Update README.md
Browse files
README.md
CHANGED
@@ -55,7 +55,7 @@ parser.add_argument("--resume_from_checkpoint", action="store_true", default=Fal
|
|
55 |
parser.add_argument("--lora", action="store_true")
|
56 |
args = parser.parse_args()
|
57 |
|
58 |
-
qwq_dataset = load_dataset("amphora/QwQ-LongCoT-130K", split = "train")
|
59 |
messages = []
|
60 |
for each in qwq_dataset:
|
61 |
msg = [
|
@@ -69,10 +69,10 @@ TRAIN_SPLIT_RATIO = 0.9
|
|
69 |
train_size = int(TRAIN_SPLIT_RATIO * len(messages))
|
70 |
eval_size = len(messages) - train_size
|
71 |
|
72 |
-
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
|
73 |
|
74 |
# The model to optimise
|
75 |
-
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct", torch_dtype=torch.bfloat16, device_map="auto")
|
76 |
|
77 |
|
78 |
|
|
|
55 |
parser.add_argument("--lora", action="store_true")
|
56 |
args = parser.parse_args()
|
57 |
|
58 |
+
qwq_dataset = load_dataset("amphora/QwQ-LongCoT-130K-2", split = "train")
|
59 |
messages = []
|
60 |
for each in qwq_dataset:
|
61 |
msg = [
|
|
|
69 |
train_size = int(TRAIN_SPLIT_RATIO * len(messages))
|
70 |
eval_size = len(messages) - train_size
|
71 |
|
72 |
+
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
|
73 |
|
74 |
# The model to optimise
|
75 |
+
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct", torch_dtype=torch.bfloat16, device_map="auto")
|
76 |
|
77 |
|
78 |
|