krishanwalia30 commited on
Commit
6555cd2
Β·
verified Β·
1 Parent(s): 27f1ecd

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +97 -0
README.md CHANGED
@@ -6,11 +6,108 @@ tags:
6
  - unsloth
7
  - qwen3
8
  - trl
 
 
 
 
 
 
 
 
 
 
9
  license: apache-2.0
10
  language:
11
  - en
12
  ---
13
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  # Uploaded model
15
 
16
  - **Developed by:** krishanwalia30
 
6
  - unsloth
7
  - qwen3
8
  - trl
9
+ - qwen-3
10
+ - fine-tuning
11
+ - openmathreasoning
12
+ - python
13
+ - unsloth
14
+ - lora
15
+ - peft
16
+ - tutorial
17
+ - reasoning
18
+ - chat
19
  license: apache-2.0
20
  language:
21
  - en
22
  ---
23
 
24
+ # krishanwalia30/Qwen3-16bit-OpenMathReasoning-Finetuned-Merged
25
+
26
+ πŸš€ **Harness the Power of Qwen-3 with Enhanced Reasoning and Chat!** πŸš€
27
+
28
+ This model is a carefully fine-tuned version of the incredible [Qwen-3-8B](https://huggingface.co/Qwen/Qwen3-8B) using cutting-edge techniques with [Unsloth](https://github.com/unslothai/unsloth) and Parameter-Efficient Fine-Tuning (PEFT) via LoRA. It's designed to bring you the best of both worlds: the strong general capabilities of Qwen-3 with a significant boost in logical reasoning and engaging conversational skills.
29
+
30
+ We've taken the already powerful Qwen-3 and further sculpted it using a blend of the [unsloth/OpenMathReasoning-mini](https://huggingface.co/datasets/unsloth/OpenMathReasoning-mini) (Chain-of-Thought split) for advanced problem-solving and the [mlabonne/FineTome-100k](https://huggingface.co/datasets/mlabonne/FineTome-100k) dataset to ensure natural and fluent interactions.
31
+
32
+ **πŸ”₯ Key Features:**
33
+
34
+ * **Enhanced Reasoning:** Excels at tasks requiring logical deduction and step-by-step thinking, thanks to fine-tuning on a dedicated reasoning dataset.
35
+ * **Improved Chat:** Maintains and enhances the general conversational abilities of Qwen-3, making it great for interactive applications.
36
+ * **Efficient Fine-Tuning:** Built using the incredibly efficient [Unsloth](https://github.com/unslothai/unsloth) library, resulting in faster training with less memory usage.
37
+ * **PEFT (LoRA) Inside:** Leverages Low-Rank Adaptation (LoRA) for parameter-efficient fine-tuning, making it easier to adapt to specific tasks without full model retraining.
38
+ * **Ready to Use:** Seamlessly integrates with the `transformers` library.
39
+
40
+
41
+ **πŸ› οΈ How to Get Started:**
42
+
43
+ Install the necessary libraries:
44
+
45
+ ```bash
46
+ pip install transformers accelerate torch
47
+ ```
48
+
49
+ Load and use the model:
50
+
51
+ ```python
52
+ from transformers import AutoModelForCausalLM, AutoTokenizer
53
+
54
+ model_name = "krishanwalia30/Qwen3-16bit-OpenMathReasoning-Finetuned-Merged"
55
+
56
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
57
+ model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype="torch.float16")
58
+
59
+ messages = [
60
+ {"role": "user", "content": "Explain the Pythagorean theorem in simple terms."},
61
+ {"role": "assistant", "content": "Okay, here's a simple explanation:"},
62
+ {"role": "user", "content": "Now, solve for the hypotenuse if a=3 and b=4."},
63
+ ]
64
+ text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
65
+
66
+ inputs = tokenizer(text, return_tensors="pt").to(model.device)
67
+
68
+ outputs = model.generate(**inputs, max_new_tokens=256, temperature=0.7, top_p=0.8, top_k=20, do_sample=True)
69
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
70
+ ```
71
+
72
+ **βš™οΈ Fine-tuning Details:**
73
+
74
+ * **Base Model:** [Qwen-3-8B](https://huggingface.co/Qwen/Qwen3-8B)
75
+ * **Fine-tuning Framework:** [Unsloth](https://github.com/unslothai/unsloth)
76
+ * **PEFT Strategy:** LoRA
77
+ * **Training Datasets:**
78
+ * [unsloth/OpenMathReasoning-mini](https://huggingface.co/datasets/unsloth/OpenMathReasoning-mini) (COT split)
79
+ * [mlabonne/FineTome-100k](https://huggingface.co/datasets/mlabonne/FineTome-100k)
80
+ * **Training Ratio:** Approximately 30% reasoning data and 70% general chat data to balance capabilities.
81
+ * **Training Infrastructure:** Google Colab with a T4 GPU.
82
+ * **Quantization during Training:** Likely 4-bit quantization was employed during the fine-tuning process using Unsloth for memory efficiency. The final merged model is saved in 16-bit for broader compatibility.
83
+ * **Key Hyperparameters:**
84
+ * `per_device_train_batch_size`: 2
85
+ * `gradient_accumulation_steps`: 4
86
+ * `learning_rate`: 2e-4
87
+ * `max_steps`: 30
88
+ * Optimizer: `adamw_8bit`
89
+ * Learning Rate Scheduler: `linear`
90
+ * Warmup Steps: 5
91
+ * Weight Decay: 0.01
92
+ * Seed: 3407
93
+
94
+ **πŸ“Š Evaluation:**
95
+
96
+ While rigorous quantitative evaluations are ongoing, initial assessments indicate a significant improvement in the model's ability to handle reasoning-based questions while maintaining strong general conversational skills. Further benchmarks and community feedback are welcome!
97
+
98
+ **πŸ‘¨β€πŸ’» Author:**
99
+
100
+ [https://huggingface.co/krishanwalia30]
101
+
102
+ **πŸ”— Learn More:**
103
+
104
+ For a deeper dive into the fine-tuning process and the rationale behind the choices, check out the article: [https://medium.com/@krishanw30/b1a8f684c3f1].
105
+
106
+ **πŸ™ Acknowledgements:**
107
+
108
+ A big thank you to the brilliant teams at [Qwen](https://huggingface.co/Qwen), [Unsloth AI](https://github.com/unslothai/unsloth), and the creators of the [OpenMathReasoning-mini](https://huggingface.co/datasets/unsloth/OpenMathReasoning-mini) and [FineTome-100k](https://huggingface.co/datasets/mlabonne/FineTome-100k) datasets for making this project possible!
109
+
110
+
111
  # Uploaded model
112
 
113
  - **Developed by:** krishanwalia30