File size: 8,673 Bytes
51c4efd 022fd3d 51c4efd 022fd3d 51c4efd 022fd3d 51c4efd 022fd3d 51c4efd 022fd3d 51c4efd 022fd3d 51c4efd 022fd3d 51c4efd 022fd3d 51c4efd 022fd3d 51c4efd 022fd3d 51c4efd 022fd3d 51c4efd 022fd3d 51c4efd 022fd3d 51c4efd d0921c0 1fb3d9f 51c4efd 1fb3d9f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 |
---
base_model: stabilityai/stable-diffusion-xl-base-1.0
library_name: diffusers
license: openrail++
tags:
- text-to-image
- text-to-image
- diffusers-training
- diffusers
- lora
- template:sd-lora
- stable-diffusion-xl
- stable-diffusion-xl-diffusers
instance_prompt: <leaf microstructure>
widget: []
---
# SDXL Fine-tuned with Leaf Images
## Model description
These are LoRA adaption weights for the SDXL-base-1.0 model.
## Trigger keywords
The following image were used during fine-tuning using the keyword \<leaf microstructure\>:

You should use <leaf microstructure> to trigger the image generation.
## How to use
Defining some helper functions:
```python
from diffusers import DiffusionPipeline
import torch
import os
from datetime import datetime
from PIL import Image
def generate_filename(base_name, extension=".png"):
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
return f"{base_name}_{timestamp}{extension}"
def save_image(image, directory, base_name="image_grid"):
filename = generate_filename(base_name)
file_path = os.path.join(directory, filename)
image.save(file_path)
print(f"Image saved as {file_path}")
def image_grid(imgs, rows, cols, save=True, save_dir='generated_images', base_name="image_grid",
save_individual_files=False):
if not os.path.exists(save_dir):
os.makedirs(save_dir)
assert len(imgs) == rows * cols
w, h = imgs[0].size
grid = Image.new('RGB', size=(cols * w, rows * h))
grid_w, grid_h = grid.size
for i, img in enumerate(imgs):
grid.paste(img, box=(i % cols * w, i // cols * h))
if save_individual_files:
save_image(img, save_dir, base_name=base_name+f'_{i}-of-{len(imgs)}_')
if save and save_dir:
save_image(grid, save_dir, base_name)
return grid
```
### Text-to-image
Model loading:
```python
import torch
from diffusers import DiffusionPipeline, AutoencoderKL
repo_id='lamm-mit/SDXL-leaf-inspired'
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
base = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
vae=vae,
torch_dtype=torch.float16,
variant="fp16",
use_safetensors=True
)
base.load_lora_weights(repo_id)
_ = base.to("cuda")
refiner = DiffusionPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-refiner-1.0",
text_encoder_2=base.text_encoder_2,
vae=base.vae,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16",
)
refiner.to("cuda")
```
Image generation:
```python
prompt = "a vase that resembles a <leaf microstructure>, high quality"
num_samples = 4
num_rows = 4
guidance_scale = 15
all_images = []
for _ in range(num_rows):
# Define how many steps and what % of steps to be run on each experts (80/20)
n_steps = 25
high_noise_frac = 0.8
# run both experts
image = base(
prompt=prompt,
num_inference_steps=n_steps, guidance_scale=guidance_scale,
denoising_end=high_noise_frac,num_images_per_prompt=num_samples,
output_type="latent",
).images
image = refiner(
prompt=prompt,
num_inference_steps=n_steps, guidance_scale=guidance_scale,
denoising_start=high_noise_frac,num_images_per_prompt=num_samples,
image=image,
).images
all_images.extend(image)
grid = image_grid(all_images, num_rows, num_samples,
save_individual_files=True,
)
grid
```

## Fine-tuning script
Download this script: [SDXL DreamBooth-LoRA_Fine-Tune.ipynb](https://huggingface.co/lamm-mit/SDXL-leaf-inspired/resolve/main/SDXL_DreamBooth_LoRA_Fine-Tune.ipynb)
You need to create a local folder ```leaf_concept_dir_SDXL``` and add the leaf images (provided in this repository, see subfolder).
The code will automatically download the training script.
The training script can handle custom prompts associated with each image, which are generated using BLIP.
For instance, for the images used here, they are:
```raw
['<leaf microstructure>, a close up of a green plant with a lot of small holes',
'<leaf microstructure>, a close up of a leaf with a small insect on it',
'<leaf microstructure>, a close up of a plant with a lot of green leaves',
'<leaf microstructure>, a close up of a green plant with a yellow light',
'<leaf microstructure>, a close up of a green plant with a white center',
'<leaf microstructure>, arafed leaf with a white line on the center',
'<leaf microstructure>, a close up of a leaf with a yellow light shining through it',
'<leaf microstructure>, arafed image of a green plant with a yellow cross']
```
Training then proceeds as:
```python
HF_username = 'lamm-mit'
pretrained_model_name_or_path="stabilityai/stable-diffusion-xl-base-1.0"
pretrained_vae_model_name_or_path="madebyollin/sdxl-vae-fp16-fix"
instance_prompt ="<leaf microstructure>"
instance_data_dir = "./leaf_concept_dir_SDXL/"
val_prompt = "a vase that resembles a <leaf microstructure>, high quality"
val_epochs = 100
instance_output_dir="leaf_LoRA_SDXL_V10" #for checkpointing
```
Dataset generatio with custom per-image captions
```python
import requests
from transformers import AutoProcessor, BlipForConditionalGeneration
import torch
import glob
from PIL import Image
import json
device = "cuda" if torch.cuda.is_available() else "cpu"
# load the processor and the captioning model
blip_processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-large")
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-large",torch_dtype=torch.float16).to(device)
# captioning utility
def caption_images(input_image):
inputs = blip_processor(images=input_image, return_tensors="pt").to(device, torch.float16)
pixel_values = inputs.pixel_values
generated_ids = blip_model.generate(pixel_values=pixel_values, max_length=50)
generated_caption = blip_processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return generated_caption
caption_prefix = f"{instance_prompt}, "
with open(f'{instance_data_dir}metadata.jsonl', 'w') as outfile:
for img in imgs_and_paths:
caption = caption_prefix + caption_images(img[1]).split("\n")[0]
entry = {"file_name":img[0].split("/")[-1], "prompt": caption}
json.dump(entry, outfile)
outfile.write('\n')
```
This produces a JSON file in the ```instance_data_dir``` directory:
```json
{"file_name": "0.jpeg", "prompt": "<leaf microstructure>, a close up of a green plant with a lot of small holes"}
{"file_name": "1.jpeg", "prompt": "<leaf microstructure>, a close up of a leaf with a small insect on it"}
{"file_name": "2.jpeg", "prompt": "<leaf microstructure>, a close up of a plant with a lot of green leaves"}
{"file_name": "3.jpeg", "prompt": "<leaf microstructure>, a close up of a leaf with a yellow substance in it"}
{"file_name": "87.jpg", "prompt": "<leaf microstructure>, a close up of a green plant with a yellow light"}
{"file_name": "88.jpg", "prompt": "<leaf microstructure>, a close up of a green plant with a white center"}
{"file_name": "90.jpg", "prompt": "<leaf microstructure>, arafed leaf with a white line on the center"}
{"file_name": "91.jpg", "prompt": "<leaf microstructure>, arafed image of a green leaf with a white spot"}
{"file_name": "92.jpg", "prompt": "<leaf microstructure>, a close up of a leaf with a yellow light shining through it"}
{"file_name": "94.jpg", "prompt": "<leaf microstructure>, arafed image of a green plant with a yellow cross"}
```
```raw
!accelerate launch train_dreambooth_lora_sdxl.py \
--pretrained_model_name_or_path="{pretrained_model_name_or_path}" \
--pretrained_vae_model_name_or_path="{pretrained_vae_model_name_or_path}"\
--dataset_name="{instance_data_dir}" \
--output_dir="{instance_output_dir}" \
--caption_column="prompt"\
--mixed_precision="fp16" \
--instance_prompt="{instance_prompt}" \
--validation_prompt="{val_prompt}" \
--validation_epochs="{val_epochs}" \
--resolution=1024 \
--train_batch_size=1 \
--gradient_accumulation_steps=3 \
--gradient_checkpointing \
--learning_rate=1e-4 \
--snr_gamma=5.0 \
--lr_scheduler="constant" \
--lr_warmup_steps=0 \
--mixed_precision="fp16" \
--use_8bit_adam \
--max_train_steps=500 \
--checkpointing_steps=500 \
--seed="0"
``` |