--- language: - ne license: apache-2.0 tags: - whisper-event - generated_from_trainer datasets: - mozilla-foundation/common_voice_11_0 metrics: - wer model-index: - name: openai/whisper-medium-nepali results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 11.0 type: mozilla-foundation/common_voice_11_0 config: ne-NP split: test args: ne-NP metrics: - name: Wer type: wer value: 34.146341463414636 --- # openai/whisper-medium-nepali This model is a fine-tuned version of [shripadbhat/whisper-medium-hi](https://huggingface.co/shripadbhat/whisper-medium-hi) on the Common Voice 11.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.8578 - Wer: 34.1463 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 40 - training_steps: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0673 | 20.0 | 20 | 0.8578 | 34.1463 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.11.0 - Datasets 2.8.1.dev0 - Tokenizers 0.12.1