--- library_name: transformers license: mit base_model: FacebookAI/xlm-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: trainer_output results: [] --- # trainer_output This model is a fine-tuned version of [FacebookAI/xlm-roberta-base](https://huggingface.co/FacebookAI/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1527 - Accuracy: 0.9717 - F1: 0.9716 - Precision: 0.9716 - Recall: 0.9717 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 573 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.1714 | 1.0 | 1147 | 0.1891 | 0.9302 | 0.9308 | 0.9350 | 0.9302 | | 0.105 | 2.0 | 2294 | 0.1224 | 0.9627 | 0.9625 | 0.9633 | 0.9627 | | 0.0689 | 3.0 | 3441 | 0.1218 | 0.9695 | 0.9693 | 0.9698 | 0.9695 | | 0.0341 | 4.0 | 4588 | 0.1358 | 0.9714 | 0.9714 | 0.9715 | 0.9714 | | 0.0228 | 5.0 | 5735 | 0.1429 | 0.9730 | 0.9729 | 0.9730 | 0.9730 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 2.14.4 - Tokenizers 0.21.1