4176497310400009,
21
+ "rewards/accuracy_reward": 0.5098200291395187,
22
+ "rewards/format_reward": 0.9296875,
23
+ "step": 1
24
+ },
25
+ {
26
+ "completion_length": 87.2734375,
27
+ "epoch": 0.5,
28
+ "grad_norm": 2.703657865524292,
29
+ "kl": 0.00046539306640625,
30
+ "learning_rate": 9.9875e-07,
31
+ "loss": 0.0,
32
+ "reward": 1.2813043594360352,
33
+ "reward_std": 0.47014792263507843,
34
+ "rewards/accuracy_reward": 0.42192937433719635,
35
+ "rewards/format_reward": 0.859375,
36
+ "step": 2
37
+ },
38
+ {
39
+ "completion_length": 80.0078125,
40
+ "epoch": 0.75,
41
+ "grad_norm": 5.132789134979248,
42
+ "kl": 0.0010738372802734375,
43
+ "learning_rate": 9.98125e-07,
44
+ "loss": 0.0,
45
+ "reward": 1.3763126730918884,
46
+ "reward_std": 0.3502582609653473,
47
+ "rewards/accuracy_reward": 0.4075627326965332,
48
+ "rewards/format_reward": 0.96875,
49
+ "step": 3
50
+ },
51
+ {
52
+ "completion_length": 94.28571701049805,
53
+ "epoch": 1.0,
54
+ "grad_norm": 2.7119903564453125,
55
+ "kl": 0.00128173828125,
56
+ "learning_rate": 9.975e-07,
57
+ "loss": 0.0001,
58
+ "reward": 1.5021255612373352,
59
+ "reward_std": 0.3990684002637863,
60
+ "rewards/accuracy_reward": 0.502125546336174,
61
+ "rewards/format_reward": 1.0,
62
+ "step": 4
63
+ },
64
+ {
65
+ "completion_length": 84.453125,
66
+ "epoch": 1.25,
67
+ "grad_norm": 2.7416577339172363,
68
+ "kl": 0.0021209716796875,
69
+ "learning_rate": 9.968749999999999e-07,
70
+ "loss": 0.0001,
71
+ "reward": 1.3453806638717651,
72
+ "reward_std": 0.4074166566133499,
73
+ "rewards/accuracy_reward": 0.4000682085752487,
74
+ "rewards/format_reward": 0.9453125,
75
+ "step": 5
76
+ },
77
+ {
78
+ "completion_length": 78.625,
79
+ "epoch": 1.5,
80
+ "grad_norm": 2.8765275478363037,
81
+ "kl": 0.006072998046875,
82
+ "learning_rate": 9.9625e-07,
83
+ "loss": 0.0002,
84
+ "reward": 1.4404960870742798,
85
+ "reward_std": 0.3917630910873413,
86
+ "rewards/accuracy_reward": 0.44830864667892456,
87
+ "rewards/format_reward": 0.9921875,
88
+ "step": 6
89
+ },
90
+ {
91
+ "completion_length": 70.7578125,
92
+ "epoch": 1.75,
93
+ "grad_norm": 4.0928168296813965,
94
+ "kl": 0.0057220458984375,
95
+ "learning_rate": 9.956249999999999e-07,
96
+ "loss": 0.0002,
97
+ "reward": 1.5452297925949097,
98
+ "reward_std": 0.2363404855132103,
99
+ "rewards/accuracy_reward": 0.5608547776937485,
100
+ "rewards/format_reward": 0.984375,
101
+ "step": 7
102
+ },
103
+ {
104
+ "completion_length": 69.57143211364746,
105
+ "epoch": 2.0,
106
+ "grad_norm": 2.1500496864318848,
107
+ "kl": 0.00787353515625,
108
+ "learning_rate": 9.95e-07,
109
+ "loss": 0.0003,
110
+ "reward": 1.540364921092987,
111
+ "reward_std": 0.03179515106603503,
112
+ "rewards/accuracy_reward": 0.5403649136424065,
113
+ "rewards/format_reward": 1.0,
114
+ "step": 8
115
+ },
116
+ {
117
+ "completion_length": 74.5234375,
118
+ "epoch": 2.25,
119
+ "grad_norm": 2.890000343322754,
120
+ "kl": 0.009307861328125,
121
+ "learning_rate": 9.94375e-07,
122
+ "loss": 0.0004,
123
+ "reward": 1.4441289901733398,
124
+ "reward_std": 0.2048807591199875,
125
+ "rewards/accuracy_reward": 0.44412901997566223,
126
+ "rewards/format_reward": 1.0,
127
+ "step": 9
128
+ },
129
+ {
130
+ "completion_length": 73.109375,
131
+ "epoch": 2.5,
132
+ "grad_norm": 2.234746217727661,
133
+ "kl": 0.00933837890625,
134
+ "learning_rate": 9.9375e-07,
135
+ "loss": 0.0004,
136
+ "reward": 1.4635842442512512,
137
+ "reward_std": 0.2971457466483116,
138
+ "rewards/accuracy_reward": 0.46358419954776764,
139
+ "rewards/format_reward": 1.0,
140
+ "step": 10
141
+ },
142
+ {
143
+ "completion_length": 67.8203125,
144
+ "epoch": 2.75,
145
+ "grad_norm": 2.0221376419067383,
146
+ "kl": 0.018035888671875,
147
+ "learning_rate": 9.93125e-07,
148
+ "loss": 0.0007,
149
+ "reward": 1.6205239295959473,
150
+ "reward_std": 0.18765632808208466,
151
+ "rewards/accuracy_reward": 0.6205238401889801,
152
+ "rewards/format_reward": 1.0,
153
+ "step": 11
154
+ },
155
+ {
156
+ "completion_length": 75.00000381469727,
157
+ "epoch": 3.0,
158
+ "grad_norm": 2.337059259414673,
159
+ "kl": 0.014556884765625,
160
+ "learning_rate": 9.925e-07,
161
+ "loss": 0.0006,
162
+ "reward": 1.785714328289032,
163
+ "reward_std": 0.26726123690605164,
164
+ "rewards/accuracy_reward": 0.7857142984867096,
165
+ "rewards/format_reward": 1.0,
166
+ "step": 12
167
+ },
168
+ {
169
+ "completion_length": 67.9765625,
170
+ "epoch": 3.25,
171
+ "grad_norm": 2.605905294418335,
172
+ "kl": 0.0230712890625,
173
+ "learning_rate": 9.91875e-07,
174
+ "loss": 0.0009,
175
+ "reward": 1.5252612233161926,
176
+ "reward_std": 0.2860804498195648,
177
+ "rewards/accuracy_reward": 0.5330736935138702,
178
+ "rewards/format_reward": 0.9921875,
179
+ "step": 13
180
+ },
181
+ {
182
+ "completion_length": 71.0703125,
183
+ "epoch": 3.5,
184
+ "grad_norm": 2.2355077266693115,
185
+ "kl": 0.02154541015625,
186
+ "learning_rate": 9.912499999999998e-07,
187
+ "loss": 0.0009,
188
+ "reward": 1.5774829387664795,
189
+ "reward_std": 0.1989663988351822,
190
+ "rewards/accuracy_reward": 0.5774829983711243,
191
+ "rewards/format_reward": 1.0,
192
+ "step": 14
193
+ },
194
+ {
195
+ "completion_length": 65.875,
196
+ "epoch": 3.75,
197
+ "grad_norm": 2.508030652999878,
198
+ "kl": 0.0369873046875,
199
+ "learning_rate": 9.90625e-07,
200
+ "loss": 0.0015,
201
+ "reward": 1.6362086534500122,
202
+ "reward_std": 0.2645450085401535,
203
+ "rewards/accuracy_reward": 0.6362085938453674,
204
+ "rewards/format_reward": 1.0,
205
+ "step": 15
206
+ },
207
+ {
208
+ "completion_length": 58.00000190734863,
209
+ "epoch": 4.0,
210
+ "grad_norm": 2.397307872772217,
211
+ "kl": 0.02752685546875,
212
+ "learning_rate": 9.9e-07,
213
+ "loss": 0.001,
214
+ "reward": 1.837504506111145,
215
+ "reward_std": 0.34773190319538116,
216
+ "rewards/accuracy_reward": 0.8375044763088226,
217
+ "rewards/format_reward": 1.0,
218
+ "step": 16
219
+ },
220
+ {
221
+ "completion_length": 62.1328125,
222
+ "epoch": 4.25,
223
+ "grad_norm": 1.985022783279419,
224
+ "kl": 0.02044677734375,
225
+ "learning_rate": 9.89375e-07,
226
+ "loss": 0.0008,
227
+ "reward": 1.8274397253990173,
228
+ "reward_std": 0.15590714663267136,
229
+ "rewards/accuracy_reward": 0.8274396657943726,
230
+ "rewards/format_reward": 1.0,
231
+ "step": 17
232
+ },
233
+ {
234
+ "completion_length": 66.078125,
235
+ "epoch": 4.5,
236
+ "grad_norm": 2.398780584335327,
237
+ "kl": 0.0401611328125,
238
+ "learning_rate": 9.8875e-07,
239
+ "loss": 0.0016,
240
+ "reward": 1.642715036869049,
241
+ "reward_std": 0.19355066865682602,
242
+ "rewards/accuracy_reward": 0.6427150070667267,
243
+ "rewards/format_reward": 1.0,
244
+ "step": 18
245
+ },
246
+ {
247
+ "completion_length": 66.0625,
248
+ "epoch": 4.75,
249
+ "grad_norm": 2.3296172618865967,
250
+ "kl": 0.048095703125,
251
+ "learning_rate": 9.88125e-07,
252
+ "loss": 0.0019,
253
+ "reward": 1.6349385380744934,
254
+ "reward_std": 0.30714260041713715,
255
+ "rewards/accuracy_reward": 0.6427510678768158,
256
+ "rewards/format_reward": 0.9921875,
257
+ "step": 19
258
+ },
259
+ {
260
+ "completion_length": 73.50000381469727,
261
+ "epoch": 5.0,
262
+ "grad_norm": 2.703334331512451,
263
+ "kl": 0.03143310546875,
264
+ "learning_rate": 9.875e-07,
265
+ "loss": 0.0012,
266
+ "reward": 1.521121323108673,
267
+ "reward_std": 0.409614622592926,
268
+ "rewards/accuracy_reward": 0.5211213529109955,
269
+ "rewards/format_reward": 1.0,
270
+ "step": 20
271
+ },
272
+ {
273
+ "completion_length": 63.859375,
274
+ "epoch": 5.25,
275
+ "grad_norm": 3.7955989837646484,
276
+ "kl": 0.0419921875,
277
+ "learning_rate": 9.86875e-07,
278
+ "loss": 0.0017,
279
+ "reward": 1.6154157519340515,
280
+ "reward_std": 0.17696820944547653,
281
+ "rewards/accuracy_reward": 0.6154157221317291,
282
+ "rewards/format_reward": 1.0,
283
+ "step": 21
284
+ },
285
+ {
286
+ "completion_length": 62.3359375,
287
+ "epoch": 5.5,
288
+ "grad_norm": 2.0224432945251465,
289
+ "kl": 0.04486083984375,
290
+ "learning_rate": 9.862499999999999e-07,
291
+ "loss": 0.0018,
292
+ "reward": 1.7184607982635498,
293
+ "reward_std": 0.16713028401136398,
294
+ "rewards/accuracy_reward": 0.7184608280658722,
295
+ "rewards/format_reward": 1.0,
296
+ "step": 22
297
+ },
298
+ {
299
+ "completion_length": 65.8515625,
300
+ "epoch": 5.75,
301
+ "grad_norm": 2.972362756729126,
302
+ "kl": 0.0313720703125,
303
+ "learning_rate": 9.85625e-07,
304
+ "loss": 0.0013,
305
+ "reward": 1.7493125200271606,
306
+ "reward_std": 0.184370219707489,
307
+ "rewards/accuracy_reward": 0.7493124902248383,
308
+ "rewards/format_reward": 1.0,
309
+ "step": 23
310
+ },
311
+ {
312
+ "completion_length": 74.21429061889648,
313
+ "epoch": 6.0,
314
+ "grad_norm": 1.9288957118988037,
315
+ "kl": 0.0411376953125,
316
+ "learning_rate": 9.849999999999999e-07,
317
+ "loss": 0.0019,
318
+ "reward": 1.6142857074737549,
319
+ "reward_std": 0.26726123690605164,
320
+ "rewards/accuracy_reward": 0.6142857670783997,
321
+ "rewards/format_reward": 1.0,
322
+ "step": 24
323
+ },
324
+ {
325
+ "completion_length": 61.2265625,
326
+ "epoch": 6.25,
327
+ "grad_norm": 7.291033744812012,
328
+ "kl": 0.260986328125,
329
+ "learning_rate": 9.84375e-07,
330
+ "loss": 0.0104,
331
+ "reward": 1.7374743819236755,
332
+ "reward_std": 0.2810707241296768,
333
+ "rewards/accuracy_reward": 0.7374744713306427,
334
+ "rewards/format_reward": 1.0,
335
+ "step": 25
336
+ },
337
+ {
338
+ "completion_length": 60.390625,
339
+ "epoch": 6.5,
340
+ "grad_norm": 2.046499013900757,
341
+ "kl": 0.03759765625,
342
+ "learning_rate": 9.8375e-07,
343
+ "loss": 0.0015,
344
+ "reward": 1.663317084312439,
345
+ "reward_std": 0.216216042637825,
346
+ "rewards/accuracy_reward": 0.6633170545101166,
347
+ "rewards/format_reward": 1.0,
348
+ "step": 26
349
+ },
350
+ {
351
+ "completion_length": 60.2421875,
352
+ "epoch": 6.75,
353
+ "grad_norm": 2.2611141204833984,
354
+ "kl": 0.046875,
355
+ "learning_rate": 9.83125e-07,
356
+ "loss": 0.0019,
357
+ "reward": 1.5771763920783997,
358
+ "reward_std": 0.2472986802458763,
359
+ "rewards/accuracy_reward": 0.5849888920783997,
360
+ "rewards/format_reward": 0.9921875,
361
+ "step": 27
362
+ },
363
+ {
364
+ "completion_length": 64.28571891784668,
365
+ "epoch": 7.0,
366
+ "grad_norm": 2.10233736038208,
367
+ "kl": 0.086181640625,
368
+ "learning_rate": 9.825e-07,
369
+ "loss": 0.0036,
370
+ "reward": 1.82956200838089,
371
+ "reward_std": 0.3444478511810303,
372
+ "rewards/accuracy_reward": 0.8295620679855347,
373
+ "rewards/format_reward": 1.0,
374
+ "step": 28
375
+ },
376
+ {
377
+ "completion_length": 63.015625,
378
+ "epoch": 7.25,
379
+ "grad_norm": 2.0856142044067383,
380
+ "kl": 0.0609130859375,
381
+ "learning_rate": 9.81875e-07,
382
+ "loss": 0.0024,
383
+ "reward": 1.6384294033050537,
384
+ "reward_std": 0.20048531889915466,
385
+ "rewards/accuracy_reward": 0.6384294033050537,
386
+ "rewards/format_reward": 1.0,
387
+ "step": 29
388
+ },
389
+ {
390
+ "completion_length": 56.7109375,
391
+ "epoch": 7.5,
392
+ "grad_norm": 1.9775277376174927,
393
+ "kl": 0.06494140625,
394
+ "learning_rate": 9.8125e-07,
395
+ "loss": 0.0026,
396
+ "reward": 1.726142942905426,
397
+ "reward_std": 0.183742456138134,
398
+ "rewards/accuracy_reward": 0.733955442905426,
399
+ "rewards/format_reward": 0.9921875,
400
+ "step": 30
401
+ },
402
+ {
403
+ "completion_length": 62.640625,
404
+ "epoch": 7.75,
405
+ "grad_norm": 4.462751388549805,
406
+ "kl": 0.0439453125,
407
+ "learning_rate": 9.806249999999998e-07,
408
+ "loss": 0.0018,
409
+ "reward": 1.7479652166366577,
410
+ "reward_std": 0.23261219263076782,
411
+ "rewards/accuracy_reward": 0.7479651868343353,
412
+ "rewards/format_reward": 1.0,
413
+ "step": 31
414
+ },
415
+ {
416
+ "completion_length": 56.64285850524902,
417
+ "epoch": 8.0,
418
+ "grad_norm": 1.7369378805160522,
419
+ "kl": 0.067138671875,
420
+ "learning_rate": 9.8e-07,
421
+ "loss": 0.0026,
422
+ "reward": 1.9810991883277893,
423
+ "reward_std": 0.024930346757173538,
424
+ "rewards/accuracy_reward": 0.9810990691184998,
425
+ "rewards/format_reward": 1.0,
426
+ "step": 32
427
+ },
428
+ {
429
+ "completion_length": 54.9609375,
430
+ "epoch": 8.25,
431
+ "grad_norm": 2.8938117027282715,
432
+ "kl": 0.0703125,
433
+ "learning_rate": 9.79375e-07,
434
+ "loss": 0.0028,
435
+ "reward": 1.7204629778862,
436
+ "reward_std": 0.16244513541460037,
437
+ "rewards/accuracy_reward": 0.7204630076885223,
438
+ "rewards/format_reward": 1.0,
439
+ "step": 33
440
+ },
441
+ {
442
+ "completion_length": 56.1640625,
443
+ "epoch": 8.5,
444
+ "grad_norm": 1.817608118057251,
445
+ "kl": 0.0526123046875,
446
+ "learning_rate": 9.7875e-07,
447
+ "loss": 0.0021,
448
+ "reward": 1.8434885740280151,
449
+ "reward_std": 0.13239304721355438,
450
+ "rewards/accuracy_reward": 0.8434885144233704,
451
+ "rewards/format_reward": 1.0,
452
+ "step": 34
453
+ },
454
+ {
455
+ "completion_length": 61.7421875,
456
+ "epoch": 8.75,
457
+ "grad_norm": 2.240640878677368,
458
+ "kl": 0.0614013671875,
459
+ "learning_rate": 9.78125e-07,
460
+ "loss": 0.0025,
461
+ "reward": 1.6918946504592896,
462
+ "reward_std": 0.23886261880397797,
463
+ "rewards/accuracy_reward": 0.6918946206569672,
464
+ "rewards/format_reward": 1.0,
465
+ "step": 35
466
+ },
467
+ {
468
+ "completion_length": 67.07143020629883,
469
+ "epoch": 9.0,
470
+ "grad_norm": 2.1461708545684814,
471
+ "kl": 0.0511474609375,
472
+ "learning_rate": 9.775e-07,
473
+ "loss": 0.0023,
474
+ "reward": 1.5855827927589417,
475
+ "reward_std": 0.4357292503118515,
476
+ "rewards/accuracy_reward": 0.6570113599300385,
477
+ "rewards/format_reward": 0.9285714626312256,
478
+ "step": 36
479
+ },
480
+ {
481
+ "completion_length": 59.109375,
482
+ "epoch": 9.25,
483
+ "grad_norm": 1.676393747329712,
484
+ "kl": 0.07080078125,
485
+ "learning_rate": 9.76875e-07,
486
+ "loss": 0.0028,
487
+ "reward": 1.7769874930381775,
488
+ "reward_std": 0.18539611995220184,
489
+ "rewards/accuracy_reward": 0.7769874632358551,
490
+ "rewards/format_reward": 1.0,
491
+ "step": 37
492
+ },
493
+ {
494
+ "completion_length": 59.2109375,
495
+ "epoch": 9.5,
496
+ "grad_norm": 2.115464925765991,
497
+ "kl": 0.0623779296875,
498
+ "learning_rate": 9.7625e-07,
499
+ "loss": 0.0025,
500
+ "reward": 1.6574002504348755,
501
+ "reward_std": 0.23898707330226898,
502
+ "rewards/accuracy_reward": 0.6574002504348755,
503
+ "rewards/format_reward": 1.0,
504
+ "step": 38
505
+ },
506
+ {
507
+ "completion_length": 58.7734375,
508
+ "epoch": 9.75,
509
+ "grad_norm": 2.0188374519348145,
510
+ "kl": 0.0640869140625,
511
+ "learning_rate": 9.756249999999999e-07,
512
+ "loss": 0.0026,
513
+ "reward": 1.8230915069580078,
514
+ "reward_std": 0.07023201137781143,
515
+ "rewards/accuracy_reward": 0.8230914771556854,
516
+ "rewards/format_reward": 1.0,
517
+ "step": 39
518
+ },
519
+ {
520
+ "completion_length": 50.57143020629883,
521
+ "epoch": 10.0,
522
+ "grad_norm": 1.818213701248169,
523
+ "kl": 0.069580078125,
524
+ "learning_rate": 9.75e-07,
525
+ "loss": 0.0027,
526
+ "reward": 1.898565948009491,
527
+ "reward_std": 0.1666813576593995,
528
+ "rewards/accuracy_reward": 0.8985659182071686,
529
+ "rewards/format_reward": 1.0,
530
+ "step": 40
531
+ },
532
+ {
533
+ "completion_length": 61.828125,
534
+ "epoch": 10.25,
535
+ "grad_norm": 2.0514211654663086,
536
+ "kl": 0.054443359375,
537
+ "learning_rate": 9.743749999999999e-07,
538
+ "loss": 0.0022,
539
+ "reward": 1.770473837852478,
540
+ "reward_std": 0.26378537714481354,
541
+ "rewards/accuracy_reward": 0.7860988080501556,
542
+ "rewards/format_reward": 0.984375,
543
+ "step": 41
544
+ },
545
+ {
546
+ "completion_length": 62.3203125,
547
+ "epoch": 10.5,
548
+ "grad_norm": 1.9126454591751099,
549
+ "kl": 0.0628662109375,
550
+ "learning_rate": 9.7375e-07,
551
+ "loss": 0.0025,
552
+ "reward": 1.8098745346069336,
553
+ "reward_std": 0.158866249024868,
554
+ "rewards/accuracy_reward": 0.8176870048046112,
555
+ "rewards/format_reward": 0.9921875,
556
+ "step": 42
557
+ },
558
+ {
559
+ "completion_length": 58.640625,
560
+ "epoch": 10.75,
561
+ "grad_norm": 1.7069599628448486,
562
+ "kl": 0.0595703125,
563
+ "learning_rate": 9.73125e-07,
564
+ "loss": 0.0024,
565
+ "reward": 1.7534176111221313,
566
+ "reward_std": 0.15397731214761734,
567
+ "rewards/accuracy_reward": 0.7534177303314209,
568
+ "rewards/format_reward": 1.0,
569
+ "step": 43
570
+ },
571
+ {
572
+ "completion_length": 51.21428871154785,
573
+ "epoch": 11.0,
574
+ "grad_norm": 2.326500415802002,
575
+ "kl": 0.0687255859375,
576
+ "learning_rate": 9.725e-07,
577
+ "loss": 0.0027,
578
+ "reward": 1.612587034702301,
579
+ "reward_std": 0.19589456543326378,
580
+ "rewards/accuracy_reward": 0.6125869750976562,
581
+ "rewards/format_reward": 1.0,
582
+ "step": 44
583
+ },
584
+ {
585
+ "completion_length": 63.1953125,
586
+ "epoch": 11.25,
587
+ "grad_norm": 2.318408966064453,
588
+ "kl": 0.05615234375,
589
+ "learning_rate": 9.71875e-07,
590
+ "loss": 0.0022,
591
+ "reward": 1.731492519378662,
592
+ "reward_std": 0.1684369444847107,
593
+ "rewards/accuracy_reward": 0.7314925193786621,
594
+ "rewards/format_reward": 1.0,
595
+ "step": 45
596
+ },
597
+ {
598
+ "completion_length": 62.1796875,
599
+ "epoch": 11.5,
600
+ "grad_norm": 2.0479931831359863,
601
+ "kl": 0.067138671875,
602
+ "learning_rate": 9.712499999999998e-07,
603
+ "loss": 0.0027,
604
+ "reward": 1.8079904317855835,
605
+ "reward_std": 0.14444740116596222,
606
+ "rewards/accuracy_reward": 0.8079904615879059,
607
+ "rewards/format_reward": 1.0,
608
+ "step": 46
609
+ },
610
+ {
611
+ "completion_length": 58.5234375,
612
+ "epoch": 11.75,
613
+ "grad_norm": 2.1100575923919678,
614
+ "kl": 0.0506591796875,
615
+ "learning_rate": 9.70625e-07,
616
+ "loss": 0.002,
617
+ "reward": 1.849604606628418,
618
+ "reward_std": 0.1187722496688366,
619
+ "rewards/accuracy_reward": 0.8496046662330627,
620
+ "rewards/format_reward": 1.0,
621
+ "step": 47
622
+ },
623
+ {
624
+ "completion_length": 78.5714340209961,
625
+ "epoch": 12.0,
626
+ "grad_norm": 2.278730630874634,
627
+ "kl": 0.0589599609375,
628
+ "learning_rate": 9.7e-07,
629
+ "loss": 0.0023,
630
+ "reward": 1.650295615196228,
631
+ "reward_std": 0.3869354873895645,
632
+ "rewards/accuracy_reward": 0.6502955406904221,
633
+ "rewards/format_reward": 1.0,
634
+ "step": 48
635
+ },
636
+ {
637
+ "completion_length": 62.8203125,
638
+ "epoch": 12.25,
639
+ "grad_norm": 1.7048614025115967,
640
+ "kl": 0.0550537109375,
641
+ "learning_rate": 9.69375e-07,
642
+ "loss": 0.0022,
643
+ "reward": 1.8256508708000183,
644
+ "reward_std": 0.12432926893234253,
645
+ "rewards/accuracy_reward": 0.8256509006023407,
646
+ "rewards/format_reward": 1.0,
647
+ "step": 49
648
+ },
649
+ {
650
+ "completion_length": 67.4375,
651
+ "epoch": 12.5,
652
+ "grad_norm": 1.5910967588424683,
653
+ "kl": 0.0621337890625,
654
+ "learning_rate": 9.6875e-07,
655
+ "loss": 0.0025,
656
+ "reward": 1.801437258720398,
657
+ "reward_std": 0.12012555077672005,
658
+ "rewards/accuracy_reward": 0.8014372885227203,
659
+ "rewards/format_reward": 1.0,
660
+ "step": 50
661
+ },
662
+ {
663
+ "completion_length": 60.3515625,
664
+ "epoch": 12.75,
665
+ "grad_norm": 1.7540335655212402,
666
+ "kl": 0.07177734375,
667
+ "learning_rate": 9.68125e-07,
668
+ "loss": 0.0029,
669
+ "reward": 1.7970203161239624,
670
+ "reward_std": 0.09028816036880016,
671
+ "rewards/accuracy_reward": 0.79702028632164,
672
+ "rewards/format_reward": 1.0,
673
+ "step": 51
674
+ },
675
+ {
676
+ "completion_length": 68.85714721679688,
677
+ "epoch": 13.0,
678
+ "grad_norm": 1.9271409511566162,
679
+ "kl": 0.057861328125,
680
+ "learning_rate": 9.675e-07,
681
+ "loss": 0.0022,
682
+ "reward": 1.725570797920227,
683
+ "reward_std": 0.2023605689755641,
684
+ "rewards/accuracy_reward": 0.725570797920227,
685
+ "rewards/format_reward": 1.0,
686
+ "step": 52
687
+ },
688
+ {
689
+ "completion_length": 64.7890625,
690
+ "epoch": 13.25,
691
+ "grad_norm": 1.6656194925308228,
692
+ "kl": 0.057861328125,
693
+ "learning_rate": 9.66875e-07,
694
+ "loss": 0.0023,
695
+ "reward": 1.762970507144928,
696
+ "reward_std": 0.1429205760359764,
697
+ "rewards/accuracy_reward": 0.7629704773426056,
698
+ "rewards/format_reward": 1.0,
699
+ "step": 53
700
+ },
701
+ {
702
+ "completion_length": 69.1796875,
703
+ "epoch": 13.5,
704
+ "grad_norm": 1.7760093212127686,
705
+ "kl": 0.084228515625,
706
+ "learning_rate": 9.6625e-07,
707
+ "loss": 0.0034,
708
+ "reward": 1.7609952092170715,
709
+ "reward_std": 0.11301954090595245,
710
+ "rewards/accuracy_reward": 0.7609952092170715,
711
+ "rewards/format_reward": 1.0,
712
+ "step": 54
713
+ },
714
+ {
715
+ "completion_length": 65.984375,
716
+ "epoch": 13.75,
717
+ "grad_norm": 1.944703459739685,
718
+ "kl": 0.0472412109375,
719
+ "learning_rate": 9.65625e-07,
720
+ "loss": 0.0019,
721
+ "reward": 1.8564435839653015,
722
+ "reward_std": 0.14264069870114326,
723
+ "rewards/accuracy_reward": 0.8564436435699463,
724
+ "rewards/format_reward": 1.0,
725
+ "step": 55
726
+ },
727
+ {
728
+ "completion_length": 70.85714340209961,
729
+ "epoch": 14.0,
730
+ "grad_norm": 1.7048606872558594,
731
+ "kl": 0.059326171875,
732
+ "learning_rate": 9.649999999999999e-07,
733
+ "loss": 0.0023,
734
+ "reward": 1.8061460256576538,
735
+ "reward_std": 0.2514180298894644,
736
+ "rewards/accuracy_reward": 0.8061459064483643,
737
+ "rewards/format_reward": 1.0,
738
+ "step": 56
739
+ },
740
+ {
741
+ "completion_length": 64.2421875,
742
+ "epoch": 14.25,
743
+ "grad_norm": 1.8009275197982788,
744
+ "kl": 0.083251953125,
745
+ "learning_rate": 9.64375e-07,
746
+ "loss": 0.0033,
747
+ "reward": 1.7855259776115417,
748
+ "reward_std": 0.08876464702188969,
749
+ "rewards/accuracy_reward": 0.785525918006897,
750
+ "rewards/format_reward": 1.0,
751
+ "step": 57
752
+ },
753
+ {
754
+ "completion_length": 68.515625,
755
+ "epoch": 14.5,
756
+ "grad_norm": 1.522387981414795,
757
+ "kl": 0.074951171875,
758
+ "learning_rate": 9.637499999999999e-07,
759
+ "loss": 0.003,
760
+ "reward": 1.8352751731872559,
761
+ "reward_std": 0.12848591804504395,
762
+ "rewards/accuracy_reward": 0.8352752029895782,
763
+ "rewards/format_reward": 1.0,
764
+ "step": 58
765
+ },
766
+ {
767
+ "completion_length": 67.0390625,
768
+ "epoch": 14.75,
769
+ "grad_norm": 2.3351709842681885,
770
+ "kl": 0.065673828125,
771
+ "learning_rate": 9.63125e-07,
772
+ "loss": 0.0026,
773
+ "reward": 1.8882685899734497,
774
+ "reward_std": 0.11743934452533722,
775
+ "rewards/accuracy_reward": 0.8882685601711273,
776
+ "rewards/format_reward": 1.0,
777
+ "step": 59
778
+ },
779
+ {
780
+ "completion_length": 58.71428871154785,
781
+ "epoch": 15.0,
782
+ "grad_norm": 1.921271800994873,
783
+ "kl": 0.05419921875,
784
+ "learning_rate": 9.624999999999999e-07,
785
+ "loss": 0.0022,
786
+ "reward": 1.53987056016922,
787
+ "reward_std": 0.16531461104750633,
788
+ "rewards/accuracy_reward": 0.5398704707622528,
789
+ "rewards/format_reward": 1.0,
790
+ "step": 60
791
+ },
792
+ {
793
+ "completion_length": 68.25,
794
+ "epoch": 15.25,
795
+ "grad_norm": 1.8104687929153442,
796
+ "kl": 0.060302734375,
797
+ "learning_rate": 9.61875e-07,
798
+ "loss": 0.0024,
799
+ "reward": 1.8509221076965332,
800
+ "reward_std": 0.11642135679721832,
801
+ "rewards/accuracy_reward": 0.8509220480918884,
802
+ "rewards/format_reward": 1.0,
803
+ "step": 61
804
+ },
805
+ {
806
+ "completion_length": 67.453125,
807
+ "epoch": 15.5,
808
+ "grad_norm": 2.454641819000244,
809
+ "kl": 0.0623779296875,
810
+ "learning_rate": 9.6125e-07,
811
+ "loss": 0.0025,
812
+ "reward": 1.7732171416282654,
813
+ "reward_std": 0.1827603131532669,
814
+ "rewards/accuracy_reward": 0.7732171416282654,
815
+ "rewards/format_reward": 1.0,
816
+ "step": 62
817
+ },
818
+ {
819
+ "completion_length": 70.375,
820
+ "epoch": 15.75,
821
+ "grad_norm": 3.006380558013916,
822
+ "kl": 0.123046875,
823
+ "learning_rate": 9.606249999999998e-07,
824
+ "loss": 0.0049,
825
+ "reward": 1.774861454963684,
826
+ "reward_std": 0.1715347319841385,
827
+ "rewards/accuracy_reward": 0.7748615145683289,
828
+ "rewards/format_reward": 1.0,
829
+ "step": 63
830
+ },
831
+ {
832
+ "completion_length": 56.142860412597656,
833
+ "epoch": 16.0,
834
+ "grad_norm": 3.028219223022461,
835
+ "kl": 0.0634765625,
836
+ "learning_rate": 9.6e-07,
837
+ "loss": 0.0025,
838
+ "reward": 2.0,
839
+ "reward_std": 0.0,
840
+ "rewards/accuracy_reward": 1.0,
841
+ "rewards/format_reward": 1.0,
842
+ "step": 64
843
+ },
844
+ {
845
+ "completion_length": 74.2890625,
846
+ "epoch": 16.25,
847
+ "grad_norm": 1.6325531005859375,
848
+ "kl": 0.06103515625,
849
+ "learning_rate": 9.59375e-07,
850
+ "loss": 0.0024,
851
+ "reward": 1.7759021520614624,
852
+ "reward_std": 0.15456650406122208,
853
+ "rewards/accuracy_reward": 0.7759020924568176,
854
+ "rewards/format_reward": 1.0,
855
+ "step": 65
856
+ },
857
+ {
858
+ "completion_length": 69.484375,
859
+ "epoch": 16.5,
860
+ "grad_norm": 1.501849889755249,
861
+ "kl": 0.068115234375,
862
+ "learning_rate": 9.5875e-07,
863
+ "loss": 0.0027,
864
+ "reward": 1.7950308322906494,
865
+ "reward_std": 0.12456715479493141,
866
+ "rewards/accuracy_reward": 0.7950307726860046,
867
+ "rewards/format_reward": 1.0,
868
+ "step": 66
869
+ },
870
+ {
871
+ "completion_length": 64.953125,
872
+ "epoch": 16.75,
873
+ "grad_norm": 2.5453922748565674,
874
+ "kl": 0.0596923828125,
875
+ "learning_rate": 9.58125e-07,
876
+ "loss": 0.0024,
877
+ "reward": 1.8739762902259827,
878
+ "reward_std": 0.11443666741251945,
879
+ "rewards/accuracy_reward": 0.8817887902259827,
880
+ "rewards/format_reward": 0.9921875,
881
+ "step": 67
882
+ },
883
+ {
884
+ "completion_length": 61.42857551574707,
885
+ "epoch": 17.0,
886
+ "grad_norm": 1.8238996267318726,
887
+ "kl": 0.04443359375,
888
+ "learning_rate": 9.575e-07,
889
+ "loss": 0.0017,
890
+ "reward": 1.8428571224212646,
891
+ "reward_std": 0.1414213627576828,
892
+ "rewards/accuracy_reward": 0.8428571820259094,
893
+ "rewards/format_reward": 1.0,
894
+ "step": 68
895
+ },
896
+ {
897
+ "completion_length": 72.0234375,
898
+ "epoch": 17.25,
899
+ "grad_norm": 1.7668324708938599,
900
+ "kl": 0.07373046875,
901
+ "learning_rate": 9.56875e-07,
902
+ "loss": 0.003,
903
+ "reward": 1.8650294542312622,
904
+ "reward_std": 0.13415485620498657,
905
+ "rewards/accuracy_reward": 0.8650294542312622,
906
+ "rewards/format_reward": 1.0,
907
+ "step": 69
908
+ },
909
+ {
910
+ "completion_length": 64.9453125,
911
+ "epoch": 17.5,
912
+ "grad_norm": 1.4389671087265015,
913
+ "kl": 0.047607421875,
914
+ "learning_rate": 9.5625e-07,
915
+ "loss": 0.0019,
916
+ "reward": 1.927801787853241,
917
+ "reward_std": 0.06346799433231354,
918
+ "rewards/accuracy_reward": 0.927801787853241,
919
+ "rewards/format_reward": 1.0,
920
+ "step": 70
921
+ },
922
+ {
923
+ "completion_length": 67.9296875,
924
+ "epoch": 17.75,
925
+ "grad_norm": 1.4634050130844116,
926
+ "kl": 0.072509765625,
927
+ "learning_rate": 9.556249999999999e-07,
928
+ "loss": 0.0029,
929
+ "reward": 1.8554179668426514,
930
+ "reward_std": 0.13238264620304108,
931
+ "rewards/accuracy_reward": 0.8554179966449738,
932
+ "rewards/format_reward": 1.0,
933
+ "step": 71
934
+ },
935
+ {
936
+ "completion_length": 57.07143020629883,
937
+ "epoch": 18.0,
938
+ "grad_norm": 4.220071792602539,
939
+ "kl": 0.17724609375,
940
+ "learning_rate": 9.55e-07,
941
+ "loss": 0.0064,
942
+ "reward": 1.9889448285102844,
943
+ "reward_std": 0.006739838980138302,
944
+ "rewards/accuracy_reward": 0.988944798707962,
945
+ "rewards/format_reward": 1.0,
946
+ "step": 72
947
+ },
948
+ {
949
+ "completion_length": 68.5546875,
950
+ "epoch": 18.25,
951
+ "grad_norm": 1.6068540811538696,
952
+ "kl": 0.0767822265625,
953
+ "learning_rate": 9.543749999999999e-07,
954
+ "loss": 0.0031,
955
+ "reward": 1.8943632245063782,
956
+ "reward_std": 0.07841086108237505,
957
+ "rewards/accuracy_reward": 0.8943631649017334,
958
+ "rewards/format_reward": 1.0,
959
+ "step": 73
960
+ },
961
+ {
962
+ "completion_length": 68.2421875,
963
+ "epoch": 18.5,
964
+ "grad_norm": 1.6987547874450684,
965
+ "kl": 0.07958984375,
966
+ "learning_rate": 9.5375e-07,
967
+ "loss": 0.0032,
968
+ "reward": 1.8070343136787415,
969
+ "reward_std": 0.14604970812797546,
970
+ "rewards/accuracy_reward": 0.8304717838764191,
971
+ "rewards/format_reward": 0.9765625,
972
+ "step": 74
973
+ },
974
+ {
975
+ "completion_length": 65.3046875,
976
+ "epoch": 18.75,
977
+ "grad_norm": 1.6191295385360718,
978
+ "kl": 0.04541015625,
979
+ "learning_rate": 9.53125e-07,
980
+ "loss": 0.0018,
981
+ "reward": 1.7468606233596802,
982
+ "reward_std": 0.16931980848312378,
983
+ "rewards/accuracy_reward": 0.7468606233596802,
984
+ "rewards/format_reward": 1.0,
985
+ "step": 75
986
+ },
987
+ {
988
+ "completion_length": 50.78571891784668,
989
+ "epoch": 19.0,
990
+ "grad_norm": 1.6109150648117065,
991
+ "kl": 0.066162109375,
992
+ "learning_rate": 9.525e-07,
993
+ "loss": 0.0027,
994
+ "reward": 1.9664621353149414,
995
+ "reward_std": 0.00548175536096096,
996
+ "rewards/accuracy_reward": 0.9664620459079742,
997
+ "rewards/format_reward": 1.0,
998
+ "step": 76
999
+ },
1000
+ {
1001
+ "completion_length": 66.2109375,
1002
+ "epoch": 19.25,
1003
+ "grad_norm": 1.385863184928894,
1004
+ "kl": 0.059326171875,
1005
+ "learning_rate": 9.51875e-07,
1006
+ "loss": 0.0024,
1007
+ "reward": 1.849595844745636,
1008
+ "reward_std": 0.0718111265450716,
1009
+ "rewards/accuracy_reward": 0.849595844745636,
1010
+ "rewards/format_reward": 1.0,
1011
+ "step": 77
1012
+ },
1013
+ {
1014
+ "completion_length": 75.578125,
1015
+ "epoch": 19.5,
1016
+ "grad_norm": 1.782371163368225,
1017
+ "kl": 0.073974609375,
1018
+ "learning_rate": 9.5125e-07,
1019
+ "loss": 0.003,
1020
+ "reward": 1.8164063096046448,
1021
+ "reward_std": 0.16241852939128876,
1022
+ "rewards/accuracy_reward": 0.8320313096046448,
1023
+ "rewards/format_reward": 0.984375,
1024
+ "step": 78
1025
+ },
1026
+ {
1027
+ "completion_length": 69.609375,
1028
+ "epoch": 19.75,
1029
+ "grad_norm": 1.2934050559997559,
1030
+ "kl": 0.0748291015625,
1031
+ "learning_rate": 9.50625e-07,
1032
+ "loss": 0.003,
1033
+ "reward": 1.8654966354370117,
1034
+ "reward_std": 0.09261503256857395,
1035
+ "rewards/accuracy_reward": 0.8654966354370117,
1036
+ "rewards/format_reward": 1.0,
1037
+ "step": 79
1038
+ },
1039
+ {
1040
+ "completion_length": 58.00000190734863,
1041
+ "epoch": 20.0,
1042
+ "grad_norm": 1.742002248764038,
1043
+ "kl": 0.082275390625,
1044
+ "learning_rate": 9.499999999999999e-07,
1045
+ "loss": 0.0033,
1046
+ "reward": 1.8342429995536804,
1047
+ "reward_std": 0.2157389521598816,
1048
+ "rewards/accuracy_reward": 0.8342429995536804,
1049
+ "rewards/format_reward": 1.0,
1050
+ "step": 80
1051
+ },
1052
+ {
1053
+ "completion_length": 67.65625,
1054
+ "epoch": 20.25,
1055
+ "grad_norm": 1.1428124904632568,
1056
+ "kl": 0.0526123046875,
1057
+ "learning_rate": 9.493749999999999e-07,
1058
+ "loss": 0.0021,
1059
+ "reward": 1.9487730264663696,
1060
+ "reward_std": 0.07040097191929817,
1061
+ "rewards/accuracy_reward": 0.9565855264663696,
1062
+ "rewards/format_reward": 0.9921875,
1063
+ "step": 81
1064
+ },
1065
+ {
1066
+ "completion_length": 73.515625,
1067
+ "epoch": 20.5,
1068
+ "grad_norm": 2.601008653640747,
1069
+ "kl": 0.0626220703125,
1070
+ "learning_rate": 9.487499999999999e-07,
1071
+ "loss": 0.0025,
1072
+ "reward": 1.770107924938202,
1073
+ "reward_std": 0.11608634144067764,
1074
+ "rewards/accuracy_reward": 0.7701078951358795,
1075
+ "rewards/format_reward": 1.0,
1076
+ "step": 82
1077
+ },
1078
+ {
1079
+ "completion_length": 70.1640625,
1080
+ "epoch": 20.75,
1081
+ "grad_norm": 1.5553102493286133,
1082
+ "kl": 0.07421875,
1083
+ "learning_rate": 9.481249999999999e-07,
1084
+ "loss": 0.003,
1085
+ "reward": 1.8716879487037659,
1086
+ "reward_std": 0.13853080570697784,
1087
+ "rewards/accuracy_reward": 0.8716880083084106,
1088
+ "rewards/format_reward": 1.0,
1089
+ "step": 83
1090
+ },
1091
+ {
1092
+ "completion_length": 100.9285774230957,
1093
+ "epoch": 21.0,
1094
+ "grad_norm": 1.4347081184387207,
1095
+ "kl": 0.081298828125,
1096
+ "learning_rate": 9.474999999999999e-07,
1097
+ "loss": 0.0032,
1098
+ "reward": 1.7912707328796387,
1099
+ "reward_std": 0.22874768637120724,
1100
+ "rewards/accuracy_reward": 0.7912707030773163,
1101
+ "rewards/format_reward": 1.0,
1102
+ "step": 84
1103
+ },
1104
+ {
1105
+ "completion_length": 75.5078125,
1106
+ "epoch": 21.25,
1107
+ "grad_norm": 1.4661049842834473,
1108
+ "kl": 0.05859375,
1109
+ "learning_rate": 9.468749999999999e-07,
1110
+ "loss": 0.0023,
1111
+ "reward": 1.7916218042373657,
1112
+ "reward_std": 0.07297072582878172,
1113
+ "rewards/accuracy_reward": 0.7916218042373657,
1114
+ "rewards/format_reward": 1.0,
1115
+ "step": 85
1116
+ },
1117
+ {
1118
+ "completion_length": 67.9296875,
1119
+ "epoch": 21.5,
1120
+ "grad_norm": 1.3486883640289307,
1121
+ "kl": 0.0849609375,
1122
+ "learning_rate": 9.462499999999999e-07,
1123
+ "loss": 0.0034,
1124
+ "reward": 1.9112024307250977,
1125
+ "reward_std": 0.07055860431864858,
1126
+ "rewards/accuracy_reward": 0.9112024307250977,
1127
+ "rewards/format_reward": 1.0,
1128
+ "step": 86
1129
+ },
1130
+ {
1131
+ "completion_length": 83.8359375,
1132
+ "epoch": 21.75,
1133
+ "grad_norm": 1.7671387195587158,
1134
+ "kl": 0.062744140625,
1135
+ "learning_rate": 9.45625e-07,
1136
+ "loss": 0.0025,
1137
+ "reward": 1.8552258610725403,
1138
+ "reward_std": 0.14477503299713135,
1139
+ "rewards/accuracy_reward": 0.8630383908748627,
1140
+ "rewards/format_reward": 0.9921875,
1141
+ "step": 87
1142
+ },
1143
+ {
1144
+ "completion_length": 68.42857360839844,
1145
+ "epoch": 22.0,
1146
+ "grad_norm": 1.4051504135131836,
1147
+ "kl": 0.0599365234375,
1148
+ "learning_rate": 9.45e-07,
1149
+ "loss": 0.0023,
1150
+ "reward": 2.0,
1151
+ "reward_std": 0.0,
1152
+ "rewards/accuracy_reward": 1.0,
1153
+ "rewards/format_reward": 1.0,
1154
+ "step": 88
1155
+ },
1156
+ {
1157
+ "completion_length": 67.8203125,
1158
+ "epoch": 22.25,
1159
+ "grad_norm": 1.5293912887573242,
1160
+ "kl": 0.083251953125,
1161
+ "learning_rate": 9.44375e-07,
1162
+ "loss": 0.0033,
1163
+ "reward": 1.9049308896064758,
1164
+ "reward_std": 0.10063770413398743,
1165
+ "rewards/accuracy_reward": 0.9049308598041534,
1166
+ "rewards/format_reward": 1.0,
1167
+ "step": 89
1168
+ },
1169
+ {
1170
+ "completion_length": 73.7890625,
1171
+ "epoch": 22.5,
1172
+ "grad_norm": 1.6518833637237549,
1173
+ "kl": 0.07080078125,
1174
+ "learning_rate": 9.4375e-07,
1175
+ "loss": 0.0028,
1176
+ "reward": 1.9123117327690125,
1177
+ "reward_std": 0.10563771054148674,
1178
+ "rewards/accuracy_reward": 0.9201242327690125,
1179
+ "rewards/format_reward": 0.9921875,
1180
+ "step": 90
1181
+ },
1182
+ {
1183
+ "completion_length": 76.1484375,
1184
+ "epoch": 22.75,
1185
+ "grad_norm": 1.4721721410751343,
1186
+ "kl": 0.0540771484375,
1187
+ "learning_rate": 9.43125e-07,
1188
+ "loss": 0.0022,
1189
+ "reward": 1.7826260328292847,
1190
+ "reward_std": 0.09974323213100433,
1191
+ "rewards/accuracy_reward": 0.7904385328292847,
1192
+ "rewards/format_reward": 0.9921875,
1193
+ "step": 91
1194
+ },
1195
+ {
1196
+ "completion_length": 76.28571701049805,
1197
+ "epoch": 23.0,
1198
+ "grad_norm": 1.7413424253463745,
1199
+ "kl": 0.0732421875,
1200
+ "learning_rate": 9.425e-07,
1201
+ "loss": 0.003,
1202
+ "reward": 1.7768830060958862,
1203
+ "reward_std": 0.27347957249730825,
1204
+ "rewards/accuracy_reward": 0.7768829166889191,
1205
+ "rewards/format_reward": 1.0,
1206
+ "step": 92
1207
+ },
1208
+ {
1209
+ "completion_length": 74.9296875,
1210
+ "epoch": 23.25,
1211
+ "grad_norm": 1.5143275260925293,
1212
+ "kl": 0.08154296875,
1213
+ "learning_rate": 9.41875e-07,
1214
+ "loss": 0.0033,
1215
+ "reward": 1.8272383213043213,
1216
+ "reward_std": 0.14210523292422295,
1217
+ "rewards/accuracy_reward": 0.8350508213043213,
1218
+ "rewards/format_reward": 0.9921875,
1219
+ "step": 93
1220
+ },
1221
+ {
1222
+ "completion_length": 69.9453125,
1223
+ "epoch": 23.5,
1224
+ "grad_norm": 1.544258713722229,
1225
+ "kl": 0.08349609375,
1226
+ "learning_rate": 9.4125e-07,
1227
+ "loss": 0.0033,
1228
+ "reward": 1.937786877155304,
1229
+ "reward_std": 0.07279435358941555,
1230
+ "rewards/accuracy_reward": 0.9377869367599487,
1231
+ "rewards/format_reward": 1.0,
1232
+ "step": 94
1233
+ },
1234
+ {
1235
+ "completion_length": 74.7109375,
1236
+ "epoch": 23.75,
1237
+ "grad_norm": 1.8090089559555054,
1238
+ "kl": 0.0645751953125,
1239
+ "learning_rate": 9.40625e-07,
1240
+ "loss": 0.0026,
1241
+ "reward": 1.8037108778953552,
1242
+ "reward_std": 0.16137579828500748,
1243
+ "rewards/accuracy_reward": 0.8037109076976776,
1244
+ "rewards/format_reward": 1.0,
1245
+ "step": 95
1246
+ },
1247
+ {
1248
+ "completion_length": 58.07143020629883,
1249
+ "epoch": 24.0,
1250
+ "grad_norm": 1.5920876264572144,
1251
+ "kl": 0.0655517578125,
1252
+ "learning_rate": 9.399999999999999e-07,
1253
+ "loss": 0.0028,
1254
+ "reward": 2.0,
1255
+ "reward_std": 0.0,
1256
+ "rewards/accuracy_reward": 1.0,
1257
+ "rewards/format_reward": 1.0,
1258
+ "step": 96
1259
+ },
1260
+ {
1261
+ "completion_length": 71.515625,
1262
+ "epoch": 24.25,
1263
+ "grad_norm": 1.088055968284607,
1264
+ "kl": 0.0806884765625,
1265
+ "learning_rate": 9.393749999999999e-07,
1266
+ "loss": 0.0032,
1267
+ "reward": 1.924683690071106,
1268
+ "reward_std": 0.054580602794885635,
1269
+ "rewards/accuracy_reward": 0.924683690071106,
1270
+ "rewards/format_reward": 1.0,
1271
+ "step": 97
1272
+ },
1273
+ {
1274
+ "completion_length": 67.359375,
1275
+ "epoch": 24.5,
1276
+ "grad_norm": 1.886084794998169,
1277
+ "kl": 0.062255859375,
1278
+ "learning_rate": 9.387499999999999e-07,
1279
+ "loss": 0.0025,
1280
+ "reward": 1.8458982706069946,
1281
+ "reward_std": 0.08389683440327644,
1282
+ "rewards/accuracy_reward": 0.8458982408046722,
1283
+ "rewards/format_reward": 1.0,
1284
+ "step": 98
1285
+ },
1286
+ {
1287
+ "completion_length": 67.765625,
1288
+ "epoch": 24.75,
1289
+ "grad_norm": 1.9300857782363892,
1290
+ "kl": 0.086181640625,
1291
+ "learning_rate": 9.381249999999999e-07,
1292
+ "loss": 0.0035,
1293
+ "reward": 1.8570204973220825,
1294
+ "reward_std": 0.1493590921163559,
1295
+ "rewards/accuracy_reward": 0.8570204675197601,
1296
+ "rewards/format_reward": 1.0,
1297
+ "step": 99
1298
+ },
1299
+ {
1300
+ "completion_length": 69.14286041259766,
1301
+ "epoch": 25.0,
1302
+ "grad_norm": 1.8485654592514038,
1303
+ "kl": 0.08447265625,
1304
+ "learning_rate": 9.374999999999999e-07,
1305
+ "loss": 0.0035,
1306
+ "reward": 1.9482696056365967,
1307
+ "reward_std": 0.042133186012506485,
1308
+ "rewards/accuracy_reward": 0.9482696056365967,
1309
+ "rewards/format_reward": 1.0,
1310
+ "step": 100
1311
+ },
1312
+ {
1313
+ "completion_length": 69.8046875,
1314
+ "epoch": 25.25,
1315
+ "grad_norm": 1.7303087711334229,
1316
+ "kl": 0.0626220703125,
1317
+ "learning_rate": 9.368749999999999e-07,
1318
+ "loss": 0.0025,
1319
+ "reward": 1.772914171218872,
1320
+ "reward_std": 0.13923951238393784,
1321
+ "rewards/accuracy_reward": 0.7807266712188721,
1322
+ "rewards/format_reward": 0.9921875,
1323
+ "step": 101
1324
+ },
1325
+ {
1326
+ "completion_length": 64.5234375,
1327
+ "epoch": 25.5,
1328
+ "grad_norm": 1.4180161952972412,
1329
+ "kl": 0.092041015625,
1330
+ "learning_rate": 9.3625e-07,
1331
+ "loss": 0.0037,
1332
+ "reward": 1.9157771468162537,
1333
+ "reward_std": 0.09159575775265694,
1334
+ "rewards/accuracy_reward": 0.9157771468162537,
1335
+ "rewards/format_reward": 1.0,
1336
+ "step": 102
1337
+ },
1338
+ {
1339
+ "completion_length": 66.8515625,
1340
+ "epoch": 25.75,
1341
+ "grad_norm": 1.7584847211837769,
1342
+ "kl": 0.098388671875,
1343
+ "learning_rate": 9.35625e-07,
1344
+ "loss": 0.0039,
1345
+ "reward": 1.9192783832550049,
1346
+ "reward_std": 0.05962797999382019,
1347
+ "rewards/accuracy_reward": 0.9192784130573273,
1348
+ "rewards/format_reward": 1.0,
1349
+ "step": 103
1350
+ },
1351
+ {
1352
+ "completion_length": 80.28571701049805,
1353
+ "epoch": 26.0,
1354
+ "grad_norm": 1.4904193878173828,
1355
+ "kl": 0.079345703125,
1356
+ "learning_rate": 9.35e-07,
1357
+ "loss": 0.003,
1358
+ "reward": 1.8510922193527222,
1359
+ "reward_std": 0.12523864209651947,
1360
+ "rewards/accuracy_reward": 0.8510921597480774,
1361
+ "rewards/format_reward": 1.0,
1362
+ "step": 104
1363
+ },
1364
+ {
1365
+ "completion_length": 61.109375,
1366
+ "epoch": 26.25,
1367
+ "grad_norm": 1.324255108833313,
1368
+ "kl": 0.0677490234375,
1369
+ "learning_rate": 9.34375e-07,
1370
+ "loss": 0.0027,
1371
+ "reward": 1.9567571878433228,
1372
+ "reward_std": 0.0685323141515255,
1373
+ "rewards/accuracy_reward": 0.9567572176456451,
1374
+ "rewards/format_reward": 1.0,
1375
+ "step": 105
1376
+ },
1377
+ {
1378
+ "completion_length": 71.4296875,
1379
+ "epoch": 26.5,
1380
+ "grad_norm": 2.364198684692383,
1381
+ "kl": 0.07373046875,
1382
+ "learning_rate": 9.3375e-07,
1383
+ "loss": 0.0029,
1384
+ "reward": 1.808899700641632,
1385
+ "reward_std": 0.1115667074918747,
1386
+ "rewards/accuracy_reward": 0.8167122006416321,
1387
+ "rewards/format_reward": 0.9921875,
1388
+ "step": 106
1389
+ },
1390
+ {
1391
+ "completion_length": 73.1171875,
1392
+ "epoch": 26.75,
1393
+ "grad_norm": 2.9395134449005127,
1394
+ "kl": 0.0947265625,
1395
+ "learning_rate": 9.33125e-07,
1396
+ "loss": 0.0038,
1397
+ "reward": 1.7833083868026733,
1398
+ "reward_std": 0.13094724714756012,
1399
+ "rewards/accuracy_reward": 0.7911209166049957,
1400
+ "rewards/format_reward": 0.9921875,
1401
+ "step": 107
1402
+ },
1403
+ {
1404
+ "completion_length": 58.42857551574707,
1405
+ "epoch": 27.0,
1406
+ "grad_norm": 1.540488839149475,
1407
+ "kl": 0.093994140625,
1408
+ "learning_rate": 9.325e-07,
1409
+ "loss": 0.0036,
1410
+ "reward": 1.9905372262001038,
1411
+ "reward_std": 0.008901512250304222,
1412
+ "rewards/accuracy_reward": 0.9905371963977814,
1413
+ "rewards/format_reward": 1.0,
1414
+ "step": 108
1415
+ },
1416
+ {
1417
+ "completion_length": 74.328125,
1418
+ "epoch": 27.25,
1419
+ "grad_norm": 1.7257088422775269,
1420
+ "kl": 0.068115234375,
1421
+ "learning_rate": 9.31875e-07,
1422
+ "loss": 0.0027,
1423
+ "reward": 1.8329947590827942,
1424
+ "reward_std": 0.1075306311249733,
1425
+ "rewards/accuracy_reward": 0.8329947590827942,
1426
+ "rewards/format_reward": 1.0,
1427
+ "step": 109
1428
+ },
1429
+ {
1430
+ "completion_length": 65.4375,
1431
+ "epoch": 27.5,
1432
+ "grad_norm": 1.3653507232666016,
1433
+ "kl": 0.072265625,
1434
+ "learning_rate": 9.3125e-07,
1435
+ "loss": 0.0029,
1436
+ "reward": 1.9556488394737244,
1437
+ "reward_std": 0.022309845313429832,
1438
+ "rewards/accuracy_reward": 0.9556488394737244,
1439
+ "rewards/format_reward": 1.0,
1440
+ "step": 110
1441
+ },
1442
+ {
1443
+ "completion_length": 66.34375,
1444
+ "epoch": 27.75,
1445
+ "grad_norm": 2.26039981842041,
1446
+ "kl": 0.07080078125,
1447
+ "learning_rate": 9.30625e-07,
1448
+ "loss": 0.0028,
1449
+ "reward": 1.8479012846946716,
1450
+ "reward_std": 0.1186746098101139,
1451
+ "rewards/accuracy_reward": 0.8479012846946716,
1452
+ "rewards/format_reward": 1.0,
1453
+ "step": 111
1454
+ },
1455
+ {
1456
+ "completion_length": 73.64286231994629,
1457
+ "epoch": 28.0,
1458
+ "grad_norm": 1.920817494392395,
1459
+ "kl": 0.089599609375,
1460
+ "learning_rate": 9.3e-07,
1461
+ "loss": 0.0036,
1462
+ "reward": 1.8746840953826904,
1463
+ "reward_std": 0.15773950517177582,
1464
+ "rewards/accuracy_reward": 0.874684065580368,
1465
+ "rewards/format_reward": 1.0,
1466
+ "step": 112
1467
+ },
1468
+ {
1469
+ "completion_length": 70.9375,
1470
+ "epoch": 28.25,
1471
+ "grad_norm": 2.101787805557251,
1472
+ "kl": 0.070068359375,
1473
+ "learning_rate": 9.293749999999999e-07,
1474
+ "loss": 0.0028,
1475
+ "reward": 1.9114864468574524,
1476
+ "reward_std": 0.08409742452204227,
1477
+ "rewards/accuracy_reward": 0.9114864468574524,
1478
+ "rewards/format_reward": 1.0,
1479
+ "step": 113
1480
+ },
1481
+ {
1482
+ "completion_length": 68.3671875,
1483
+ "epoch": 28.5,
1484
+ "grad_norm": 1.2061454057693481,
1485
+ "kl": 0.071044921875,
1486
+ "learning_rate": 9.287499999999999e-07,
1487
+ "loss": 0.0028,
1488
+ "reward": 1.8754997849464417,
1489
+ "reward_std": 0.1343640312552452,
1490
+ "rewards/accuracy_reward": 0.883312314748764,
1491
+ "rewards/format_reward": 0.9921875,
1492
+ "step": 114
1493
+ },
1494
+ {
1495
+ "completion_length": 75.0390625,
1496
+ "epoch": 28.75,
1497
+ "grad_norm": 1.5401500463485718,
1498
+ "kl": 0.102294921875,
1499
+ "learning_rate": 9.281249999999999e-07,
1500
+ "loss": 0.0041,
1501
+ "reward": 1.7917361855506897,
1502
+ "reward_std": 0.11317018419504166,
1503
+ "rewards/accuracy_reward": 0.7917361855506897,
1504
+ "rewards/format_reward": 1.0,
1505
+ "step": 115
1506
+ },
1507
+ {
1508
+ "completion_length": 73.21429061889648,
1509
+ "epoch": 29.0,
1510
+ "grad_norm": 1.6947107315063477,
1511
+ "kl": 0.06884765625,
1512
+ "learning_rate": 9.274999999999999e-07,
1513
+ "loss": 0.0027,
1514
+ "reward": 1.8370923399925232,
1515
+ "reward_std": 0.21845543384552002,
1516
+ "rewards/accuracy_reward": 0.8370923399925232,
1517
+ "rewards/format_reward": 1.0,
1518
+ "step": 116
1519
+ },
1520
+ {
1521
+ "completion_length": 75.4765625,
1522
+ "epoch": 29.25,
1523
+ "grad_norm": 1.9241127967834473,
1524
+ "kl": 0.085693359375,
1525
+ "learning_rate": 9.268749999999999e-07,
1526
+ "loss": 0.0034,
1527
+ "reward": 1.8733400702476501,
1528
+ "reward_std": 0.15294026210904121,
1529
+ "rewards/accuracy_reward": 0.8811526000499725,
1530
+ "rewards/format_reward": 0.9921875,
1531
+ "step": 117
1532
+ },
1533
+ {
1534
+ "completion_length": 73.2890625,
1535
+ "epoch": 29.5,
1536
+ "grad_norm": 1.4431734085083008,
1537
+ "kl": 0.076171875,
1538
+ "learning_rate": 9.2625e-07,
1539
+ "loss": 0.0031,
1540
+ "reward": 1.829237937927246,
1541
+ "reward_std": 0.12272904813289642,
1542
+ "rewards/accuracy_reward": 0.8370503783226013,
1543
+ "rewards/format_reward": 0.9921875,
1544
+ "step": 118
1545
+ },
1546
+ {
1547
+ "completion_length": 63.21875,
1548
+ "epoch": 29.75,
1549
+ "grad_norm": 0.8593989014625549,
1550
+ "kl": 0.092529296875,
1551
+ "learning_rate": 9.25625e-07,
1552
+ "loss": 0.0037,
1553
+ "reward": 1.89995938539505,
1554
+ "reward_std": 0.026171773206442595,
1555
+ "rewards/accuracy_reward": 0.8999594449996948,
1556
+ "rewards/format_reward": 1.0,
1557
+ "step": 119
1558
+ },
1559
+ {
1560
+ "completion_length": 61.92857360839844,
1561
+ "epoch": 30.0,
1562
+ "grad_norm": 1.6377516984939575,
1563
+ "kl": 0.094970703125,
1564
+ "learning_rate": 9.25e-07,
1565
+ "loss": 0.0037,
1566
+ "reward": 1.8513376116752625,
1567
+ "reward_std": 0.1493394821882248,
1568
+ "rewards/accuracy_reward": 0.8513375520706177,
1569
+ "rewards/format_reward": 1.0,
1570
+ "step": 120
1571
+ },
1572
+ {
1573
+ "completion_length": 76.2578125,
1574
+ "epoch": 30.25,
1575
+ "grad_norm": 1.9491173028945923,
1576
+ "kl": 0.07861328125,
1577
+ "learning_rate": 9.243749999999999e-07,
1578
+ "loss": 0.0031,
1579
+ "reward": 1.874415099620819,
1580
+ "reward_std": 0.10396317765116692,
1581
+ "rewards/accuracy_reward": 0.8744150996208191,
1582
+ "rewards/format_reward": 1.0,
1583
+ "step": 121
1584
+ },
1585
+ {
1586
+ "completion_length": 71.0703125,
1587
+ "epoch": 30.5,
1588
+ "grad_norm": 1.4187074899673462,
1589
+ "kl": 0.0557861328125,
1590
+ "learning_rate": 9.237499999999999e-07,
1591
+ "loss": 0.0022,
1592
+ "reward": 1.8533148169517517,
1593
+ "reward_std": 0.1055279728025198,
1594
+ "rewards/accuracy_reward": 0.8533147573471069,
1595
+ "rewards/format_reward": 1.0,
1596
+ "step": 122
1597
+ },
1598
+ {
1599
+ "completion_length": 68.4921875,
1600
+ "epoch": 30.75,
1601
+ "grad_norm": 1.2265938520431519,
1602
+ "kl": 0.08837890625,
1603
+ "learning_rate": 9.23125e-07,
1604
+ "loss": 0.0035,
1605
+ "reward": 1.8870754837989807,
1606
+ "reward_std": 0.05487770680338144,
1607
+ "rewards/accuracy_reward": 0.8870754837989807,
1608
+ "rewards/format_reward": 1.0,
1609
+ "step": 123
1610
+ },
1611
+ {
1612
+ "completion_length": 68.42857551574707,
1613
+ "epoch": 31.0,
1614
+ "grad_norm": 1.4902782440185547,
1615
+ "kl": 0.141357421875,
1616
+ "learning_rate": 9.225e-07,
1617
+ "loss": 0.0054,
1618
+ "reward": 1.8678642511367798,
1619
+ "reward_std": 0.08099648356437683,
1620
+ "rewards/accuracy_reward": 0.8678641617298126,
1621
+ "rewards/format_reward": 1.0,
1622
+ "step": 124
1623
+ },
1624
+ {
1625
+ "completion_length": 65.359375,
1626
+ "epoch": 31.25,
1627
+ "grad_norm": 1.6962063312530518,
1628
+ "kl": 0.115478515625,
1629
+ "learning_rate": 9.21875e-07,
1630
+ "loss": 0.0046,
1631
+ "reward": 1.9279668927192688,
1632
+ "reward_std": 0.08291410095989704,
1633
+ "rewards/accuracy_reward": 0.9279668629169464,
1634
+ "rewards/format_reward": 1.0,
1635
+ "step": 125
1636
+ },
1637
+ {
1638
+ "completion_length": 66.3671875,
1639
+ "epoch": 31.5,
1640
+ "grad_norm": 1.7165579795837402,
1641
+ "kl": 0.072265625,
1642
+ "learning_rate": 9.2125e-07,
1643
+ "loss": 0.0029,
1644
+ "reward": 1.8470426201820374,
1645
+ "reward_std": 0.11905767396092415,
1646
+ "rewards/accuracy_reward": 0.8626675605773926,
1647
+ "rewards/format_reward": 0.984375,
1648
+ "step": 126
1649
+ },
1650
+ {
1651
+ "completion_length": 67.90625,
1652
+ "epoch": 31.75,
1653
+ "grad_norm": 1.3967280387878418,
1654
+ "kl": 0.070068359375,
1655
+ "learning_rate": 9.20625e-07,
1656
+ "loss": 0.0028,
1657
+ "reward": 1.8610433340072632,
1658
+ "reward_std": 0.07865873631089926,
1659
+ "rewards/accuracy_reward": 0.868855893611908,
1660
+ "rewards/format_reward": 0.9921875,
1661
+ "step": 127
1662
+ },
1663
+ {
1664
+ "completion_length": 89.50000381469727,
1665
+ "epoch": 32.0,
1666
+ "grad_norm": 1.5761455297470093,
1667
+ "kl": 0.08544921875,
1668
+ "learning_rate": 9.2e-07,
1669
+ "loss": 0.0036,
1670
+ "reward": 1.8485036492347717,
1671
+ "reward_std": 0.1893613114953041,
1672
+ "rewards/accuracy_reward": 0.848503589630127,
1673
+ "rewards/format_reward": 1.0,
1674
+ "step": 128
1675
+ },
1676
+ {
1677
+ "completion_length": 61.921875,
1678
+ "epoch": 32.25,
1679
+ "grad_norm": 2.392521619796753,
1680
+ "kl": 0.07666015625,
1681
+ "learning_rate": 9.19375e-07,
1682
+ "loss": 0.0031,
1683
+ "reward": 1.9423640966415405,
1684
+ "reward_std": 0.07001920230686665,
1685
+ "rewards/accuracy_reward": 0.9423640370368958,
1686
+ "rewards/format_reward": 1.0,
1687
+ "step": 129
1688
+ },
1689
+ {
1690
+ "completion_length": 63.15625,
1691
+ "epoch": 32.5,
1692
+ "grad_norm": 1.7595425844192505,
1693
+ "kl": 0.067138671875,
1694
+ "learning_rate": 9.187499999999999e-07,
1695
+ "loss": 0.0027,
1696
+ "reward": 1.7660340666770935,
1697
+ "reward_std": 0.13782843947410583,
1698
+ "rewards/accuracy_reward": 0.7738466858863831,
1699
+ "rewards/format_reward": 0.9921875,
1700
+ "step": 130
1701
+ },
1702
+ {
1703
+ "completion_length": 66.59375,
1704
+ "epoch": 32.75,
1705
+ "grad_norm": 1.5350968837738037,
1706
+ "kl": 0.07666015625,
1707
+ "learning_rate": 9.181249999999999e-07,
1708
+ "loss": 0.0031,
1709
+ "reward": 1.9150999784469604,
1710
+ "reward_std": 0.08709576074033976,
1711
+ "rewards/accuracy_reward": 0.9150999784469604,
1712
+ "rewards/format_reward": 1.0,
1713
+ "step": 131
1714
+ },
1715
+ {
1716
+ "completion_length": 76.21428680419922,
1717
+ "epoch": 33.0,
1718
+ "grad_norm": 1.6754910945892334,
1719
+ "kl": 0.10986328125,
1720
+ "learning_rate": 9.174999999999999e-07,
1721
+ "loss": 0.0044,
1722
+ "reward": 1.748177945613861,
1723
+ "reward_std": 0.24180777370929718,
1724
+ "rewards/accuracy_reward": 0.7481780052185059,
1725
+ "rewards/format_reward": 1.0,
1726
+ "step": 132
1727
+ },
1728
+ {
1729
+ "completion_length": 60.9921875,
1730
+ "epoch": 33.25,
1731
+ "grad_norm": 1.6315778493881226,
1732
+ "kl": 0.102294921875,
1733
+ "learning_rate": 9.168749999999999e-07,
1734
+ "loss": 0.0041,
1735
+ "reward": 1.9423342943191528,
1736
+ "reward_std": 0.08625898323953152,
1737
+ "rewards/accuracy_reward": 0.94233438372612,
1738
+ "rewards/format_reward": 1.0,
1739
+ "step": 133
1740
+ },
1741
+ {
1742
+ "completion_length": 65.8515625,
1743
+ "epoch": 33.5,
1744
+ "grad_norm": 1.549924373626709,
1745
+ "kl": 0.08837890625,
1746
+ "learning_rate": 9.1625e-07,
1747
+ "loss": 0.0035,
1748
+ "reward": 1.8791784048080444,
1749
+ "reward_std": 0.07251664437353611,
1750
+ "rewards/accuracy_reward": 0.8791784048080444,
1751
+ "rewards/format_reward": 1.0,
1752
+ "step": 134
1753
+ },
1754
+ {
1755
+ "completion_length": 64.0,
1756
+ "epoch": 33.75,
1757
+ "grad_norm": 1.5533236265182495,
1758
+ "kl": 0.1025390625,
1759
+ "learning_rate": 9.15625e-07,
1760
+ "loss": 0.0041,
1761
+ "reward": 1.8645389080047607,
1762
+ "reward_std": 0.06934745609760284,
1763
+ "rewards/accuracy_reward": 0.8645389974117279,
1764
+ "rewards/format_reward": 1.0,
1765
+ "step": 135
1766
+ },
1767
+ {
1768
+ "completion_length": 53.50000190734863,
1769
+ "epoch": 34.0,
1770
+ "grad_norm": 1.9051095247268677,
1771
+ "kl": 0.08349609375,
1772
+ "learning_rate": 9.15e-07,
1773
+ "loss": 0.0035,
1774
+ "reward": 1.9944872856140137,
1775
+ "reward_std": 0.002273906720802188,
1776
+ "rewards/accuracy_reward": 0.9944872260093689,
1777
+ "rewards/format_reward": 1.0,
1778
+ "step": 136
1779
+ },
1780
+ {
1781
+ "completion_length": 64.984375,
1782
+ "epoch": 34.25,
1783
+ "grad_norm": 1.688677191734314,
1784
+ "kl": 0.09130859375,
1785
+ "learning_rate": 9.14375e-07,
1786
+ "loss": 0.0037,
1787
+ "reward": 1.877675175666809,
1788
+ "reward_std": 0.07563214749097824,
1789
+ "rewards/accuracy_reward": 0.8776752054691315,
1790
+ "rewards/format_reward": 1.0,
1791
+ "step": 137
1792
+ },
1793
+ {
1794
+ "completion_length": 69.9375,
1795
+ "epoch": 34.5,
1796
+ "grad_norm": 2.37134051322937,
1797
+ "kl": 0.08447265625,
1798
+ "learning_rate": 9.137499999999999e-07,
1799
+ "loss": 0.0034,
1800
+ "reward": 1.8840071558952332,
1801
+ "reward_std": 0.0991634838283062,
1802
+ "rewards/accuracy_reward": 0.8840071260929108,
1803
+ "rewards/format_reward": 1.0,
1804
+ "step": 138
1805
+ },
1806
+ {
1807
+ "completion_length": 62.5078125,
1808
+ "epoch": 34.75,
1809
+ "grad_norm": 3.3183658123016357,
1810
+ "kl": 0.091064453125,
1811
+ "learning_rate": 9.131249999999999e-07,
1812
+ "loss": 0.0036,
1813
+ "reward": 1.9298002123832703,
1814
+ "reward_std": 0.04489972349256277,
1815
+ "rewards/accuracy_reward": 0.929800271987915,
1816
+ "rewards/format_reward": 1.0,
1817
+ "step": 139
1818
+ },
1819
+ {
1820
+ "completion_length": 43.64285850524902,
1821
+ "epoch": 35.0,
1822
+ "grad_norm": 1.5096288919448853,
1823
+ "kl": 0.11328125,
1824
+ "learning_rate": 9.124999999999999e-07,
1825
+ "loss": 0.0046,
1826
+ "reward": 2.000000238418579,
1827
+ "reward_std": 0.0,
1828
+ "rewards/accuracy_reward": 1.0000001788139343,
1829
+ "rewards/format_reward": 1.0,
1830
+ "step": 140
1831
+ },
1832
+ {
1833
+ "completion_length": 66.15625,
1834
+ "epoch": 35.25,
1835
+ "grad_norm": 1.5723927021026611,
1836
+ "kl": 0.125244140625,
1837
+ "learning_rate": 9.11875e-07,
1838
+ "loss": 0.005,
1839
+ "reward": 1.883579969406128,
1840
+ "reward_std": 0.11640417203307152,
1841
+ "rewards/accuracy_reward": 0.8835799992084503,
1842
+ "rewards/format_reward": 1.0,
1843
+ "step": 141
1844
+ },
1845
+ {
1846
+ "completion_length": 63.1875,
1847
+ "epoch": 35.5,
1848
+ "grad_norm": 1.9653661251068115,
1849
+ "kl": 0.112060546875,
1850
+ "learning_rate": 9.1125e-07,
1851
+ "loss": 0.0045,
1852
+ "reward": 1.9033833146095276,
1853
+ "reward_std": 0.1032666489481926,
1854
+ "rewards/accuracy_reward": 0.9033832252025604,
1855
+ "rewards/format_reward": 1.0,
1856
+ "step": 142
1857
+ },
1858
+ {
1859
+ "completion_length": 68.21875,
1860
+ "epoch": 35.75,
1861
+ "grad_norm": 1.6285479068756104,
1862
+ "kl": 0.098876953125,
1863
+ "learning_rate": 9.10625e-07,
1864
+ "loss": 0.004,
1865
+ "reward": 1.9241021275520325,
1866
+ "reward_std": 0.048172490671277046,
1867
+ "rewards/accuracy_reward": 0.9241021573543549,
1868
+ "rewards/format_reward": 1.0,
1869
+ "step": 143
1870
+ },
1871
+ {
1872
+ "completion_length": 66.00000381469727,
1873
+ "epoch": 36.0,
1874
+ "grad_norm": 1.6228117942810059,
1875
+ "kl": 0.086669921875,
1876
+ "learning_rate": 9.1e-07,
1877
+ "loss": 0.0036,
1878
+ "reward": 1.9067211747169495,
1879
+ "reward_std": 0.1559794396162033,
1880
+ "rewards/accuracy_reward": 0.9067211747169495,
1881
+ "rewards/format_reward": 1.0,
1882
+ "step": 144
1883
+ },
1884
+ {
1885
+ "completion_length": 66.4140625,
1886
+ "epoch": 36.25,
1887
+ "grad_norm": 1.8398008346557617,
1888
+ "kl": 0.11865234375,
1889
+ "learning_rate": 9.09375e-07,
1890
+ "loss": 0.0047,
1891
+ "reward": 1.8845882415771484,
1892
+ "reward_std": 0.09509449079632759,
1893
+ "rewards/accuracy_reward": 0.8845882713794708,
1894
+ "rewards/format_reward": 1.0,
1895
+ "step": 145
1896
+ },
1897
+ {
1898
+ "completion_length": 62.125,
1899
+ "epoch": 36.5,
1900
+ "grad_norm": 1.786875605583191,
1901
+ "kl": 0.133544921875,
1902
+ "learning_rate": 9.087499999999999e-07,
1903
+ "loss": 0.0053,
1904
+ "reward": 1.9288102984428406,
1905
+ "reward_std": 0.10526704788208008,
1906
+ "rewards/accuracy_reward": 0.928810328245163,
1907
+ "rewards/format_reward": 1.0,
1908
+ "step": 146
1909
+ },
1910
+ {
1911
+ "completion_length": 66.4609375,
1912
+ "epoch": 36.75,
1913
+ "grad_norm": 1.0654469728469849,
1914
+ "kl": 0.085693359375,
1915
+ "learning_rate": 9.081249999999999e-07,
1916
+ "loss": 0.0034,
1917
+ "reward": 1.9138463139533997,
1918
+ "reward_std": 0.05325407162308693,
1919
+ "rewards/accuracy_reward": 0.9138462841510773,
1920
+ "rewards/format_reward": 1.0,
1921
+ "step": 147
1922
+ },
1923
+ {
1924
+ "completion_length": 73.92857360839844,
1925
+ "epoch": 37.0,
1926
+ "grad_norm": 3.4973747730255127,
1927
+ "kl": 0.08349609375,
1928
+ "learning_rate": 9.074999999999999e-07,
1929
+ "loss": 0.0033,
1930
+ "reward": 1.9407565593719482,
1931
+ "reward_std": 0.02056967036332935,
1932
+ "rewards/accuracy_reward": 0.9407565593719482,
1933
+ "rewards/format_reward": 1.0,
1934
+ "step": 148
1935
+ },
1936
+ {
1937
+ "completion_length": 64.2421875,
1938
+ "epoch": 37.25,
1939
+ "grad_norm": 1.0742721557617188,
1940
+ "kl": 0.0662841796875,
1941
+ "learning_rate": 9.068749999999999e-07,
1942
+ "loss": 0.0027,
1943
+ "reward": 1.95524662733078,
1944
+ "reward_std": 0.03273457381874323,
1945
+ "rewards/accuracy_reward": 0.9552466571331024,
1946
+ "rewards/format_reward": 1.0,
1947
+ "step": 149
1948
+ },
1949
+ {
1950
+ "completion_length": 65.5234375,
1951
+ "epoch": 37.5,
1952
+ "grad_norm": 1.77584707736969,
1953
+ "kl": 0.13134765625,
1954
+ "learning_rate": 9.0625e-07,
1955
+ "loss": 0.0053,
1956
+ "reward": 1.9271560907363892,
1957
+ "reward_std": 0.09471606463193893,
1958
+ "rewards/accuracy_reward": 0.9271561205387115,
1959
+ "rewards/format_reward": 1.0,
1960
+ "step": 150
1961
+ },
1962
+ {
1963
+ "completion_length": 64.6484375,
1964
+ "epoch": 37.75,
1965
+ "grad_norm": 1.662251353263855,
1966
+ "kl": 0.10595703125,
1967
+ "learning_rate": 9.05625e-07,
1968
+ "loss": 0.0042,
1969
+ "reward": 1.886656403541565,
1970
+ "reward_std": 0.061278367415070534,
1971
+ "rewards/accuracy_reward": 0.8866565227508545,
1972
+ "rewards/format_reward": 1.0,
1973
+ "step": 151
1974
+ },
1975
+ {
1976
+ "completion_length": 62.14285850524902,
1977
+ "epoch": 38.0,
1978
+ "grad_norm": 1.0349845886230469,
1979
+ "kl": 0.084716796875,
1980
+ "learning_rate": 9.05e-07,
1981
+ "loss": 0.0033,
1982
+ "reward": 1.9759380221366882,
1983
+ "reward_std": 0.006050224881619215,
1984
+ "rewards/accuracy_reward": 0.9759379625320435,
1985
+ "rewards/format_reward": 1.0,
1986
+ "step": 152
1987
+ },
1988
+ {
1989
+ "completion_length": 68.9453125,
1990
+ "epoch": 38.25,
1991
+ "grad_norm": 1.4474000930786133,
1992
+ "kl": 0.081298828125,
1993
+ "learning_rate": 9.04375e-07,
1994
+ "loss": 0.0033,
1995
+ "reward": 1.899282455444336,
1996
+ "reward_std": 0.07941721752285957,
1997
+ "rewards/accuracy_reward": 0.8992824554443359,
1998
+ "rewards/format_reward": 1.0,
1999
+ "step": 153
2000
+ },
2001
+ {
2002
+ "completion_length": 67.90625,
2003
+ "epoch": 38.5,
2004
+ "grad_norm": 1.698777437210083,
2005
+ "kl": 0.091552734375,
2006
+ "learning_rate": 9.0375e-07,
2007
+ "loss": 0.0037,
2008
+ "reward": 1.8697898387908936,
2009
+ "reward_std": 0.096246431581676,
2010
+ "rewards/accuracy_reward": 0.8697898387908936,
2011
+ "rewards/format_reward": 1.0,
2012
+ "step": 154
2013
+ },
2014
+ {
2015
+ "completion_length": 62.40625,
2016
+ "epoch": 38.75,
2017
+ "grad_norm": 2.1754443645477295,
2018
+ "kl": 0.142578125,
2019
+ "learning_rate": 9.031249999999999e-07,
2020
+ "loss": 0.0057,
2021
+ "reward": 1.938372015953064,
2022
+ "reward_std": 0.05481863580644131,
2023
+ "rewards/accuracy_reward": 0.9383720755577087,
2024
+ "rewards/format_reward": 1.0,
2025
+ "step": 155
2026
+ },
2027
+ {
2028
+ "completion_length": 61.42857551574707,
2029
+ "epoch": 39.0,
2030
+ "grad_norm": 1.1363853216171265,
2031
+ "kl": 0.10986328125,
2032
+ "learning_rate": 9.024999999999999e-07,
2033
+ "loss": 0.0041,
2034
+ "reward": 2.0,
2035
+ "reward_std": 0.0,
2036
+ "rewards/accuracy_reward": 0.9999999403953552,
2037
+ "rewards/format_reward": 1.0,
2038
+ "step": 156
2039
+ },
2040
+ {
2041
+ "completion_length": 63.625,
2042
+ "epoch": 39.25,
2043
+ "grad_norm": 2.1956725120544434,
2044
+ "kl": 0.09814453125,
2045
+ "learning_rate": 9.018749999999999e-07,
2046
+ "loss": 0.0039,
2047
+ "reward": 1.9699036478996277,
2048
+ "reward_std": 0.028281668201088905,
2049
+ "rewards/accuracy_reward": 0.9699036478996277,
2050
+ "rewards/format_reward": 1.0,
2051
+ "step": 157
2052
+ },
2053
+ {
2054
+ "completion_length": 68.1953125,
2055
+ "epoch": 39.5,
2056
+ "grad_norm": 12.062308311462402,
2057
+ "kl": 0.089111328125,
2058
+ "learning_rate": 9.0125e-07,
2059
+ "loss": 0.0036,
2060
+ "reward": 1.9097211360931396,
2061
+ "reward_std": 0.028848751448094845,
2062
+ "rewards/accuracy_reward": 0.9097210764884949,
2063
+ "rewards/format_reward": 1.0,
2064
+ "step": 158
2065
+ },
2066
+ {
2067
+ "completion_length": 60.328125,
2068
+ "epoch": 39.75,
2069
+ "grad_norm": 1.7780170440673828,
2070
+ "kl": 0.117431640625,
2071
+ "learning_rate": 9.00625e-07,
2072
+ "loss": 0.0047,
2073
+ "reward": 1.9212573766708374,
2074
+ "reward_std": 0.05963377561420202,
2075
+ "rewards/accuracy_reward": 0.9212574064731598,
2076
+ "rewards/format_reward": 1.0,
2077
+ "step": 159
2078
+ },
2079
+ {
2080
+ "completion_length": 74.35714721679688,
2081
+ "epoch": 40.0,
2082
+ "grad_norm": 1.2525172233581543,
2083
+ "kl": 0.092041015625,
2084
+ "learning_rate": 9e-07,
2085
+ "loss": 0.0034,
2086
+ "reward": 1.60818749666214,
2087
+ "reward_std": 0.27048664540052414,
2088
+ "rewards/accuracy_reward": 0.6081875115633011,
2089
+ "rewards/format_reward": 1.0,
2090
+ "step": 160
2091
+ },
2092
+ {
2093
+ "completion_length": 64.375,
2094
+ "epoch": 40.25,
2095
+ "grad_norm": 1.7184271812438965,
2096
+ "kl": 0.124267578125,
2097
+ "learning_rate": 8.99375e-07,
2098
+ "loss": 0.005,
2099
+ "reward": 1.8835479021072388,
2100
+ "reward_std": 0.12309728935360909,
2101
+ "rewards/accuracy_reward": 0.8835478723049164,
2102
+ "rewards/format_reward": 1.0,
2103
+ "step": 161
2104
+ },
2105
+ {
2106
+ "completion_length": 64.40625,
2107
+ "epoch": 40.5,
2108
+ "grad_norm": 1.8725802898406982,
2109
+ "kl": 0.093017578125,
2110
+ "learning_rate": 8.9875e-07,
2111
+ "loss": 0.0037,
2112
+ "reward": 1.8645429015159607,
2113
+ "reward_std": 0.11185415461659431,
2114
+ "rewards/accuracy_reward": 0.8645428419113159,
2115
+ "rewards/format_reward": 1.0,
2116
+ "step": 162
2117
+ },
2118
+ {
2119
+ "completion_length": 63.2890625,
2120
+ "epoch": 40.75,
2121
+ "grad_norm": 1.6588366031646729,
2122
+ "kl": 0.103759765625,
2123
+ "learning_rate": 8.981249999999999e-07,
2124
+ "loss": 0.0042,
2125
+ "reward": 1.9586772918701172,
2126
+ "reward_std": 0.0604820279404521,
2127
+ "rewards/accuracy_reward": 0.9586772918701172,
2128
+ "rewards/format_reward": 1.0,
2129
+ "step": 163
2130
+ },
2131
+ {
2132
+ "completion_length": 57.07143020629883,
2133
+ "epoch": 41.0,
2134
+ "grad_norm": 1.847510576248169,
2135
+ "kl": 0.0975341796875,
2136
+ "learning_rate": 8.974999999999999e-07,
2137
+ "loss": 0.004,
2138
+ "reward": 1.996271789073944,
2139
+ "reward_std": 0.009226946160197258,
2140
+ "rewards/accuracy_reward": 0.9962717592716217,
2141
+ "rewards/format_reward": 1.0,
2142
+ "step": 164
2143
+ },
2144
+ {
2145
+ "completion_length": 65.078125,
2146
+ "epoch": 41.25,
2147
+ "grad_norm": 38.17945861816406,
2148
+ "kl": 0.104736328125,
2149
+ "learning_rate": 8.96875e-07,
2150
+ "loss": 0.0042,
2151
+ "reward": 1.972551941871643,
2152
+ "reward_std": 0.029624830232933164,
2153
+ "rewards/accuracy_reward": 0.9725519418716431,
2154
+ "rewards/format_reward": 1.0,
2155
+ "step": 165
2156
+ },
2157
+ {
2158
+ "completion_length": 61.625,
2159
+ "epoch": 41.5,
2160
+ "grad_norm": 1.6226741075515747,
2161
+ "kl": 0.10888671875,
2162
+ "learning_rate": 8.9625e-07,
2163
+ "loss": 0.0044,
2164
+ "reward": 1.9604188203811646,
2165
+ "reward_std": 0.032178135588765144,
2166
+ "rewards/accuracy_reward": 0.9604187309741974,
2167
+ "rewards/format_reward": 1.0,
2168
+ "step": 166
2169
+ },
2170
+ {
2171
+ "completion_length": 62.6953125,
2172
+ "epoch": 41.75,
2173
+ "grad_norm": 1.6520531177520752,
2174
+ "kl": 0.10791015625,
2175
+ "learning_rate": 8.95625e-07,
2176
+ "loss": 0.0043,
2177
+ "reward": 1.927883267402649,
2178
+ "reward_std": 0.13132158294320107,
2179
+ "rewards/accuracy_reward": 0.9278833270072937,
2180
+ "rewards/format_reward": 1.0,
2181
+ "step": 167
2182
+ },
2183
+ {
2184
+ "completion_length": 59.500003814697266,
2185
+ "epoch": 42.0,
2186
+ "grad_norm": 3.64481520652771,
2187
+ "kl": 0.224365234375,
2188
+ "learning_rate": 8.95e-07,
2189
+ "loss": 0.0083,
2190
+ "reward": 1.990772783756256,
2191
+ "reward_std": 0.014955918304622173,
2192
+ "rewards/accuracy_reward": 0.9907727539539337,
2193
+ "rewards/format_reward": 1.0,
2194
+ "step": 168
2195
+ },
2196
+ {
2197
+ "completion_length": 64.328125,
2198
+ "epoch": 42.25,
2199
+ "grad_norm": 1.8193657398223877,
2200
+ "kl": 0.139404296875,
2201
+ "learning_rate": 8.94375e-07,
2202
+ "loss": 0.0056,
2203
+ "reward": 1.8847713470458984,
2204
+ "reward_std": 0.07002338580787182,
2205
+ "rewards/accuracy_reward": 0.8847712576389313,
2206
+ "rewards/format_reward": 1.0,
2207
+ "step": 169
2208
+ },
2209
+ {
2210
+ "completion_length": 64.3203125,
2211
+ "epoch": 42.5,
2212
+ "grad_norm": 1.530835509300232,
2213
+ "kl": 0.081298828125,
2214
+ "learning_rate": 8.9375e-07,
2215
+ "loss": 0.0032,
2216
+ "reward": 1.932590126991272,
2217
+ "reward_std": 0.08853724412620068,
2218
+ "rewards/accuracy_reward": 0.932590126991272,
2219
+ "rewards/format_reward": 1.0,
2220
+ "step": 170
2221
+ },
2222
+ {
2223
+ "completion_length": 64.421875,
2224
+ "epoch": 42.75,
2225
+ "grad_norm": 1.8089220523834229,
2226
+ "kl": 0.10009765625,
2227
+ "learning_rate": 8.931249999999999e-07,
2228
+ "loss": 0.004,
2229
+ "reward": 1.9313350915908813,
2230
+ "reward_std": 0.10991925746202469,
2231
+ "rewards/accuracy_reward": 0.9313351213932037,
2232
+ "rewards/format_reward": 1.0,
2233
+ "step": 171
2234
+ },
2235
+ {
2236
+ "completion_length": 57.78571891784668,
2237
+ "epoch": 43.0,
2238
+ "grad_norm": 1.598233938217163,
2239
+ "kl": 0.1025390625,
2240
+ "learning_rate": 8.924999999999999e-07,
2241
+ "loss": 0.004,
2242
+ "reward": 1.9523810148239136,
2243
+ "reward_std": 0.117851123213768,
2244
+ "rewards/accuracy_reward": 0.9523809850215912,
2245
+ "rewards/format_reward": 1.0,
2246
+ "step": 172
2247
+ },
2248
+ {
2249
+ "completion_length": 71.3046875,
2250
+ "epoch": 43.25,
2251
+ "grad_norm": 1.3065526485443115,
2252
+ "kl": 0.10498046875,
2253
+ "learning_rate": 8.918749999999999e-07,
2254
+ "loss": 0.0042,
2255
+ "reward": 1.9195694327354431,
2256
+ "reward_std": 0.09789480268955231,
2257
+ "rewards/accuracy_reward": 0.9195694029331207,
2258
+ "rewards/format_reward": 1.0,
2259
+ "step": 173
2260
+ },
2261
+ {
2262
+ "completion_length": 65.5234375,
2263
+ "epoch": 43.5,
2264
+ "grad_norm": 2.1177382469177246,
2265
+ "kl": 0.077880859375,
2266
+ "learning_rate": 8.912499999999999e-07,
2267
+ "loss": 0.0031,
2268
+ "reward": 1.9476656317710876,
2269
+ "reward_std": 0.1074841171503067,
2270
+ "rewards/accuracy_reward": 0.9476656317710876,
2271
+ "rewards/format_reward": 1.0,
2272
+ "step": 174
2273
+ },
2274
+ {
2275
+ "completion_length": 65.203125,
2276
+ "epoch": 43.75,
2277
+ "grad_norm": 1.707092523574829,
2278
+ "kl": 0.092529296875,
2279
+ "learning_rate": 8.906249999999999e-07,
2280
+ "loss": 0.0037,
2281
+ "reward": 1.957956075668335,
2282
+ "reward_std": 0.08192763105034828,
2283
+ "rewards/accuracy_reward": 0.9579560160636902,
2284
+ "rewards/format_reward": 1.0,
2285
+ "step": 175
2286
+ },
2287
+ {
2288
+ "completion_length": 63.92857360839844,
2289
+ "epoch": 44.0,
2290
+ "grad_norm": 2.0081725120544434,
2291
+ "kl": 0.112060546875,
2292
+ "learning_rate": 8.9e-07,
2293
+ "loss": 0.0042,
2294
+ "reward": 2.0,
2295
+ "reward_std": 0.0,
2296
+ "rewards/accuracy_reward": 1.0,
2297
+ "rewards/format_reward": 1.0,
2298
+ "step": 176
2299
+ },
2300
+ {
2301
+ "completion_length": 70.5234375,
2302
+ "epoch": 44.25,
2303
+ "grad_norm": 1.1276594400405884,
2304
+ "kl": 0.078125,
2305
+ "learning_rate": 8.89375e-07,
2306
+ "loss": 0.0031,
2307
+ "reward": 1.9139772653579712,
2308
+ "reward_std": 0.04851855710148811,
2309
+ "rewards/accuracy_reward": 0.9139772355556488,
2310
+ "rewards/format_reward": 1.0,
2311
+ "step": 177
2312
+ },
2313
+ {
2314
+ "completion_length": 66.9609375,
2315
+ "epoch": 44.5,
2316
+ "grad_norm": 1.5237661600112915,
2317
+ "kl": 0.087646484375,
2318
+ "learning_rate": 8.8875e-07,
2319
+ "loss": 0.0035,
2320
+ "reward": 1.9119119048118591,
2321
+ "reward_std": 0.11337531358003616,
2322
+ "rewards/accuracy_reward": 0.9119119048118591,
2323
+ "rewards/format_reward": 1.0,
2324
+ "step": 178
2325
+ },
2326
+ {
2327
+ "completion_length": 67.40625,
2328
+ "epoch": 44.75,
2329
+ "grad_norm": 1.9239343404769897,
2330
+ "kl": 0.118408203125,
2331
+ "learning_rate": 8.88125e-07,
2332
+ "loss": 0.0047,
2333
+ "reward": 1.950349748134613,
2334
+ "reward_std": 0.08595369663089514,
2335
+ "rewards/accuracy_reward": 0.950349748134613,
2336
+ "rewards/format_reward": 1.0,
2337
+ "step": 179
2338
+ },
2339
+ {
2340
+ "completion_length": 65.92857360839844,
2341
+ "epoch": 45.0,
2342
+ "grad_norm": 1.3003308773040771,
2343
+ "kl": 0.089111328125,
2344
+ "learning_rate": 8.874999999999999e-07,
2345
+ "loss": 0.0033,
2346
+ "reward": 2.0,
2347
+ "reward_std": 0.0,
2348
+ "rewards/accuracy_reward": 1.0,
2349
+ "rewards/format_reward": 1.0,
2350
+ "step": 180
2351
+ },
2352
+ {
2353
+ "completion_length": 62.4296875,
2354
+ "epoch": 45.25,
2355
+ "grad_norm": 1.5781491994857788,
2356
+ "kl": 0.1025390625,
2357
+ "learning_rate": 8.86875e-07,
2358
+ "loss": 0.0041,
2359
+ "reward": 1.9496909379959106,
2360
+ "reward_std": 0.09814758412539959,
2361
+ "rewards/accuracy_reward": 0.957503467798233,
2362
+ "rewards/format_reward": 0.9921875,
2363
+ "step": 181
2364
+ },
2365
+ {
2366
+ "completion_length": 68.4453125,
2367
+ "epoch": 45.5,
2368
+ "grad_norm": 1.3683621883392334,
2369
+ "kl": 0.066162109375,
2370
+ "learning_rate": 8.8625e-07,
2371
+ "loss": 0.0027,
2372
+ "reward": 1.9691051840782166,
2373
+ "reward_std": 0.05337556218728423,
2374
+ "rewards/accuracy_reward": 0.9691051244735718,
2375
+ "rewards/format_reward": 1.0,
2376
+ "step": 182
2377
+ },
2378
+ {
2379
+ "completion_length": 68.578125,
2380
+ "epoch": 45.75,
2381
+ "grad_norm": 2.0152835845947266,
2382
+ "kl": 0.1162109375,
2383
+ "learning_rate": 8.85625e-07,
2384
+ "loss": 0.0047,
2385
+ "reward": 1.8733105659484863,
2386
+ "reward_std": 0.10198326967656612,
2387
+ "rewards/accuracy_reward": 0.8733105063438416,
2388
+ "rewards/format_reward": 1.0,
2389
+ "step": 183
2390
+ },
2391
+ {
2392
+ "completion_length": 67.00000190734863,
2393
+ "epoch": 46.0,
2394
+ "grad_norm": 1.3855398893356323,
2395
+ "kl": 0.091796875,
2396
+ "learning_rate": 8.85e-07,
2397
+ "loss": 0.0041,
2398
+ "reward": 2.0,
2399
+ "reward_std": 0.0,
2400
+ "rewards/accuracy_reward": 1.0,
2401
+ "rewards/format_reward": 1.0,
2402
+ "step": 184
2403
+ },
2404
+ {
2405
+ "completion_length": 64.0859375,
2406
+ "epoch": 46.25,
2407
+ "grad_norm": 1.4427531957626343,
2408
+ "kl": 0.12060546875,
2409
+ "learning_rate": 8.84375e-07,
2410
+ "loss": 0.0048,
2411
+ "reward": 1.9910829067230225,
2412
+ "reward_std": 0.013608792796730995,
2413
+ "rewards/accuracy_reward": 0.9910828173160553,
2414
+ "rewards/format_reward": 1.0,
2415
+ "step": 185
2416
+ },
2417
+ {
2418
+ "completion_length": 68.8984375,
2419
+ "epoch": 46.5,
2420
+ "grad_norm": 1.636596918106079,
2421
+ "kl": 0.11083984375,
2422
+ "learning_rate": 8.8375e-07,
2423
+ "loss": 0.0044,
2424
+ "reward": 1.8811240196228027,
2425
+ "reward_std": 0.08701632916927338,
2426
+ "rewards/accuracy_reward": 0.8811240196228027,
2427
+ "rewards/format_reward": 1.0,
2428
+ "step": 186
2429
+ },
2430
+ {
2431
+ "completion_length": 62.34375,
2432
+ "epoch": 46.75,
2433
+ "grad_norm": 1.5652858018875122,
2434
+ "kl": 0.095947265625,
2435
+ "learning_rate": 8.83125e-07,
2436
+ "loss": 0.0038,
2437
+ "reward": 1.9629307389259338,
2438
+ "reward_std": 0.04571997746825218,
2439
+ "rewards/accuracy_reward": 0.9629306495189667,
2440
+ "rewards/format_reward": 1.0,
2441
+ "step": 187
2442
+ },
2443
+ {
2444
+ "completion_length": 52.85714530944824,
2445
+ "epoch": 47.0,
2446
+ "grad_norm": 1.4924471378326416,
2447
+ "kl": 0.0849609375,
2448
+ "learning_rate": 8.824999999999999e-07,
2449
+ "loss": 0.0035,
2450
+ "reward": 1.8819976449012756,
2451
+ "reward_std": 0.043679721653461456,
2452
+ "rewards/accuracy_reward": 0.8819977045059204,
2453
+ "rewards/format_reward": 1.0,
2454
+ "step": 188
2455
+ },
2456
+ {
2457
+ "completion_length": 60.375,
2458
+ "epoch": 47.25,
2459
+ "grad_norm": 1.2424156665802002,
2460
+ "kl": 0.11572265625,
2461
+ "learning_rate": 8.818749999999999e-07,
2462
+ "loss": 0.0046,
2463
+ "reward": 1.9622814059257507,
2464
+ "reward_std": 0.03379644639790058,
2465
+ "rewards/accuracy_reward": 0.9622813165187836,
2466
+ "rewards/format_reward": 1.0,
2467
+ "step": 189
2468
+ },
2469
+ {
2470
+ "completion_length": 64.8125,
2471
+ "epoch": 47.5,
2472
+ "grad_norm": 1.445113182067871,
2473
+ "kl": 0.107421875,
2474
+ "learning_rate": 8.812499999999999e-07,
2475
+ "loss": 0.0043,
2476
+ "reward": 1.969697892665863,
2477
+ "reward_std": 0.025794532150030136,
2478
+ "rewards/accuracy_reward": 0.9696978330612183,
2479
+ "rewards/format_reward": 1.0,
2480
+ "step": 190
2481
+ },
2482
+ {
2483
+ "completion_length": 62.25,
2484
+ "epoch": 47.75,
2485
+ "grad_norm": 1.8363816738128662,
2486
+ "kl": 0.161865234375,
2487
+ "learning_rate": 8.806249999999999e-07,
2488
+ "loss": 0.0065,
2489
+ "reward": 1.900344431400299,
2490
+ "reward_std": 0.05351579561829567,
2491
+ "rewards/accuracy_reward": 0.9003444910049438,
2492
+ "rewards/format_reward": 1.0,
2493
+ "step": 191
2494
+ },
2495
+ {
2496
+ "completion_length": 65.71428680419922,
2497
+ "epoch": 48.0,
2498
+ "grad_norm": 1.4372133016586304,
2499
+ "kl": 0.103271484375,
2500
+ "learning_rate": 8.799999999999999e-07,
2501
+ "loss": 0.0038,
2502
+ "reward": 1.9987189769744873,
2503
+ "reward_std": 0.0020755312871187925,
2504
+ "rewards/accuracy_reward": 0.9987190961837769,
2505
+ "rewards/format_reward": 1.0,
2506
+ "step": 192
2507
+ },
2508
+ {
2509
+ "completion_length": 60.0859375,
2510
+ "epoch": 48.25,
2511
+ "grad_norm": 1.662278175354004,
2512
+ "kl": 0.087646484375,
2513
+ "learning_rate": 8.793749999999999e-07,
2514
+ "loss": 0.0035,
2515
+ "reward": 1.9600813388824463,
2516
+ "reward_std": 0.07481173612177372,
2517
+ "rewards/accuracy_reward": 0.9600813686847687,
2518
+ "rewards/format_reward": 1.0,
2519
+ "step": 193
2520
+ },
2521
+ {
2522
+ "completion_length": 60.2890625,
2523
+ "epoch": 48.5,
2524
+ "grad_norm": 1.3797621726989746,
2525
+ "kl": 0.10595703125,
2526
+ "learning_rate": 8.7875e-07,
2527
+ "loss": 0.0042,
2528
+ "reward": 1.9719964265823364,
2529
+ "reward_std": 0.02817021100781858,
2530
+ "rewards/accuracy_reward": 0.9719964861869812,
2531
+ "rewards/format_reward": 1.0,
2532
+ "step": 194
2533
+ },
2534
+ {
2535
+ "completion_length": 60.7578125,
2536
+ "epoch": 48.75,
2537
+ "grad_norm": 1.4646984338760376,
2538
+ "kl": 0.13037109375,
2539
+ "learning_rate": 8.78125e-07,
2540
+ "loss": 0.0052,
2541
+ "reward": 1.9132311940193176,
2542
+ "reward_std": 0.04202069714665413,
2543
+ "rewards/accuracy_reward": 0.9132311940193176,
2544
+ "rewards/format_reward": 1.0,
2545
+ "step": 195
2546
+ },
2547
+ {
2548
+ "completion_length": 64.21428871154785,
2549
+ "epoch": 49.0,
2550
+ "grad_norm": 1.513399600982666,
2551
+ "kl": 0.1103515625,
2552
+ "learning_rate": 8.774999999999999e-07,
2553
+ "loss": 0.0041,
2554
+ "reward": 1.9454046487808228,
2555
+ "reward_std": 0.055479995906353,
2556
+ "rewards/accuracy_reward": 0.9454046189785004,
2557
+ "rewards/format_reward": 1.0,
2558
+ "step": 196
2559
+ },
2560
+ {
2561
+ "completion_length": 61.5,
2562
+ "epoch": 49.25,
2563
+ "grad_norm": 1.0642904043197632,
2564
+ "kl": 0.094482421875,
2565
+ "learning_rate": 8.76875e-07,
2566
+ "loss": 0.0038,
2567
+ "reward": 1.9798645377159119,
2568
+ "reward_std": 0.031060860259458423,
2569
+ "rewards/accuracy_reward": 0.9798645973205566,
2570
+ "rewards/format_reward": 1.0,
2571
+ "step": 197
2572
+ },
2573
+ {
2574
+ "completion_length": 61.5,
2575
+ "epoch": 49.5,
2576
+ "grad_norm": 2.066206455230713,
2577
+ "kl": 0.1689453125,
2578
+ "learning_rate": 8.7625e-07,
2579
+ "loss": 0.0067,
2580
+ "reward": 1.917717456817627,
2581
+ "reward_std": 0.027819208800792694,
2582
+ "rewards/accuracy_reward": 0.9177174866199493,
2583
+ "rewards/format_reward": 1.0,
2584
+ "step": 198
2585
+ },
2586
+ {
2587
+ "completion_length": 59.9296875,
2588
+ "epoch": 49.75,
2589
+ "grad_norm": 1.2293668985366821,
2590
+ "kl": 0.114990234375,
2591
+ "learning_rate": 8.75625e-07,
2592
+ "loss": 0.0046,
2593
+ "reward": 1.9745354652404785,
2594
+ "reward_std": 0.048739076184574515,
2595
+ "rewards/accuracy_reward": 0.9823479354381561,
2596
+ "rewards/format_reward": 0.9921875,
2597
+ "step": 199
2598
+ },
2599
+ {
2600
+ "completion_length": 75.85714721679688,
2601
+ "epoch": 50.0,
2602
+ "grad_norm": 1.5204596519470215,
2603
+ "kl": 0.095703125,
2604
+ "learning_rate": 8.75e-07,
2605
+ "loss": 0.0041,
2606
+ "reward": 1.9712833166122437,
2607
+ "reward_std": 0.02327703475020826,
2608
+ "rewards/accuracy_reward": 0.9712833166122437,
2609
+ "rewards/format_reward": 1.0,
2610
+ "step": 200
2611
+ }
2612
+ ],
2613
+ "logging_steps": 1.0,
2614
+ "max_steps": 1600,
2615
+ "num_input_tokens_seen": 0,
2616
+ "num_train_epochs": 400,
2617
+ "save_steps": 100,
2618
+ "stateful_callbacks": {
2619
+ "TrainerControl": {
2620
+ "args": {
2621
+ "should_epoch_stop": false,
2622
+ "should_evaluate": false,
2623
+ "should_log": false,
2624
+ "should_save": true,
2625
+ "should_training_stop": false
2626
+ },
2627
+ "attributes": {}
2628
+ }
2629
+ },
2630
+ "total_flos": 0.0,
2631
+ "train_batch_size": 1,
2632
+ "trial_name": null,
2633
+ "trial_params": null
2634
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:42fb6642cd0f7e5688646aa2ccf4d934a6d20131f97a0d5964de987184024a1e
3
+ size 8184
vocab.json ADDED
The diff for this file is too large to render. See raw diff