Upload PPO LunarLander-v2 trained agent hyperparameter tunning by optuna
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +28 -28
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -313.16 +/- 58.73
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f8d56059790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f8d56059820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f8d560598b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f8d56059940>", "_build": "<function ActorCriticPolicy._build at 0x7f8d560599d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f8d56059a60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f8d56059af0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f8d56059b80>", "_predict": "<function ActorCriticPolicy._predict at 0x7f8d56059c10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f8d56059ca0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f8d56059d30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f8d56059dc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f8d56058180>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 20000, "_total_timesteps": 20000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677497477463940885, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTy9ob21lL3N2bWMvLmxvY2FsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE8vaG9tZS9zdm1jLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAB6MlL4fh6s/QXGdvZ22i7wbd8m+GymyvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0016000000000000458, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVJRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWMnH7gK5Y8CUhpRSlIwBbJRLS4wBdJRHP/94SpR4yGl1fZQoaAZoCWgPQwgx7Zv7qytVwJSGlFKUaBVLXGgWR0AAShg3Lmp3dX2UKGgGaAloD0MI2jujrUouecCUhpRSlGgVS4hoFkdAAQLKmsNlRXV9lChoBmgJaA9DCFA25Qpvz3TAlIaUUpRoFUtWaBZHQAFW912aDwp1fZQoaAZoCWgPQwjC+dSxyrJiwJSGlFKUaBVLWGgWR0AB3zpX6qKhdX2UKGgGaAloD0MIoS5SKAvPUcCUhpRSlGgVS2VoFkdAAnKxs2vSt3V9lChoBmgJaA9DCEc5mE1AGHbAlIaUUpRoFUuVaBZHQAM/SYw7DEZ1fZQoaAZoCWgPQwh5PZgUn+5hwJSGlFKUaBVLSmgWR0ADtzltCRfXdX2UKGgGaAloD0MIfTz03S27g8CUhpRSlGgVS3xoFkdABGMUAT7EYXV9lChoBmgJaA9DCMV1jCtuNXnAlIaUUpRoFUtkaBZHQATHaews5GV1fZQoaAZoCWgPQwji5elc0QxowJSGlFKUaBVLg2gWR0AFgOQQtjCpdX2UKGgGaAloD0MIKII4DydtccCUhpRSlGgVS5BoFkdABnmlImPYF3V9lChoBmgJaA9DCIc1lUXhIm7AlIaUUpRoFUtqaBZHQAbjxLCemN11fZQoaAZoCWgPQwiKAn0ijxx3wJSGlFKUaBVLXWgWR0AHcDB/I8yOdX2UKGgGaAloD0MIvD5z1icSdMCUhpRSlGgVS5JoFkdACDWPLgXMyXV9lChoBmgJaA9DCMWPMXctm3HAlIaUUpRoFUt7aBZHQAjh4lhPTG51fZQoaAZoCWgPQwgvNq0UAgpswJSGlFKUaBVLrmgWR0AJ/m5lOGj9dX2UKGgGaAloD0MImpSCbu+PdcCUhpRSlGgVS3FoFkdACrXyy2QXAXV9lChoBmgJaA9DCNY4m46AMmvAlIaUUpRoFUttaBZHQAu6ij+Jgst1fZQoaAZoCWgPQwh2NuSfmchtwJSGlFKUaBVLdWgWR0AM0CvHLidbdX2UKGgGaAloD0MI8fYgBOTNb8CUhpRSlGgVS5xoFkdADi/j81n/UHV9lChoBmgJaA9DCHIW9rTDenHAlIaUUpRoFUuMaBZHQA9rI5o4+8p1fZQoaAZoCWgPQwiOk8K8x6VzwJSGlFKUaBVLe2gWR0AQRnrY5DJEdX2UKGgGaAloD0MITOFBs2tTgsCUhpRSlGgVS9NoFkdAEVqYZ2pyZXV9lChoBmgJaA9DCCeh9IWQy3XAlIaUUpRoFUtNaBZHQBG/mLcbiqB1fZQoaAZoCWgPQwhQb0bN18VtwJSGlFKUaBVLZWgWR0ASEa72+PBBdX2UKGgGaAloD0MIBaT9D7Ccb8CUhpRSlGgVS3poFkdAEp/dIoVmBnV9lChoBmgJaA9DCNAJoYMu2lzAlIaUUpRoFUtcaBZHQBMSjYZl4C91fZQoaAZoCWgPQwjsE0AxMnJiwJSGlFKUaBVLr2gWR0AT/oHLRrrPdX2UKGgGaAloD0MIR5IgXIGSbMCUhpRSlGgVS3ZoFkdAFGFYMfA9FHV9lChoBmgJaA9DCP64/fLJW1/AlIaUUpRoFUt9aBZHQBTv7el9Brx1fZQoaAZoCWgPQwinWDUI84FkwJSGlFKUaBVLeWgWR0AVYM/hVENOdX2UKGgGaAloD0MIqU4Hsp6NUcCUhpRSlGgVS1NoFkdAFZ8vEjxCpnV9lChoBmgJaA9DCIDSUKMQz3DAlIaUUpRoFUt9aBZHQBXzArQPZqV1fZQoaAZoCWgPQwiyZI7l3ftkwJSGlFKUaBVLYGgWR0AWOE25xzaLdX2UKGgGaAloD0MI2xmmtlSqbcCUhpRSlGgVS1VoFkdAFmIq9XcQAnV9lChoBmgJaA9DCC+kw0MYaGLAlIaUUpRoFUtuaBZHQBavjGT9sJp1fZQoaAZoCWgPQwh/wAMDCIVUwJSGlFKUaBVLRWgWR0AW5+8XenAJdX2UKGgGaAloD0MINfCjGnZVZcCUhpRSlGgVS3RoFkdAFziqABkqc3V9lChoBmgJaA9DCDFhNCvbZXXAlIaUUpRoFUuGaBZHQBeTEvTPSlZ1fZQoaAZoCWgPQwjDZRU2Ayl4wJSGlFKUaBVLlmgWR0AX94Uvf0mMdX2UKGgGaAloD0MI88gfDDyLMMCUhpRSlGgVS5VoFkdAGFwUQCjk/HV9lChoBmgJaA9DCIxqEVFMfmfAlIaUUpRoFUuDaBZHQBi2EkB0ZFZ1fZQoaAZoCWgPQwin7PSDut9gwJSGlFKUaBVLXmgWR0AY/F6zE74jdX2UKGgGaAloD0MIqB5pcFvTKECUhpRSlGgVS19oFkdAGUPiT+vQnnV9lChoBmgJaA9DCEGBd/Lp2FbAlIaUUpRoFUtiaBZHQBl0PDpC8e11fZQoaAZoCWgPQwgeGED4EIZ1wJSGlFKUaBVLiGgWR0AZ0TewcHW0dX2UKGgGaAloD0MIn7DEA8o9asCUhpRSlGgVS1toFkdAGhYGdI5HVnV9lChoBmgJaA9DCN+l1CVjgWzAlIaUUpRoFUujaBZHQBqHUtqYZ2p1fZQoaAZoCWgPQwimQ6fn3U5MwJSGlFKUaBVLe2gWR0Aa3drO7g89dX2UKGgGaAloD0MIvmckQqNGY8CUhpRSlGgVS4VoFkdAGzjRD1Gsm3V9lChoBmgJaA9DCOLqAIh7QnPAlIaUUpRoFUuLaBZHQBuw2AG0NSZ1fZQoaAZoCWgPQwhhcM0d/b8+wJSGlFKUaBVLtWgWR0AcKqIacZtOdX2UKGgGaAloD0MI0A1N2elBc8CUhpRSlGgVS5JoFkdAHIyvcJtzjnV9lChoBmgJaA9DCIdPOpFgb3TAlIaUUpRoFUvAaBZHQB0l0gbIcR11fZQoaAZoCWgPQwghkiHHFuFywJSGlFKUaBVLrGgWR0AdmQzUI9kjdX2UKGgGaAloD0MIjj9R2bC3YsCUhpRSlGgVS9NoFkdAHkBnzxwyZnV9lChoBmgJaA9DCGraxTSTQXXAlIaUUpRoFUuIaBZHQB6gL/jsD4h1fZQoaAZoCWgPQwiFB82uOwNwwJSGlFKUaBVLx2gWR0AfI3GXHBDYdX2UKGgGaAloD0MIsHH9u774ZcCUhpRSlGgVS2RoFkdAH21mJ3xFzHV9lChoBmgJaA9DCKzlzkywxGvAlIaUUpRoFUt7aBZHQB/Ec81XNkh1fZQoaAZoCWgPQwgXY2Adhyt3wJSGlFKUaBVLk2gWR0AgFOWSlnAZdX2UKGgGaAloD0MIs7J9yJuKd8CUhpRSlGgVTTABaBZHQCCOsq8UVSJ1fZQoaAZoCWgPQwjBpzl5kTRYwJSGlFKUaBVLv2gWR0Ag2nm7rcCYdX2UKGgGaAloD0MIhh4xem4PSsCUhpRSlGgVS1loFkdAIPxlQMx46nV9lChoBmgJaA9DCBNkBFQ4YmPAlIaUUpRoFUtwaBZHQCEYvL5hz/91fZQoaAZoCWgPQwjfMqfL4i98wJSGlFKUaBVLiGgWR0AhUt6ol2NedX2UKGgGaAloD0MI4nMn2P/McMCUhpRSlGgVS6toFkdAIYymZVn27HV9lChoBmgJaA9DCFSPNLgtY23AlIaUUpRoFUtzaBZHQCG09SuQp4N1fZQoaAZoCWgPQwhV3SOba2h2wJSGlFKUaBVLk2gWR0Ah52Jzkp7UdX2UKGgGaAloD0MISWk2j8P8WsCUhpRSlGgVS41oFkdAIhiPQv6CUXV9lChoBmgJaA9DCKIm+nyUlG/AlIaUUpRoFUvfaBZHQCJuNvOyE+R1fZQoaAZoCWgPQwi4dqIkpENpwJSGlFKUaBVLj2gWR0Ain8ZUDMePdX2UKGgGaAloD0MI9MRztoDEZ8CUhpRSlGgVS+hoFkdAIvoH1OCXhXV9lChoBmgJaA9DCLPsSWBznVLAlIaUUpRoFU3lAmgWR0Akf/+bVjI8dX2UKGgGaAloD0MIpOAp5IodgsCUhpRSlGgVS8VoFkdAJMZ2IO6NEXV9lChoBmgJaA9DCHaIf9iS4nPAlIaUUpRoFUvNaBZHQCUak43m3fB1fZQoaAZoCWgPQwhKs3kchuN3wJSGlFKUaBVLeGgWR0AlRS2phnandX2UKGgGaAloD0MI46dxb35bgMCUhpRSlGgVTQ4BaBZHQCWwn8baRIV1fZQoaAZoCWgPQwgl6gWfZit/wJSGlFKUaBVL4GgWR0Al/Zg5R0lrdX2UKGgGaAloD0MIcvvlkxULQUCUhpRSlGgVS5NoFkdAJj1WKdhAnnV9lChoBmgJaA9DCOeqeY5I/GPAlIaUUpRoFU1RAWgWR0Amx19v0h/zdX2UKGgGaAloD0MIzLipgeZOYMCUhpRSlGgVS7VoFkdAJzrTQVsUI3V9lChoBmgJaA9DCA9Dq5MzrCHAlIaUUpRoFUuQaBZHQCeN+RYA80V1fZQoaAZoCWgPQwjn4JnQpMxrwJSGlFKUaBVLs2gWR0An8Y/mknCwdX2UKGgGaAloD0MI32qduJzdcMCUhpRSlGgVS6doFkdAKFC9qUNayXV9lChoBmgJaA9DCNyAzw8jNkzAlIaUUpRoFUvZaBZHQCjiYkVvddp1fZQoaAZoCWgPQwgZjBGJQj9rwJSGlFKUaBVNGAFoFkdAKZe2uxKQJXV9lChoBmgJaA9DCHb8FwgCGEfAlIaUUpRoFUvbaBZHQCoqPluFYdR1fZQoaAZoCWgPQwgLmSuDKphzwJSGlFKUaBVLy2gWR0AqtHYHxBmgdX2UKGgGaAloD0MIrORjdwFBZMCUhpRSlGgVS7FoFkdAKwNIsiB5HHV9lChoBmgJaA9DCKeyKOyidDlAlIaUUpRoFU3oA2gWR0At9hH9WIXTdX2UKGgGaAloD0MIsoLfhhjZW8CUhpRSlGgVTbIBaBZHQC7HlhgE2YR1fZQoaAZoCWgPQwhcrROX469cwJSGlFKUaBVL+mgWR0AvLNHH3lCDdX2UKGgGaAloD0MIyZOka6bzasCUhpRSlGgVS6hoFkdAL2WWpqASWnV9lChoBmgJaA9DCBQ/xty1ZFbAlIaUUpRoFUvMaBZHQC+2tU4rBj51fZQoaAZoCWgPQwikxK7tbUhtwJSGlFKUaBVL7GgWR0AwCnFo+OfedX2UKGgGaAloD0MIcxO1NDeRbsCUhpRSlGgVTUUBaBZHQDBNYs/Y8Md1fZQoaAZoCWgPQwibyMwFLp1nwJSGlFKUaBVLnGgWR0Awbn3ta6jGdX2UKGgGaAloD0MInkFD/4TqbcCUhpRSlGgVS/loFkdAMKM6/7BO6HVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 1716, "n_steps": 128, "gamma": 0.7694437555623597, "gae_lambda": 0.8900008861841016, "ent_coef": 0.04603906545895957, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 129, "n_epochs": 11, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTy9ob21lL3N2bWMvLmxvY2FsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE8vaG9tZS9zdm1jLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-107-generic-x86_64-with-glibc2.27 # 121~18.04.1-Ubuntu SMP Thu Mar 24 17:21:33 UTC 2022", "Python": "3.8.0", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "False", "Numpy": "1.24.1", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ff2eb3dbf70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff2eb3df040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff2eb3df0d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff2eb3df160>", "_build": "<function ActorCriticPolicy._build at 0x7ff2eb3df1f0>", "forward": "<function ActorCriticPolicy.forward at 0x7ff2eb3df280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff2eb3df310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff2eb3df3a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ff2eb3df430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff2eb3df4c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff2eb3df550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff2eb3df5e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7ff2eb3d78a0>"}, "verbose": 0, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 100000, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677549377413774603, "learning_rate": 0.0045583853392817866, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTy9ob21lL3N2bWMvLmxvY2FsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE8vaG9tZS9zdm1jLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9yq9A/RsiWhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAYBWj4WPlM/CFlCvWooo70SmWo/zb7VPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIU14robt0QcCUhpRSlIwBbJRLaYwBdJRHQG2paWom5Ud1fZQoaAZoCWgPQwgX00z3eo9ywJSGlFKUaBVLbmgWR0Btsz3dsSCfdX2UKGgGaAloD0MI7KUpApymacCUhpRSlGgVTSIBaBZHQG3ObBO58Sh1fZQoaAZoCWgPQwg02xX6YLlewJSGlFKUaBVLgmgWR0Bt2b1schkidX2UKGgGaAloD0MIwvuqXCiJacCUhpRSlGgVS4RoFkdAbeXPbfxc3XV9lChoBmgJaA9DCKHZdW9FcFHAlIaUUpRoFUuyaBZHQG31qqGUOd51fZQoaAZoCWgPQwhjRKLQsspYwJSGlFKUaBVLq2gWR0BuBLVjI7vHdX2UKGgGaAloD0MIp5at9cUIbsCUhpRSlGgVTUoBaBZHQG4kgrH2h7F1fZQoaAZoCWgPQwjZl2w8WAp2wJSGlFKUaBVNBAFoFkdAbjwqDK5kLHV9lChoBmgJaA9DCK+0jNT75W1AlIaUUpRoFU1/AmgWR0Buein1nM+vdX2UKGgGaAloD0MIChAFM6byc8CUhpRSlGgVTXIBaBZHQG6dwJgLJCB1fZQoaAZoCWgPQwiz7h8L0flswJSGlFKUaBVLtmgWR0BurnvYvnKXdX2UKGgGaAloD0MIJEc6AyPGcMCUhpRSlGgVS7BoFkdAbr5fbblA/3V9lChoBmgJaA9DCB8wD5ny2GHAlIaUUpRoFUuuaBZHQG7OR2B8QZp1fZQoaAZoCWgPQwhXJZF9EJVswJSGlFKUaBVNZwFoFkdAbvC0vXbudHV9lChoBmgJaA9DCGzp0VRPpi5AlIaUUpRoFUvZaBZHQG8EmXHBDXx1fZQoaAZoCWgPQwhA3qtWJiA4wJSGlFKUaBVLp2gWR0BvE+vllsgudX2UKGgGaAloD0MIjzS4rS09U8CUhpRSlGgVTQEBaBZHQG8rdkSVW0Z1fZQoaAZoCWgPQwjgaMcNv69cwJSGlFKUaBVL82gWR0BvQaSNfgJkdX2UKGgGaAloD0MIvyfWqfJZNkCUhpRSlGgVS+9oFkdAb1ffw7T2FnV9lChoBmgJaA9DCMgljjwQ32rAlIaUUpRoFUuraBZHQG9nEOAiFCd1fZQoaAZoCWgPQwhz8bc9QfIaQJSGlFKUaBVLzmgWR0BvegRbr1M/dX2UKGgGaAloD0MIZ+22C81qasCUhpRSlGgVS8JoFkdAb4t+YMOPNnV9lChoBmgJaA9DCOWzPA/u7iXAlIaUUpRoFUtoaBZHQG+U5aePJaJ1fZQoaAZoCWgPQwgea0YGuWMgwJSGlFKUaBVLzmgWR0Bvp6r/82rGdX2UKGgGaAloD0MIufqxSX4wX8CUhpRSlGgVTSABaBZHQG/DRLkCFK11fZQoaAZoCWgPQwhiD+1jhUBtwJSGlFKUaBVLfmgWR0BvzrTz/ZM+dX2UKGgGaAloD0MIT1jiAWWfMsCUhpRSlGgVS6FoFkdAb91AyEcsDnV9lChoBmgJaA9DCCybOSS1qVLAlIaUUpRoFUuqaBZHQG/saYu01Il1fZQoaAZoCWgPQwg6BfnZSDxuwJSGlFKUaBVLuWgWR0Bv/VFtsN2DdX2UKGgGaAloD0MIFxIwury5ScCUhpRSlGgVS5doFkdAcAV8lHBk7XV9lChoBmgJaA9DCAbZsnxdA17AlIaUUpRoFUuBaBZHQHALQP3BYV91fZQoaAZoCWgPQwgnZr0YStdxwJSGlFKUaBVL12gWR0BwFR1vES/TdX2UKGgGaAloD0MI/ACkNnH6JUCUhpRSlGgVS3ZoFkdAcBp4bCJoCnV9lChoBmgJaA9DCFEujV/4umnAlIaUUpRoFUvVaBZHQHAkUzwc5sF1fZQoaAZoCWgPQwhiLxSwnQNkwJSGlFKUaBVNEwNoFkdAcE/2aUiY9nV9lChoBmgJaA9DCDTW/s72EHPAlIaUUpRoFUuaaBZHQHBW2MsH0K91fZQoaAZoCWgPQwit9rAXivR2wJSGlFKUaBVLkWgWR0BwXWjEehf0dX2UKGgGaAloD0MIHR7C+Gl6ZMCUhpRSlGgVS8BoFkdAcGY/OdGy5nV9lChoBmgJaA9DCIbLKmyGumLAlIaUUpRoFU0LAWgWR0Bwcsqaw2VFdX2UKGgGaAloD0MIFVgAUwbnU8CUhpRSlGgVS/ZoFkdAcH4PhAGB4HV9lChoBmgJaA9DCCUIV0ChfVDAlIaUUpRoFUvuaBZHQHCJOGwiaAp1fZQoaAZoCWgPQwgwvJLkuaRIwJSGlFKUaBVLr2gWR0BwkVpCa7VbdX2UKGgGaAloD0MII028A7yEbMCUhpRSlGgVS61oFkdAcJlCHh0heXV9lChoBmgJaA9DCMNhaeDH9WvAlIaUUpRoFUu9aBZHQHChtcOby6N1fZQoaAZoCWgPQwj3kzE+TLmBwJSGlFKUaBVLW2gWR0Bwpd4dIXj3dX2UKGgGaAloD0MIIeUn1b5HYMCUhpRSlGgVTSkBaBZHQHCz4PK+zt11fZQoaAZoCWgPQwi1MuGX+pFowJSGlFKUaBVLo2gWR0Bwu1OSGJvYdX2UKGgGaAloD0MIaydKQuL7dMCUhpRSlGgVTRMBaBZHQHDIOk56t1Z1fZQoaAZoCWgPQwgjaw2lNmp4wJSGlFKUaBVNrwFoFkdAcN1MS9M9KXV9lChoBmgJaA9DCMk4RrLHnXDAlIaUUpRoFU0tAmgWR0Bw+2y2QXANdX2UKGgGaAloD0MIB5eOOU8MasCUhpRSlGgVS6xoFkdAcQN7BO58SnV9lChoBmgJaA9DCBDrjVphC1DAlIaUUpRoFUvqaBZHQHEOOKKpDNR1fZQoaAZoCWgPQwj5npEIDVJqwJSGlFKUaBVLcWgWR0BxEzu1F6RhdX2UKGgGaAloD0MIPbX66qpKbMCUhpRSlGgVTTYBaBZHQHEiDQiRnvl1fZQoaAZoCWgPQwgUdeYeMmKAwJSGlFKUaBVLnGgWR0BxKO58Sf16dX2UKGgGaAloD0MIogxVMRWtcsCUhpRSlGgVTZ8BaBZHQHE9UkfLcKx1fZQoaAZoCWgPQwiVDtb/OTdewJSGlFKUaBVNxwFoFkdAcVTnp0OmSHV9lChoBmgJaA9DCBR7aB8rTVLAlIaUUpRoFU3CAWgWR0Bxa5fXwsoVdX2UKGgGaAloD0MIkX77OnCbVMCUhpRSlGgVS+hoFkdAcXZf6GgzxnV9lChoBmgJaA9DCKLSiJn9O2jAlIaUUpRoFUuRaBZHQHF86uB+Wnl1fZQoaAZoCWgPQwhtyhXe5YluwJSGlFKUaBVLqWgWR0BxhHDuSfUXdX2UKGgGaAloD0MI5pE/GLj5csCUhpRSlGgVS9hoFkdAcY5GBnSOR3V9lChoBmgJaA9DCGztfaoKNULAlIaUUpRoFUuiaBZHQHGV7MTviLl1fZQoaAZoCWgPQwitwJDVrdJJwJSGlFKUaBVNcQFoFkdAcagNwzch1XV9lChoBmgJaA9DCCAm4UIe/0jAlIaUUpRoFUvbaBZHQHGzVwDNhVl1fZQoaAZoCWgPQwjhl/p5UyE8wJSGlFKUaBVLoWgWR0Bxv9WBBiTddX2UKGgGaAloD0MI2EenrnyoRcCUhpRSlGgVTQQBaBZHQHHTRFd9lVd1fZQoaAZoCWgPQwjcf2Q6dFNnwJSGlFKUaBVL6mgWR0Bx3jZM+NcXdX2UKGgGaAloD0MIEf+wpUffb8CUhpRSlGgVS45oFkdAceTDfWMCLnV9lChoBmgJaA9DCPFG5pE/DF/AlIaUUpRoFU0RAWgWR0Bx8eV4X40udX2UKGgGaAloD0MItfzAVR6KY8CUhpRSlGgVS49oFkdAcfhrS3LFGXV9lChoBmgJaA9DCG75SEr6zm7AlIaUUpRoFUuJaBZHQHH+oXTEzft1fZQoaAZoCWgPQwh3gv3XOZFkwJSGlFKUaBVLzmgWR0ByCBOtW+49dX2UKGgGaAloD0MIiDB+GvdzX8CUhpRSlGgVS3poFkdAcg2Tnq3VkXV9lChoBmgJaA9DCM6LE1/tnFLAlIaUUpRoFUtuaBZHQHISmcJ+lTF1fZQoaAZoCWgPQwjVPbK56iJ1wJSGlFKUaBVLaGgWR0ByF0yWRigCdX2UKGgGaAloD0MIoI1cN6XERsCUhpRSlGgVS1doFkdAchs/oJRfnnV9lChoBmgJaA9DCCEBo8vbIXrAlIaUUpRoFUufaBZHQHIiKT0QK8d1fZQoaAZoCWgPQwj4VE57SkVzwJSGlFKUaBVLeGgWR0ByJ54C6pYLdX2UKGgGaAloD0MIPDJWm//3bMCUhpRSlGgVS6RoFkdAci8rBTGYKXV9lChoBmgJaA9DCEnzx7T2q3rAlIaUUpRoFUtCaBZHQHIyEGRmseZ1fZQoaAZoCWgPQwiiXYWUn15owJSGlFKUaBVLWWgWR0ByOHim2sq8dX2UKGgGaAloD0MIKQRyiSMxScCUhpRSlGgVS19oFkdAcj/SuQp4KXV9lChoBmgJaA9DCHhHxmpzdHjAlIaUUpRoFUtUaBZHQHJGZ7PY4AF1fZQoaAZoCWgPQwgcP1QascRtwJSGlFKUaBVLVWgWR0ByTIEjgQ6IdX2UKGgGaAloD0MIzc6idyqSS8CUhpRSlGgVS5RoFkdAclYiR4hUznV9lChoBmgJaA9DCJxqLczCimDAlIaUUpRoFUtRaBZHQHJZmRV6u4h1fZQoaAZoCWgPQwgTJ/c7FH00QJSGlFKUaBVLd2gWR0ByXvps41gqdX2UKGgGaAloD0MICrq9pDGBYcCUhpRSlGgVS35oFkdAcmSivgWJrXV9lChoBmgJaA9DCE33Oqkvn1HAlIaUUpRoFUtCaBZHQHJnelsP8Q91fZQoaAZoCWgPQwgrhqsDoBljwJSGlFKUaBVL32gWR0ByccWGh24edX2UKGgGaAloD0MIhGIraFpiZcCUhpRSlGgVS81oFkdAcnrqfvnbI3V9lChoBmgJaA9DCHSzP1BuTlvAlIaUUpRoFUtuaBZHQHJ/9foicG11fZQoaAZoCWgPQwgNbJVgcQlfwJSGlFKUaBVLjWgWR0Byhm5tm+TNdX2UKGgGaAloD0MIsHYU56iqccCUhpRSlGgVS8JoFkdAco9FbmlqJ3V9lChoBmgJaA9DCGcOSS2UdnTAlIaUUpRoFUuOaBZHQHKVyYPXkHV1fZQoaAZoCWgPQwgnbD8ZI+J4wJSGlFKUaBVNPgFoFkdAcqUFQ2uPm3V9lChoBmgJaA9DCIKMgAqHM3bAlIaUUpRoFU03AWgWR0BytAHD7655dX2UKGgGaAloD0MIRP0ubE1hcsCUhpRSlGgVTSkBaBZHQHLLO3lS0jV1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 125000, "n_steps": 8, "gamma": 0.9989999999999999, "gae_lambda": 0.8, "ent_coef": 0.09999999999999999, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 16, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTy9ob21lL3N2bWMvLmxvY2FsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE8vaG9tZS9zdm1jLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.0-107-generic-x86_64-with-glibc2.27 # 121~18.04.1-Ubuntu SMP Thu Mar 24 17:21:33 UTC 2022", "Python": "3.8.0", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu117", "GPU Enabled": "False", "Numpy": "1.24.1", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:590a322a0cd9dab8d7ea50c03a5efee4ec2ff026cd95bdb14cc6b7128dcfe157
|
3 |
+
size 146231
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,20 +4,20 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"extract_features": "<function ActorCriticPolicy.extract_features at
|
14 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
15 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
16 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
17 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
18 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
-
"_abc_impl": "<_abc_data object at
|
21 |
},
|
22 |
"verbose": 0,
|
23 |
"policy_kwargs": {},
|
@@ -43,21 +43,21 @@
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 1,
|
46 |
-
"num_timesteps":
|
47 |
-
"_total_timesteps":
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
-
"start_time":
|
52 |
-
"learning_rate": 0.
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
-
":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTy9ob21lL3N2bWMvLmxvY2FsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE8vaG9tZS9zdm1jLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
-
":serialized:": "
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -67,24 +67,24 @@
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
-
"_current_progress_remaining": 0.
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
-
":serialized:": "
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
-
"_n_updates":
|
80 |
-
"n_steps":
|
81 |
-
"gamma": 0.
|
82 |
-
"gae_lambda": 0.
|
83 |
-
"ent_coef": 0.
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
-
"batch_size":
|
87 |
-
"n_epochs":
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTy9ob21lL3N2bWMvLmxvY2FsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE8vaG9tZS9zdm1jLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ff2eb3dbf70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ff2eb3df040>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ff2eb3df0d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ff2eb3df160>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ff2eb3df1f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ff2eb3df280>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ff2eb3df310>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ff2eb3df3a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ff2eb3df430>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ff2eb3df4c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ff2eb3df550>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ff2eb3df5e0>",
|
19 |
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7ff2eb3d78a0>"
|
21 |
},
|
22 |
"verbose": 0,
|
23 |
"policy_kwargs": {},
|
|
|
43 |
"_np_random": null
|
44 |
},
|
45 |
"n_envs": 1,
|
46 |
+
"num_timesteps": 100000,
|
47 |
+
"_total_timesteps": 100000,
|
48 |
"_num_timesteps_at_start": 0,
|
49 |
"seed": null,
|
50 |
"action_noise": null,
|
51 |
+
"start_time": 1677549377413774603,
|
52 |
+
"learning_rate": 0.0045583853392817866,
|
53 |
"tensorboard_log": null,
|
54 |
"lr_schedule": {
|
55 |
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTy9ob21lL3N2bWMvLmxvY2FsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE8vaG9tZS9zdm1jLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9yq9A/RsiWhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
57 |
},
|
58 |
"_last_obs": {
|
59 |
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAYBWj4WPlM/CFlCvWooo70SmWo/zb7VPgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
|
61 |
},
|
62 |
"_last_episode_starts": {
|
63 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
67 |
"_episode_num": 0,
|
68 |
"use_sde": false,
|
69 |
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": 0.0,
|
71 |
"ep_info_buffer": {
|
72 |
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVNRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIU14robt0QcCUhpRSlIwBbJRLaYwBdJRHQG2paWom5Ud1fZQoaAZoCWgPQwgX00z3eo9ywJSGlFKUaBVLbmgWR0Btsz3dsSCfdX2UKGgGaAloD0MI7KUpApymacCUhpRSlGgVTSIBaBZHQG3ObBO58Sh1fZQoaAZoCWgPQwg02xX6YLlewJSGlFKUaBVLgmgWR0Bt2b1schkidX2UKGgGaAloD0MIwvuqXCiJacCUhpRSlGgVS4RoFkdAbeXPbfxc3XV9lChoBmgJaA9DCKHZdW9FcFHAlIaUUpRoFUuyaBZHQG31qqGUOd51fZQoaAZoCWgPQwhjRKLQsspYwJSGlFKUaBVLq2gWR0BuBLVjI7vHdX2UKGgGaAloD0MIp5at9cUIbsCUhpRSlGgVTUoBaBZHQG4kgrH2h7F1fZQoaAZoCWgPQwjZl2w8WAp2wJSGlFKUaBVNBAFoFkdAbjwqDK5kLHV9lChoBmgJaA9DCK+0jNT75W1AlIaUUpRoFU1/AmgWR0Buein1nM+vdX2UKGgGaAloD0MIChAFM6byc8CUhpRSlGgVTXIBaBZHQG6dwJgLJCB1fZQoaAZoCWgPQwiz7h8L0flswJSGlFKUaBVLtmgWR0BurnvYvnKXdX2UKGgGaAloD0MIJEc6AyPGcMCUhpRSlGgVS7BoFkdAbr5fbblA/3V9lChoBmgJaA9DCB8wD5ny2GHAlIaUUpRoFUuuaBZHQG7OR2B8QZp1fZQoaAZoCWgPQwhXJZF9EJVswJSGlFKUaBVNZwFoFkdAbvC0vXbudHV9lChoBmgJaA9DCGzp0VRPpi5AlIaUUpRoFUvZaBZHQG8EmXHBDXx1fZQoaAZoCWgPQwhA3qtWJiA4wJSGlFKUaBVLp2gWR0BvE+vllsgudX2UKGgGaAloD0MIjzS4rS09U8CUhpRSlGgVTQEBaBZHQG8rdkSVW0Z1fZQoaAZoCWgPQwjgaMcNv69cwJSGlFKUaBVL82gWR0BvQaSNfgJkdX2UKGgGaAloD0MIvyfWqfJZNkCUhpRSlGgVS+9oFkdAb1ffw7T2FnV9lChoBmgJaA9DCMgljjwQ32rAlIaUUpRoFUuraBZHQG9nEOAiFCd1fZQoaAZoCWgPQwhz8bc9QfIaQJSGlFKUaBVLzmgWR0BvegRbr1M/dX2UKGgGaAloD0MIZ+22C81qasCUhpRSlGgVS8JoFkdAb4t+YMOPNnV9lChoBmgJaA9DCOWzPA/u7iXAlIaUUpRoFUtoaBZHQG+U5aePJaJ1fZQoaAZoCWgPQwgea0YGuWMgwJSGlFKUaBVLzmgWR0Bvp6r/82rGdX2UKGgGaAloD0MIufqxSX4wX8CUhpRSlGgVTSABaBZHQG/DRLkCFK11fZQoaAZoCWgPQwhiD+1jhUBtwJSGlFKUaBVLfmgWR0BvzrTz/ZM+dX2UKGgGaAloD0MIT1jiAWWfMsCUhpRSlGgVS6FoFkdAb91AyEcsDnV9lChoBmgJaA9DCCybOSS1qVLAlIaUUpRoFUuqaBZHQG/saYu01Il1fZQoaAZoCWgPQwg6BfnZSDxuwJSGlFKUaBVLuWgWR0Bv/VFtsN2DdX2UKGgGaAloD0MIFxIwury5ScCUhpRSlGgVS5doFkdAcAV8lHBk7XV9lChoBmgJaA9DCAbZsnxdA17AlIaUUpRoFUuBaBZHQHALQP3BYV91fZQoaAZoCWgPQwgnZr0YStdxwJSGlFKUaBVL12gWR0BwFR1vES/TdX2UKGgGaAloD0MI/ACkNnH6JUCUhpRSlGgVS3ZoFkdAcBp4bCJoCnV9lChoBmgJaA9DCFEujV/4umnAlIaUUpRoFUvVaBZHQHAkUzwc5sF1fZQoaAZoCWgPQwhiLxSwnQNkwJSGlFKUaBVNEwNoFkdAcE/2aUiY9nV9lChoBmgJaA9DCDTW/s72EHPAlIaUUpRoFUuaaBZHQHBW2MsH0K91fZQoaAZoCWgPQwit9rAXivR2wJSGlFKUaBVLkWgWR0BwXWjEehf0dX2UKGgGaAloD0MIHR7C+Gl6ZMCUhpRSlGgVS8BoFkdAcGY/OdGy5nV9lChoBmgJaA9DCIbLKmyGumLAlIaUUpRoFU0LAWgWR0Bwcsqaw2VFdX2UKGgGaAloD0MIFVgAUwbnU8CUhpRSlGgVS/ZoFkdAcH4PhAGB4HV9lChoBmgJaA9DCCUIV0ChfVDAlIaUUpRoFUvuaBZHQHCJOGwiaAp1fZQoaAZoCWgPQwgwvJLkuaRIwJSGlFKUaBVLr2gWR0BwkVpCa7VbdX2UKGgGaAloD0MII028A7yEbMCUhpRSlGgVS61oFkdAcJlCHh0heXV9lChoBmgJaA9DCMNhaeDH9WvAlIaUUpRoFUu9aBZHQHChtcOby6N1fZQoaAZoCWgPQwj3kzE+TLmBwJSGlFKUaBVLW2gWR0Bwpd4dIXj3dX2UKGgGaAloD0MIIeUn1b5HYMCUhpRSlGgVTSkBaBZHQHCz4PK+zt11fZQoaAZoCWgPQwi1MuGX+pFowJSGlFKUaBVLo2gWR0Bwu1OSGJvYdX2UKGgGaAloD0MIaydKQuL7dMCUhpRSlGgVTRMBaBZHQHDIOk56t1Z1fZQoaAZoCWgPQwgjaw2lNmp4wJSGlFKUaBVNrwFoFkdAcN1MS9M9KXV9lChoBmgJaA9DCMk4RrLHnXDAlIaUUpRoFU0tAmgWR0Bw+2y2QXANdX2UKGgGaAloD0MIB5eOOU8MasCUhpRSlGgVS6xoFkdAcQN7BO58SnV9lChoBmgJaA9DCBDrjVphC1DAlIaUUpRoFUvqaBZHQHEOOKKpDNR1fZQoaAZoCWgPQwj5npEIDVJqwJSGlFKUaBVLcWgWR0BxEzu1F6RhdX2UKGgGaAloD0MIPbX66qpKbMCUhpRSlGgVTTYBaBZHQHEiDQiRnvl1fZQoaAZoCWgPQwgUdeYeMmKAwJSGlFKUaBVLnGgWR0BxKO58Sf16dX2UKGgGaAloD0MIogxVMRWtcsCUhpRSlGgVTZ8BaBZHQHE9UkfLcKx1fZQoaAZoCWgPQwiVDtb/OTdewJSGlFKUaBVNxwFoFkdAcVTnp0OmSHV9lChoBmgJaA9DCBR7aB8rTVLAlIaUUpRoFU3CAWgWR0Bxa5fXwsoVdX2UKGgGaAloD0MIkX77OnCbVMCUhpRSlGgVS+hoFkdAcXZf6GgzxnV9lChoBmgJaA9DCKLSiJn9O2jAlIaUUpRoFUuRaBZHQHF86uB+Wnl1fZQoaAZoCWgPQwhtyhXe5YluwJSGlFKUaBVLqWgWR0BxhHDuSfUXdX2UKGgGaAloD0MI5pE/GLj5csCUhpRSlGgVS9hoFkdAcY5GBnSOR3V9lChoBmgJaA9DCGztfaoKNULAlIaUUpRoFUuiaBZHQHGV7MTviLl1fZQoaAZoCWgPQwitwJDVrdJJwJSGlFKUaBVNcQFoFkdAcagNwzch1XV9lChoBmgJaA9DCCAm4UIe/0jAlIaUUpRoFUvbaBZHQHGzVwDNhVl1fZQoaAZoCWgPQwjhl/p5UyE8wJSGlFKUaBVLoWgWR0Bxv9WBBiTddX2UKGgGaAloD0MI2EenrnyoRcCUhpRSlGgVTQQBaBZHQHHTRFd9lVd1fZQoaAZoCWgPQwjcf2Q6dFNnwJSGlFKUaBVL6mgWR0Bx3jZM+NcXdX2UKGgGaAloD0MIEf+wpUffb8CUhpRSlGgVS45oFkdAceTDfWMCLnV9lChoBmgJaA9DCPFG5pE/DF/AlIaUUpRoFU0RAWgWR0Bx8eV4X40udX2UKGgGaAloD0MItfzAVR6KY8CUhpRSlGgVS49oFkdAcfhrS3LFGXV9lChoBmgJaA9DCG75SEr6zm7AlIaUUpRoFUuJaBZHQHH+oXTEzft1fZQoaAZoCWgPQwh3gv3XOZFkwJSGlFKUaBVLzmgWR0ByCBOtW+49dX2UKGgGaAloD0MIiDB+GvdzX8CUhpRSlGgVS3poFkdAcg2Tnq3VkXV9lChoBmgJaA9DCM6LE1/tnFLAlIaUUpRoFUtuaBZHQHISmcJ+lTF1fZQoaAZoCWgPQwjVPbK56iJ1wJSGlFKUaBVLaGgWR0ByF0yWRigCdX2UKGgGaAloD0MIoI1cN6XERsCUhpRSlGgVS1doFkdAchs/oJRfnnV9lChoBmgJaA9DCCEBo8vbIXrAlIaUUpRoFUufaBZHQHIiKT0QK8d1fZQoaAZoCWgPQwj4VE57SkVzwJSGlFKUaBVLeGgWR0ByJ54C6pYLdX2UKGgGaAloD0MIPDJWm//3bMCUhpRSlGgVS6RoFkdAci8rBTGYKXV9lChoBmgJaA9DCEnzx7T2q3rAlIaUUpRoFUtCaBZHQHIyEGRmseZ1fZQoaAZoCWgPQwiiXYWUn15owJSGlFKUaBVLWWgWR0ByOHim2sq8dX2UKGgGaAloD0MIKQRyiSMxScCUhpRSlGgVS19oFkdAcj/SuQp4KXV9lChoBmgJaA9DCHhHxmpzdHjAlIaUUpRoFUtUaBZHQHJGZ7PY4AF1fZQoaAZoCWgPQwgcP1QascRtwJSGlFKUaBVLVWgWR0ByTIEjgQ6IdX2UKGgGaAloD0MIzc6idyqSS8CUhpRSlGgVS5RoFkdAclYiR4hUznV9lChoBmgJaA9DCJxqLczCimDAlIaUUpRoFUtRaBZHQHJZmRV6u4h1fZQoaAZoCWgPQwgTJ/c7FH00QJSGlFKUaBVLd2gWR0ByXvps41gqdX2UKGgGaAloD0MICrq9pDGBYcCUhpRSlGgVS35oFkdAcmSivgWJrXV9lChoBmgJaA9DCE33Oqkvn1HAlIaUUpRoFUtCaBZHQHJnelsP8Q91fZQoaAZoCWgPQwgrhqsDoBljwJSGlFKUaBVL32gWR0ByccWGh24edX2UKGgGaAloD0MIhGIraFpiZcCUhpRSlGgVS81oFkdAcnrqfvnbI3V9lChoBmgJaA9DCHSzP1BuTlvAlIaUUpRoFUtuaBZHQHJ/9foicG11fZQoaAZoCWgPQwgNbJVgcQlfwJSGlFKUaBVLjWgWR0Byhm5tm+TNdX2UKGgGaAloD0MIsHYU56iqccCUhpRSlGgVS8JoFkdAco9FbmlqJ3V9lChoBmgJaA9DCGcOSS2UdnTAlIaUUpRoFUuOaBZHQHKVyYPXkHV1fZQoaAZoCWgPQwgnbD8ZI+J4wJSGlFKUaBVNPgFoFkdAcqUFQ2uPm3V9lChoBmgJaA9DCIKMgAqHM3bAlIaUUpRoFU03AWgWR0BytAHD7655dX2UKGgGaAloD0MIRP0ubE1hcsCUhpRSlGgVTSkBaBZHQHLLO3lS0jV1ZS4="
|
74 |
},
|
75 |
"ep_success_buffer": {
|
76 |
":type:": "<class 'collections.deque'>",
|
77 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
},
|
79 |
+
"_n_updates": 125000,
|
80 |
+
"n_steps": 8,
|
81 |
+
"gamma": 0.9989999999999999,
|
82 |
+
"gae_lambda": 0.8,
|
83 |
+
"ent_coef": 0.09999999999999999,
|
84 |
"vf_coef": 0.5,
|
85 |
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 16,
|
87 |
+
"n_epochs": 10,
|
88 |
"clip_range": {
|
89 |
":type:": "<class 'function'>",
|
90 |
":serialized:": "gAWV0QIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMTy9ob21lL3N2bWMvLmxvY2FsL2xpYi9weXRob24zLjgvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjE8vaG9tZS9zdm1jLy5sb2NhbC9saWIvcHl0aG9uMy44L3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 87545
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1649f9693a87daf04c815df726f551fb9f9265bf77ebc13badf3c14610d22f4e
|
3 |
size 87545
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43265
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc55d6900461cb89b681db8b5971222960136df967b5b497543f0b2f9b5eb400
|
3 |
size 43265
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -313.16063430556096, "std_reward": 58.73353538064257, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-28T09:03:23.099545"}
|