Rishi Kora
commited on
Update README.md
Browse files
README.md
CHANGED
@@ -1,167 +1,78 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
tags:
|
4 |
-
- text-generation
|
5 |
-
- conversational
|
6 |
-
- instruction-tuned
|
7 |
-
- 4-bit precision
|
8 |
-
- bitsandbytes
|
9 |
-
license: apache-2.0
|
10 |
-
language:
|
11 |
-
- en
|
12 |
-
base_model:
|
13 |
-
- google/gemma-2-2b-it
|
14 |
---
|
15 |
|
16 |
-
#
|
17 |
|
18 |
**Model ID:** `korarishi1027/rishi-2-2b-it`
|
19 |
|
20 |
-
|
|
|
21 |
|
22 |
-
##
|
23 |
-
|
24 |
-
### Model Description
|
25 |
-
|
26 |
-
Gemma is a family of lightweight, state-of-the-art open models from Google, built on the same technology as the Gemini series. Kora-2-2B-IT has **2.61 B parameters**, quantized to **4-bit NF4** (with double quantization) and uses **bfloat16** for on-the-fly compute to reduce its GPU footprint.
|
27 |
-
|
28 |
-
- **Developed by:** Google Research
|
29 |
-
- **Shared by:** korarishi1027
|
30 |
-
- **Finetuned from:** `google/gemma-2-2b-it`
|
31 |
-
- **Model type:** Causal language model (decoder-only)
|
32 |
-
- **Language(s):** English
|
33 |
-
- **License:** Apache-2.0
|
34 |
-
|
35 |
-
### Quantization & Memory
|
36 |
|
|
|
37 |
```python
|
38 |
-
|
|
|
39 |
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
)
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
- Chatbots and conversational agents
|
51 |
-
- Story, email, or code snippet generation
|
52 |
-
- Summarization, Q&A, and instruction following
|
53 |
-
|
54 |
-
### Downstream Use
|
55 |
-
- Fine-tuning for domain-specific tasks (e.g. legal, medical, technical summarization)
|
56 |
-
- Integration into larger NLP pipelines or applications
|
57 |
-
|
58 |
-
## Out-of-Scope / Misuse
|
59 |
-
- High-stakes domains (medical, legal) without human review
|
60 |
-
- Real-time decision systems
|
61 |
-
- Any use requiring perfect factual accuracy
|
62 |
-
|
63 |
-
---
|
64 |
-
|
65 |
-
## Bias, Risks & Limitations
|
66 |
-
- Inherits biases from its pre-training and instruction-tuning data
|
67 |
-
- Quantization may introduce minor artifacts or rare decoding glitches
|
68 |
-
- Not guaranteed to be up-to-date on world events or specialized knowledge
|
69 |
-
|
70 |
-
## Recommendations
|
71 |
-
- Always validate critical outputs with human oversight
|
72 |
-
- Use guardrails or filters if exposing the model to untrusted inputs
|
73 |
|
74 |
-
|
|
|
|
|
|
|
75 |
|
|
|
|
|
|
|
|
|
76 |
```python
|
77 |
-
import torch
|
78 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
79 |
-
|
80 |
-
|
81 |
-
quant_config = BitsAndBytesConfig(
|
82 |
-
load_in_4bit=True,
|
83 |
-
bnb_4bit_use_double_quant=True,
|
84 |
-
bnb_4bit_compute_dtype=torch.bfloat16,
|
85 |
-
bnb_4bit_quant_type="nf4"
|
86 |
-
)
|
87 |
|
88 |
tokenizer = AutoTokenizer.from_pretrained("korarishi1027/rishi-2-2b-it")
|
89 |
model = AutoModelForCausalLM.from_pretrained(
|
90 |
"korarishi1027/rishi-2-2b-it",
|
91 |
-
|
92 |
-
|
93 |
)
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
output = model.generate(**inputs, max_new_tokens=60)
|
98 |
-
print(tokenizer.decode(output[0], skip_special_tokens=True))
|
99 |
-
|
100 |
-
|
101 |
-
## Training Details
|
102 |
-
|
103 |
-
### Training Data
|
104 |
-
- **Pre-training:** Large-scale English web text corpora used by Google Gemma
|
105 |
-
- **Instruction tuning:** Public instruction-following datasets (e.g., OpenAI’s InstructGPT mixtures)
|
106 |
-
|
107 |
-
### Preprocessing
|
108 |
-
- Tokenized with SentencePiece
|
109 |
-
- Truncated to 2,048 tokens
|
110 |
-
- Removed duplicates and low-quality examples
|
111 |
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
- **Learning rate:** 2e-5
|
116 |
-
- **Training hardware:** 8 × A100 GPUs for ~4 hours
|
117 |
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
## Environmental Impact
|
135 |
-
|
136 |
-
Estimated via the [ML CO₂ Impact Calculator](https://mlco2.github.io/impact#compute):
|
137 |
-
|
138 |
-
- **Hardware:** 8 × NVIDIA A100
|
139 |
-
- **Provider:** Google Cloud (us-central1)
|
140 |
-
- **Training time:** ~4 hours
|
141 |
-
- **Emissions:** ~150 kg CO₂ eq
|
142 |
-
|
143 |
-
---
|
144 |
-
|
145 |
-
## Technical Specifications
|
146 |
-
|
147 |
-
- **Architecture:**
|
148 |
-
24-layer, 2.61 B-parameter decoder-only Transformer
|
149 |
-
- Hidden size: 2,048
|
150 |
-
- Attention heads: 16
|
151 |
-
- **Software:**
|
152 |
-
- transformers ≥ 4.x
|
153 |
-
- bitsandbytes ≥ 0.39
|
154 |
-
- torch ≥ 2.x
|
155 |
-
- **Inference HW:** NVIDIA V100/A100
|
156 |
-
|
157 |
-
---
|
158 |
-
|
159 |
-
## Citation
|
160 |
-
|
161 |
-
```bibtex
|
162 |
-
@misc{rishi-2-2b-it,
|
163 |
-
title = {rishi-2-2B-IT: A 4-bit Quantized Instruction-Tuned Variant of Gemma-2},
|
164 |
-
author = {Google Research and korarishi1027},
|
165 |
-
year = {2024},
|
166 |
-
howpublished = {\url{https://huggingface.co/koraishi1027/kora-2-2b-it}}
|
167 |
-
}
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
tags:
|
4 |
+
- text-generation
|
5 |
+
- conversational
|
6 |
+
- instruction-tuned
|
7 |
+
- 4-bit precision
|
8 |
+
- bitsandbytes
|
|
|
|
|
|
|
|
|
|
|
9 |
---
|
10 |
|
11 |
+
# Rishi-2-2B-IT
|
12 |
|
13 |
**Model ID:** `korarishi1027/rishi-2-2b-it`
|
14 |
|
15 |
+
## Model Information
|
16 |
+
Summary description and brief definition of inputs and outputs.
|
17 |
|
18 |
+
## Description
|
19 |
+
The text-to-text, decoder-only large language model, available in English, with open weights for both pre-trained and instruction-tuned variants. Rishi-2-2B-IT is suited for a variety of text generation tasks, including question answering, summarization, and reasoning. Its compact size allows deployment on limited-resource environments such as laptops, desktops, or private cloud infrastructure, democratizing access to state-of-the-art AI models.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
## Running with the pipeline API
|
22 |
```python
|
23 |
+
import torch
|
24 |
+
from transformers import pipeline
|
25 |
|
26 |
+
pipe = pipeline(
|
27 |
+
"text-generation",
|
28 |
+
model="korarishi1027/rishi-2-2b-it",
|
29 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
30 |
+
device="cuda", # replace with "mps" to run on a Mac device
|
31 |
)
|
32 |
|
33 |
+
messages = [
|
34 |
+
{"role": "user", "content": "Who are you? Please, answer in pirate-speak."},
|
35 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
|
37 |
+
outputs = pipe(messages, max_new_tokens=256)
|
38 |
+
assistant_response = outputs[0]["generated_text"][-1]["content"].strip()
|
39 |
+
print(assistant_response)
|
40 |
+
```
|
41 |
|
42 |
+
## Running on single / multi GPU
|
43 |
+
```bash
|
44 |
+
# pip install accelerate
|
45 |
+
```
|
46 |
```python
|
|
|
47 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
48 |
+
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
50 |
tokenizer = AutoTokenizer.from_pretrained("korarishi1027/rishi-2-2b-it")
|
51 |
model = AutoModelForCausalLM.from_pretrained(
|
52 |
"korarishi1027/rishi-2-2b-it",
|
53 |
+
device_map="auto",
|
54 |
+
torch_dtype=torch.bfloat16,
|
55 |
)
|
56 |
|
57 |
+
input_text = "Write me a poem about Machine Learning."
|
58 |
+
input_ids = tokenizer(input_text, return_tensors="pt").to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
outputs = model.generate(**input_ids, max_new_tokens=32)
|
61 |
+
print(tokenizer.decode(outputs[0]))
|
62 |
+
```
|
|
|
|
|
63 |
|
64 |
+
## Chat template usage
|
65 |
+
```python
|
66 |
+
messages = [
|
67 |
+
{"role": "user", "content": "Write me a poem about Cars."},
|
68 |
+
]
|
69 |
+
input_ids = tokenizer.apply_chat_template(
|
70 |
+
messages, return_tensors="pt", return_dict=True
|
71 |
+
).to("cuda")
|
72 |
+
|
73 |
+
outputs = model.generate(**input_ids, max_new_tokens=256)
|
74 |
+
print(tokenizer.decode(outputs[0]))
|
75 |
+
```
|
76 |
+
|
77 |
+
## Developed by
|
78 |
+
[korarishi1027](https://huggingface.co/korarishi1027)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|