--- library_name: transformers license: mit base_model: FacebookAI/roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: trainer_output results: [] --- # trainer_output This model is a fine-tuned version of [FacebookAI/roberta-base](https://huggingface.co/FacebookAI/roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1273 - Accuracy: 0.9751 - F1: 0.9751 - Precision: 0.9751 - Recall: 0.9751 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 573 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.1262 | 1.0 | 1147 | 0.1067 | 0.9618 | 0.9618 | 0.9618 | 0.9618 | | 0.0909 | 2.0 | 2294 | 0.1082 | 0.9656 | 0.9653 | 0.9665 | 0.9656 | | 0.0688 | 3.0 | 3441 | 0.0899 | 0.9727 | 0.9727 | 0.9729 | 0.9727 | | 0.0435 | 4.0 | 4588 | 0.0971 | 0.9769 | 0.9769 | 0.9769 | 0.9769 | | 0.0405 | 5.0 | 5735 | 0.1163 | 0.9771 | 0.9771 | 0.9771 | 0.9771 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 2.14.4 - Tokenizers 0.21.1