--- library_name: transformers license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: trainer_output results: [] --- # trainer_output This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1952 - Accuracy: 0.9533 - F1: 0.9531 - Precision: 0.9536 - Recall: 0.9533 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 573 - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.2164 | 1.0 | 1147 | 0.2145 | 0.9150 | 0.9141 | 0.9159 | 0.9150 | | 0.1446 | 2.0 | 2294 | 0.1533 | 0.9407 | 0.9400 | 0.9428 | 0.9407 | | 0.113 | 3.0 | 3441 | 0.1595 | 0.9448 | 0.9443 | 0.9465 | 0.9448 | | 0.065 | 4.0 | 4588 | 0.1783 | 0.9492 | 0.9492 | 0.9492 | 0.9492 | | 0.0522 | 5.0 | 5735 | 0.2001 | 0.9507 | 0.9505 | 0.9509 | 0.9507 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 2.14.4 - Tokenizers 0.21.1