Text Generation
Transformers
Safetensors
English
qwen2
conversational
text-generation-inference
Inference Endpoints
kz919 commited on
Commit
386bff7
·
verified ·
1 Parent(s): 092501c

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +3 -3
README.md CHANGED
@@ -55,7 +55,7 @@ parser.add_argument("--resume_from_checkpoint", action="store_true", default=Fal
55
  parser.add_argument("--lora", action="store_true")
56
  args = parser.parse_args()
57
 
58
- qwq_dataset = load_dataset("amphora/QwQ-LongCoT-130K", split = "train")
59
  messages = []
60
  for each in qwq_dataset:
61
  msg = [
@@ -69,10 +69,10 @@ TRAIN_SPLIT_RATIO = 0.9
69
  train_size = int(TRAIN_SPLIT_RATIO * len(messages))
70
  eval_size = len(messages) - train_size
71
 
72
- tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2-0.5B-Instruct")
73
 
74
  # The model to optimise
75
- model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2-0.5B-Instruct", torch_dtype=torch.bfloat16, device_map="auto")
76
 
77
 
78
 
 
55
  parser.add_argument("--lora", action="store_true")
56
  args = parser.parse_args()
57
 
58
+ qwq_dataset = load_dataset("amphora/QwQ-LongCoT-130K-2", split = "train")
59
  messages = []
60
  for each in qwq_dataset:
61
  msg = [
 
69
  train_size = int(TRAIN_SPLIT_RATIO * len(messages))
70
  eval_size = len(messages) - train_size
71
 
72
+ tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct")
73
 
74
  # The model to optimise
75
+ model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen2.5-0.5B-Instruct", torch_dtype=torch.bfloat16, device_map="auto")
76
 
77
 
78