Koushik Nagasubramanian
commited on
Commit
·
48a39cd
1
Parent(s):
30bc5a1
update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
model-index:
|
6 |
+
- name: segformer-finetuned-Maize-10k-steps-sem
|
7 |
+
results: []
|
8 |
+
---
|
9 |
+
|
10 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
11 |
+
should probably proofread and complete it, then remove this comment. -->
|
12 |
+
|
13 |
+
# segformer-finetuned-Maize-10k-steps-sem
|
14 |
+
|
15 |
+
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on the None dataset.
|
16 |
+
It achieves the following results on the evaluation set:
|
17 |
+
- Loss: 0.0756
|
18 |
+
- Mean Iou: 0.9172
|
19 |
+
- Mean Accuracy: 0.9711
|
20 |
+
- Overall Accuracy: 0.9804
|
21 |
+
- Accuracy Background: 0.9834
|
22 |
+
- Accuracy Maize: 0.9588
|
23 |
+
- Iou Background: 0.9779
|
24 |
+
- Iou Maize: 0.8566
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 0.001
|
44 |
+
- train_batch_size: 16
|
45 |
+
- eval_batch_size: 16
|
46 |
+
- seed: 1337
|
47 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
48 |
+
- lr_scheduler_type: polynomial
|
49 |
+
- training_steps: 10000
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Maize | Iou Background | Iou Maize |
|
54 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:--------------:|:--------------:|:---------:|
|
55 |
+
| 0.0529 | 1.0 | 678 | 69.3785 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 |
|
56 |
+
| 0.3755 | 2.0 | 1356 | 0.9455 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 |
|
57 |
+
| 0.0603 | 3.0 | 2034 | 0.0920 | 0.8356 | 0.8602 | 0.9641 | 0.9976 | 0.7227 | 0.9607 | 0.7106 |
|
58 |
+
| 0.0341 | 4.0 | 2712 | 24.6203 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 |
|
59 |
+
| 0.0332 | 5.0 | 3390 | 101.5635 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 |
|
60 |
+
| 0.0331 | 6.0 | 4068 | 9.6824 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 |
|
61 |
+
| 0.0302 | 7.0 | 4746 | 260.7923 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 |
|
62 |
+
| 0.0305 | 8.0 | 5424 | 172.8153 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 |
|
63 |
+
| 0.0313 | 9.0 | 6102 | 304.2714 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 |
|
64 |
+
| 0.0301 | 10.0 | 6780 | 547.2355 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 |
|
65 |
+
| 0.03 | 11.0 | 7458 | 224.2607 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 |
|
66 |
+
| 0.0285 | 12.0 | 8136 | 116.3474 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 |
|
67 |
+
| 0.0284 | 13.0 | 8814 | 96.8429 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 |
|
68 |
+
| 0.0281 | 14.0 | 9492 | 54.2593 | 0.4391 | 0.5 | 0.8781 | 1.0 | 0.0 | 0.8781 | 0.0 |
|
69 |
+
| 0.028 | 14.75 | 10000 | 0.0756 | 0.9172 | 0.9711 | 0.9804 | 0.9834 | 0.9588 | 0.9779 | 0.8566 |
|
70 |
+
|
71 |
+
|
72 |
+
### Framework versions
|
73 |
+
|
74 |
+
- Transformers 4.21.0.dev0
|
75 |
+
- Pytorch 1.10.0+cu102
|
76 |
+
- Datasets 2.3.2
|
77 |
+
- Tokenizers 0.12.1
|