File size: 7,720 Bytes
4ad09df
f771115
 
 
73efb8a
f771115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ad09df
f771115
4ad09df
f771115
4ad09df
f771115
4ad09df
f771115
4ad09df
f771115
4ad09df
f771115
4ad09df
f771115
4ad09df
7e4e93d
4ad09df
f771115
4ad09df
7e4e93d
f771115
 
 
 
4ad09df
f771115
4ad09df
f771115
 
 
4ad09df
f771115
4ad09df
f771115
4ad09df
f771115
 
 
 
 
4ad09df
7e4e93d
4ad09df
f771115
4ad09df
f771115
4ad09df
7e4e93d
 
f771115
7e4e93d
f771115
4ad09df
f771115
4ad09df
f771115
4ad09df
f771115
4ad09df
f771115
4ad09df
f771115
 
 
 
 
 
 
 
4ad09df
f771115
4ad09df
f771115
 
 
4ad09df
f771115
 
 
4ad09df
f771115
 
4ad09df
f771115
0553509
7e4e93d
0553509
7e4e93d
0553509
 
 
f771115
4ad09df
 
f771115
4ad09df
f771115
4ad09df
f771115
4ad09df
f771115
4ad09df
f771115
4ad09df
f771115
4ad09df
f771115
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
---
language:
- multilingual
license: apache-2.0
library_name: transformers
tags:
- nlp
- code
- vision
- chemistry
- engineering
- biology
- bio-inspired
- text-generation-inference
- materials science
pipeline_tag: image-text-to-text
inference:
  parameters:
    temperature: 0.3
widget:
- messages:
  - role: user
    content: <|image_1|>Can you describe what you see in the image?
---
## Model Summary

Cephalo is a series of multimodal materials science focused vision large language models (V-LLMs) designed to integrate visual and linguistic data for advanced understanding and interaction in human-AI or multi-agent AI frameworks. 

A novel aspect of Cephalo's development is the innovative dataset generation method. The extraction process employs advanced algorithms to accurately detect and separate images and their corresponding textual descriptions from complex PDF documents. It involves extracting images and captions from PDFs to create well-reasoned image-text pairs, utilizing large language models (LLMs) for natural language processing. These image-text pairs are then refined and validated through LLM-based NLP processing, ensuring high-quality and contextually relevant data for training. 

Cephalo can interpret complex visual scenes and generating contextually accurate language descriptions and answer queries. 

The model is developed to process diverse inputs, including images and text, facilitating a broad range of applications such as image captioning, visual question answering, and multimodal content generation. The architecture combines a vision encoder model and an autoregressive transformer to process complex natural language understanding. 

![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/kl5GWBP9WS0D4uwd1t3S7.png)

Cephalo provides a robust framework for multimodal interaction and understanding, including the development of complex generative pipelines to create 2D and 3D renderings of material microstructures as input for additive manufacturing methods.

This version of Cephalo, lamm-mit/Cephalo-Phi-3-vision-128k-4b-beta, is based on the Phi-3-Vision-128K-Instruct model. The model was trained on a combination of scientific text-image and text-only data. The model has a context length of 128,000 tokens. Further details, see: https://huggingface.co/microsoft/Phi-3-vision-128k-instruct. 

### Chat Format

Given the nature of the training data, the Cephalo-Phi-3-vision-128k-4b-beta model is best suited for a single image input wih prompts using the chat format as follows. 
You can provide the prompt as a single image with a generic template as follow:
```markdown
<|user|>\n<|image_1|>\n{prompt}<|end|>\n<|assistant|>\n 
```

where the model generates the text after `<|assistant|>` . For multi-turn conversations, the prompt should be formatted as follows:

```markdown
<|user|>\n<|image_1|>\n{prompt_1}<|end|>\n<|assistant|>\n{response_1}<|end|>\n<|user|>\n{prompt_2}<|end|>\n<|assistant|>\n 
```

### Sample inference code

This code snippets show how to get quickly started on a GPU:

```python
from PIL import Image 
import requests 
from transformers import AutoModelForCausalLM 
from transformers import AutoProcessor 

model_id = "lamm-mit/Cephalo-Phi-3-vision-128k-4b-beta" 

model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda", trust_remote_code=True, torch_dtype="auto")

processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) 

question = "What is shown in this image, and what is the relevance for materials design? Include a discussion of multi-agent AI."

messages = [ 
    {"role": "user", "content": f"<|image_1|>\n{question}"}, 
    ] 

url = "https://d2r55xnwy6nx47.cloudfront.net/uploads/2018/02/Ants_Lede1300.jpg" 

image = Image.open(requests.get(url, stream=True).raw) 

prompt = processor.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)

inputs = processor(prompt, [image], return_tensors="pt").to("cuda:0") 

generation_args = { 
                    "max_new_tokens": 512, 
                    "temperature": 0.1, 
                    "do_sample": True, 
                    "stop_strings": ['<|end|>',
                                     '<|endoftext|>'],
                    "tokenizer": processor.tokenizer,
                  } 

generate_ids = model.generate(**inputs, eos_token_id=processor.tokenizer.eos_token_id, **generation_args) 

# remove input tokens 
generate_ids = generate_ids[:, inputs['input_ids'].shape[1]:]
response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] 

print(response) 
```
Sample output:

![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/5n6oRNHrfwHkBX0QertZp.png)
<small>Image by [Vaishakh Manohar](https://www.quantamagazine.org/the-simple-algorithm-that-ants-use-to-build-bridges-20180226/)</small>

<pre style="white-space: pre-wrap;">
The image shows a group of red ants (Solenopsis invicta) climbing over a vertical wooden post. The ants are using their long legs and antennae to navigate the rough surface of the wood, demonstrating their ability to adapt to different materials and environments. This behavior is relevant for materials design because it highlights the importance of considering the interactions between materials and living organisms, such as ants, when designing new materials.

Multi-agent AI (Artificial Intelligence) is a field of study that focuses on the development of AI systems that can work together with other AI systems to achieve a common goal. In the context of this image, multi-agent AI could be used to design materials that are more compatible with the natural behaviors of living organisms, such as ants, and that can adapt to different environments and conditions.

By studying the behavior of ants and other living organisms, researchers can gain insights into how materials can be designed to better interact with these organisms and to better mimic their natural behaviors. This can lead to the development of new materials that are more sustainable, efficient, and effective in a variety of applications.

In summary, the image of red ants climbing over a wooden post highlights the importance of considering the interactions between materials and living organisms when designing new materials, and the potential of multi-agent AI to help achieve this goal.
</pre>


## Dataset generation

The schematic below shows a visualization of the approach to generate datasets for training the vision model. The extraction process employs advanced algorithms to accurately detect and separate images and their corresponding textual descriptions from complex PDF documents. It involves extracting images and captions from PDFs to create well-reasoned image-text pairs, utilizing large language models (LLMs) for natural language processing. These image-text pairs are then refined and validated through LLM-based NLP processing, ensuring high-quality and contextually relevant data for training.

The image below shows reproductions of two representative pages of the scientific article (here, Spivak, Buehler, et al., 2011), and how they are used to extract visual scientific data for training the Cephalo model.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/623ce1c6b66fedf374859fe7/qHURSBRWEDgHy4o56escN.png)

## Citation

Please cite as:

```
@article{Buehler_Cephalo_2024,
    title   = {Cephalo, a series of multi-modal vision-language models for bio-inspired materials and mechanics},
    author  = {M.J. Buehler},
    journal = {},
    year    = {2024},
    volume  = {},
    pages   = {},
    url     = {}
}
```