Update README.md
Browse files
README.md
CHANGED
@@ -253,7 +253,7 @@ This produces a JSON file in the ```instance_data_dir``` directory:
|
|
253 |
{"file_name": "94.jpg", "prompt": "<leaf microstructure>, arafed image of a green plant with a yellow cross"}
|
254 |
```
|
255 |
|
256 |
-
```
|
257 |
!accelerate launch train_dreambooth_lora_sdxl.py \
|
258 |
--pretrained_model_name_or_path="{pretrained_model_name_or_path}" \
|
259 |
--pretrained_vae_model_name_or_path="{pretrained_vae_model_name_or_path}"\
|
@@ -277,4 +277,51 @@ This produces a JSON file in the ```instance_data_dir``` directory:
|
|
277 |
--max_train_steps=500 \
|
278 |
--checkpointing_steps=500 \
|
279 |
--seed="0"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
280 |
```
|
|
|
253 |
{"file_name": "94.jpg", "prompt": "<leaf microstructure>, arafed image of a green plant with a yellow cross"}
|
254 |
```
|
255 |
|
256 |
+
```python
|
257 |
!accelerate launch train_dreambooth_lora_sdxl.py \
|
258 |
--pretrained_model_name_or_path="{pretrained_model_name_or_path}" \
|
259 |
--pretrained_vae_model_name_or_path="{pretrained_vae_model_name_or_path}"\
|
|
|
277 |
--max_train_steps=500 \
|
278 |
--checkpointing_steps=500 \
|
279 |
--seed="0"
|
280 |
+
```
|
281 |
+
|
282 |
+
### With prior preservation
|
283 |
+
|
284 |
+
Set `--with_prior_preservation` flag to include prior preservation. In this case you must specify `--class_data_dir` (directory with class images) and `--class_prompt` (class prompt). You should also set `--num_class_images` to specify how many class preservation images you want to use. Either place them in the directory (specified via `--class_data_dir`) or the code with auto-generate them based off the base model. You can also provide a few yourself and let the code generate the remaining ones.
|
285 |
+
|
286 |
+
An example is provided below, commented out. The code that will run here will NOT use prior preservation.
|
287 |
+
|
288 |
+
Some other useful parameters that can be set include:
|
289 |
+
|
290 |
+
--rank: LoRA adapter rank (LoRA alpha will be set identical to rank)
|
291 |
+
--use_dora: Set if you want to use DORA
|
292 |
+
|
293 |
+
Type ```python train_dreambooth_lora_sdxl.py``` to get a full list of parameters
|
294 |
+
|
295 |
+
```python
|
296 |
+
instance_data_dir = 'local_instance_data_dir'
|
297 |
+
class_prompt = 'a prompt that describes the images in the directory local_instance_data_dir'
|
298 |
+
num_class_images = 10 #how many images you want in this class
|
299 |
+
|
300 |
+
!\accelerate launch train_dreambooth_lora_sdxl.py \
|
301 |
+
--pretrained_model_name_or_path="{pretrained_model_name_or_path}" \
|
302 |
+
--pretrained_vae_model_name_or_path="{pretrained_vae_model_name_or_path}"\
|
303 |
+
--dataset_name="{instance_data_dir}" \
|
304 |
+
--class_prompt="{class_prompt}" \
|
305 |
+
--num_class_images={num_class_images} \
|
306 |
+
--with_prior_preservation \
|
307 |
+
--class_data_dir="{class_data_dir}" \
|
308 |
+
--output_dir="{instance_output_dir}" \
|
309 |
+
--caption_column="prompt"\
|
310 |
+
--mixed_precision="fp16" \
|
311 |
+
--instance_prompt="{instance_prompt}" \
|
312 |
+
--validation_prompt="{val_prompt}" \
|
313 |
+
--validation_epochs={val_epochs} \
|
314 |
+
--resolution=1024 \
|
315 |
+
--train_batch_size=1 \
|
316 |
+
--gradient_accumulation_steps=4 \
|
317 |
+
--gradient_checkpointing \
|
318 |
+
--learning_rate=1e-4 \
|
319 |
+
--snr_gamma=5.0 \
|
320 |
+
--lr_scheduler="constant" \
|
321 |
+
--lr_warmup_steps=0 \
|
322 |
+
--mixed_precision="fp16" \
|
323 |
+
--use_8bit_adam \
|
324 |
+
--max_train_steps=500 \
|
325 |
+
--checkpointing_steps=500 \
|
326 |
+
--seed="0"
|
327 |
```
|