--- tags: - generated_from_trainer metrics: - accuracy - precision - recall model-index: - name: AraGPT2-finetuned-fnd results: [] --- # AraGPT2-finetuned-fnd This model is a fine-tuned version of [aubmindlab/aragpt2-mega-detector-long](https://huggingface.co/aubmindlab/aragpt2-mega-detector-long) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.5249 - Macro F1: 0.7536 - Accuracy: 0.7626 - Precision: 0.7563 - Recall: 0.7517 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 25 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Macro F1 | Accuracy | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:--------:|:---------:|:------:| | 0.588 | 1.0 | 798 | 0.5131 | 0.7235 | 0.7384 | 0.7341 | 0.7197 | | 0.462 | 2.0 | 1596 | 0.5112 | 0.7408 | 0.7574 | 0.7587 | 0.7357 | | 0.4034 | 3.0 | 2394 | 0.5249 | 0.7536 | 0.7626 | 0.7563 | 0.7517 | | 0.3234 | 4.0 | 3192 | 0.5967 | 0.7524 | 0.7585 | 0.7516 | 0.7534 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.11.0 - Datasets 2.1.0 - Tokenizers 0.12.1