--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall base_model: distilbert-base-uncased model-index: - name: FT_DistilBERT results: [] --- # FT_DistilBERT This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.2519 - Accuracy: 0.8892 - F1: 0.8892 - Precision: 0.8904 - Recall: 0.8900 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.3172 | 1.0 | 1000 | 0.2984 | 0.8745 | 0.8740 | 0.8772 | 0.8734 | | 0.2419 | 2.0 | 2000 | 0.2519 | 0.8892 | 0.8892 | 0.8904 | 0.8900 | | 0.2102 | 3.0 | 3000 | 0.2963 | 0.8955 | 0.8955 | 0.8960 | 0.8960 | | 0.1679 | 4.0 | 4000 | 0.3012 | 0.9005 | 0.9004 | 0.9007 | 0.9002 | | 0.1569 | 5.0 | 5000 | 0.3147 | 0.8958 | 0.8957 | 0.8958 | 0.8956 | ### Framework versions - Transformers 4.37.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.1 - Tokenizers 0.15.2