kolerk commited on
Commit
f26ea91
·
verified ·
1 Parent(s): 415a471

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
chat_template.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "chat_template": "{% set image_count = namespace(value=0) %}{% set video_count = namespace(value=0) %}{% for message in messages %}{% if loop.first and message['role'] != 'system' %}<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n{% endif %}<|im_start|>{{ message['role'] }}\n{% if message['content'] is string %}{{ message['content'] }}<|im_end|>\n{% else %}{% for content in message['content'] %}{% if content['type'] == 'image' or 'image' in content or 'image_url' in content %}{% set image_count.value = image_count.value + 1 %}{% if add_vision_id %}Picture {{ image_count.value }}: {% endif %}<|vision_start|><|image_pad|><|vision_end|>{% elif content['type'] == 'video' or 'video' in content %}{% set video_count.value = video_count.value + 1 %}{% if add_vision_id %}Video {{ video_count.value }}: {% endif %}<|vision_start|><|video_pad|><|vision_end|>{% elif 'text' in content %}{{ content['text'] }}{% endif %}{% endfor %}<|im_end|>\n{% endif %}{% endfor %}{% if add_generation_prompt %}<|im_start|>assistant\n{% endif %}"
3
+ }
config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen2_5_VLForConditionalGeneration"
4
+ ],
5
+ "attention_dropout": 0.0,
6
+ "bos_token_id": 151643,
7
+ "eos_token_id": 151645,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 2048,
10
+ "image_token_id": 151655,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 11008,
13
+ "max_position_embeddings": 128000,
14
+ "max_window_layers": 70,
15
+ "model_type": "qwen2_5_vl",
16
+ "num_attention_heads": 16,
17
+ "num_hidden_layers": 36,
18
+ "num_key_value_heads": 2,
19
+ "rms_norm_eps": 1e-06,
20
+ "rope_scaling": {
21
+ "mrope_section": [
22
+ 16,
23
+ 24,
24
+ 24
25
+ ],
26
+ "rope_type": "default",
27
+ "type": "default"
28
+ },
29
+ "rope_theta": 1000000.0,
30
+ "sliding_window": 32768,
31
+ "tie_word_embeddings": true,
32
+ "torch_dtype": "bfloat16",
33
+ "transformers_version": "4.51.3",
34
+ "use_cache": false,
35
+ "use_sliding_window": false,
36
+ "video_token_id": 151656,
37
+ "vision_config": {
38
+ "depth": 32,
39
+ "fullatt_block_indexes": [
40
+ 7,
41
+ 15,
42
+ 23,
43
+ 31
44
+ ],
45
+ "hidden_act": "silu",
46
+ "hidden_size": 1280,
47
+ "in_channels": 3,
48
+ "in_chans": 3,
49
+ "intermediate_size": 3420,
50
+ "model_type": "qwen2_5_vl",
51
+ "num_heads": 16,
52
+ "out_hidden_size": 2048,
53
+ "patch_size": 14,
54
+ "spatial_merge_size": 2,
55
+ "spatial_patch_size": 14,
56
+ "temporal_patch_size": 2,
57
+ "tokens_per_second": 2,
58
+ "torch_dtype": "float32",
59
+ "window_size": 112
60
+ },
61
+ "vision_end_token_id": 151653,
62
+ "vision_start_token_id": 151652,
63
+ "vision_token_id": 151654,
64
+ "vocab_size": 151936
65
+ }
generation_config.json ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "attn_implementation": "flash_attention_2",
3
+ "bos_token_id": 151643,
4
+ "do_sample": true,
5
+ "eos_token_id": [
6
+ 151645,
7
+ 151643
8
+ ],
9
+ "pad_token_id": 151643,
10
+ "repetition_penalty": 1.05,
11
+ "temperature": 0.1,
12
+ "top_k": 1,
13
+ "top_p": 0.001,
14
+ "transformers_version": "4.51.3",
15
+ "use_cache": false
16
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:414fb72ad195602f1976968c7c6932c20c352c9163c0e751a2ebbfb4da639df4
3
+ size 4997750760
model-00002-of-00002.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:72456f752d542b4a0c3f6a9cccf5e3d87d605ccbb8e9457c24baf085da9a3a2e
3
+ size 3133917248
model.safetensors.index.json ADDED
@@ -0,0 +1,832 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 8131575808
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00002-of-00002.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00002-of-00002.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00002-of-00002.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00002-of-00002.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00002-of-00002.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
368
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
369
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
370
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
371
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
372
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
373
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
374
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
375
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
376
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
377
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
378
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
379
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
380
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
381
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
382
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
383
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
384
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
385
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
386
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
387
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
388
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
389
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
390
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
391
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
392
+ "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
393
+ "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
394
+ "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
395
+ "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
396
+ "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
397
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
398
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
399
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
400
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
401
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
402
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
403
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
404
+ "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
405
+ "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
406
+ "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
407
+ "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
408
+ "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
409
+ "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
410
+ "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
411
+ "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
412
+ "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
413
+ "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
414
+ "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
415
+ "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
416
+ "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
417
+ "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
418
+ "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
419
+ "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
420
+ "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
421
+ "model.layers.8.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
422
+ "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
423
+ "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
424
+ "model.layers.8.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
425
+ "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
426
+ "model.layers.8.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
427
+ "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
428
+ "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
429
+ "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
430
+ "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
431
+ "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
432
+ "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
433
+ "model.layers.9.self_attn.k_proj.bias": "model-00001-of-00002.safetensors",
434
+ "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
435
+ "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
436
+ "model.layers.9.self_attn.q_proj.bias": "model-00001-of-00002.safetensors",
437
+ "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
438
+ "model.layers.9.self_attn.v_proj.bias": "model-00001-of-00002.safetensors",
439
+ "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
440
+ "model.norm.weight": "model-00002-of-00002.safetensors",
441
+ "visual.blocks.0.attn.proj.bias": "model-00001-of-00002.safetensors",
442
+ "visual.blocks.0.attn.proj.weight": "model-00001-of-00002.safetensors",
443
+ "visual.blocks.0.attn.qkv.bias": "model-00001-of-00002.safetensors",
444
+ "visual.blocks.0.attn.qkv.weight": "model-00001-of-00002.safetensors",
445
+ "visual.blocks.0.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
446
+ "visual.blocks.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
447
+ "visual.blocks.0.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
448
+ "visual.blocks.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
449
+ "visual.blocks.0.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
450
+ "visual.blocks.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
451
+ "visual.blocks.0.norm1.weight": "model-00001-of-00002.safetensors",
452
+ "visual.blocks.0.norm2.weight": "model-00001-of-00002.safetensors",
453
+ "visual.blocks.1.attn.proj.bias": "model-00001-of-00002.safetensors",
454
+ "visual.blocks.1.attn.proj.weight": "model-00001-of-00002.safetensors",
455
+ "visual.blocks.1.attn.qkv.bias": "model-00001-of-00002.safetensors",
456
+ "visual.blocks.1.attn.qkv.weight": "model-00001-of-00002.safetensors",
457
+ "visual.blocks.1.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
458
+ "visual.blocks.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
459
+ "visual.blocks.1.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
460
+ "visual.blocks.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
461
+ "visual.blocks.1.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
462
+ "visual.blocks.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
463
+ "visual.blocks.1.norm1.weight": "model-00001-of-00002.safetensors",
464
+ "visual.blocks.1.norm2.weight": "model-00001-of-00002.safetensors",
465
+ "visual.blocks.10.attn.proj.bias": "model-00001-of-00002.safetensors",
466
+ "visual.blocks.10.attn.proj.weight": "model-00001-of-00002.safetensors",
467
+ "visual.blocks.10.attn.qkv.bias": "model-00001-of-00002.safetensors",
468
+ "visual.blocks.10.attn.qkv.weight": "model-00001-of-00002.safetensors",
469
+ "visual.blocks.10.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
470
+ "visual.blocks.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
471
+ "visual.blocks.10.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
472
+ "visual.blocks.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
473
+ "visual.blocks.10.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
474
+ "visual.blocks.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
475
+ "visual.blocks.10.norm1.weight": "model-00001-of-00002.safetensors",
476
+ "visual.blocks.10.norm2.weight": "model-00001-of-00002.safetensors",
477
+ "visual.blocks.11.attn.proj.bias": "model-00001-of-00002.safetensors",
478
+ "visual.blocks.11.attn.proj.weight": "model-00001-of-00002.safetensors",
479
+ "visual.blocks.11.attn.qkv.bias": "model-00001-of-00002.safetensors",
480
+ "visual.blocks.11.attn.qkv.weight": "model-00001-of-00002.safetensors",
481
+ "visual.blocks.11.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
482
+ "visual.blocks.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
483
+ "visual.blocks.11.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
484
+ "visual.blocks.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
485
+ "visual.blocks.11.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
486
+ "visual.blocks.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
487
+ "visual.blocks.11.norm1.weight": "model-00001-of-00002.safetensors",
488
+ "visual.blocks.11.norm2.weight": "model-00001-of-00002.safetensors",
489
+ "visual.blocks.12.attn.proj.bias": "model-00001-of-00002.safetensors",
490
+ "visual.blocks.12.attn.proj.weight": "model-00001-of-00002.safetensors",
491
+ "visual.blocks.12.attn.qkv.bias": "model-00001-of-00002.safetensors",
492
+ "visual.blocks.12.attn.qkv.weight": "model-00001-of-00002.safetensors",
493
+ "visual.blocks.12.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
494
+ "visual.blocks.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
495
+ "visual.blocks.12.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
496
+ "visual.blocks.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
497
+ "visual.blocks.12.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
498
+ "visual.blocks.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
499
+ "visual.blocks.12.norm1.weight": "model-00001-of-00002.safetensors",
500
+ "visual.blocks.12.norm2.weight": "model-00001-of-00002.safetensors",
501
+ "visual.blocks.13.attn.proj.bias": "model-00001-of-00002.safetensors",
502
+ "visual.blocks.13.attn.proj.weight": "model-00001-of-00002.safetensors",
503
+ "visual.blocks.13.attn.qkv.bias": "model-00001-of-00002.safetensors",
504
+ "visual.blocks.13.attn.qkv.weight": "model-00001-of-00002.safetensors",
505
+ "visual.blocks.13.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
506
+ "visual.blocks.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
507
+ "visual.blocks.13.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
508
+ "visual.blocks.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
509
+ "visual.blocks.13.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
510
+ "visual.blocks.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
511
+ "visual.blocks.13.norm1.weight": "model-00001-of-00002.safetensors",
512
+ "visual.blocks.13.norm2.weight": "model-00001-of-00002.safetensors",
513
+ "visual.blocks.14.attn.proj.bias": "model-00001-of-00002.safetensors",
514
+ "visual.blocks.14.attn.proj.weight": "model-00001-of-00002.safetensors",
515
+ "visual.blocks.14.attn.qkv.bias": "model-00001-of-00002.safetensors",
516
+ "visual.blocks.14.attn.qkv.weight": "model-00001-of-00002.safetensors",
517
+ "visual.blocks.14.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
518
+ "visual.blocks.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
519
+ "visual.blocks.14.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
520
+ "visual.blocks.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
521
+ "visual.blocks.14.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
522
+ "visual.blocks.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
523
+ "visual.blocks.14.norm1.weight": "model-00001-of-00002.safetensors",
524
+ "visual.blocks.14.norm2.weight": "model-00001-of-00002.safetensors",
525
+ "visual.blocks.15.attn.proj.bias": "model-00001-of-00002.safetensors",
526
+ "visual.blocks.15.attn.proj.weight": "model-00001-of-00002.safetensors",
527
+ "visual.blocks.15.attn.qkv.bias": "model-00001-of-00002.safetensors",
528
+ "visual.blocks.15.attn.qkv.weight": "model-00001-of-00002.safetensors",
529
+ "visual.blocks.15.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
530
+ "visual.blocks.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
531
+ "visual.blocks.15.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
532
+ "visual.blocks.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
533
+ "visual.blocks.15.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
534
+ "visual.blocks.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
535
+ "visual.blocks.15.norm1.weight": "model-00001-of-00002.safetensors",
536
+ "visual.blocks.15.norm2.weight": "model-00001-of-00002.safetensors",
537
+ "visual.blocks.16.attn.proj.bias": "model-00001-of-00002.safetensors",
538
+ "visual.blocks.16.attn.proj.weight": "model-00001-of-00002.safetensors",
539
+ "visual.blocks.16.attn.qkv.bias": "model-00001-of-00002.safetensors",
540
+ "visual.blocks.16.attn.qkv.weight": "model-00001-of-00002.safetensors",
541
+ "visual.blocks.16.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
542
+ "visual.blocks.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
543
+ "visual.blocks.16.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
544
+ "visual.blocks.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
545
+ "visual.blocks.16.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
546
+ "visual.blocks.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
547
+ "visual.blocks.16.norm1.weight": "model-00001-of-00002.safetensors",
548
+ "visual.blocks.16.norm2.weight": "model-00001-of-00002.safetensors",
549
+ "visual.blocks.17.attn.proj.bias": "model-00001-of-00002.safetensors",
550
+ "visual.blocks.17.attn.proj.weight": "model-00001-of-00002.safetensors",
551
+ "visual.blocks.17.attn.qkv.bias": "model-00001-of-00002.safetensors",
552
+ "visual.blocks.17.attn.qkv.weight": "model-00001-of-00002.safetensors",
553
+ "visual.blocks.17.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
554
+ "visual.blocks.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
555
+ "visual.blocks.17.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
556
+ "visual.blocks.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
557
+ "visual.blocks.17.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
558
+ "visual.blocks.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
559
+ "visual.blocks.17.norm1.weight": "model-00001-of-00002.safetensors",
560
+ "visual.blocks.17.norm2.weight": "model-00001-of-00002.safetensors",
561
+ "visual.blocks.18.attn.proj.bias": "model-00001-of-00002.safetensors",
562
+ "visual.blocks.18.attn.proj.weight": "model-00001-of-00002.safetensors",
563
+ "visual.blocks.18.attn.qkv.bias": "model-00001-of-00002.safetensors",
564
+ "visual.blocks.18.attn.qkv.weight": "model-00001-of-00002.safetensors",
565
+ "visual.blocks.18.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
566
+ "visual.blocks.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
567
+ "visual.blocks.18.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
568
+ "visual.blocks.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
569
+ "visual.blocks.18.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
570
+ "visual.blocks.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
571
+ "visual.blocks.18.norm1.weight": "model-00001-of-00002.safetensors",
572
+ "visual.blocks.18.norm2.weight": "model-00001-of-00002.safetensors",
573
+ "visual.blocks.19.attn.proj.bias": "model-00001-of-00002.safetensors",
574
+ "visual.blocks.19.attn.proj.weight": "model-00001-of-00002.safetensors",
575
+ "visual.blocks.19.attn.qkv.bias": "model-00001-of-00002.safetensors",
576
+ "visual.blocks.19.attn.qkv.weight": "model-00001-of-00002.safetensors",
577
+ "visual.blocks.19.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
578
+ "visual.blocks.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
579
+ "visual.blocks.19.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
580
+ "visual.blocks.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
581
+ "visual.blocks.19.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
582
+ "visual.blocks.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
583
+ "visual.blocks.19.norm1.weight": "model-00001-of-00002.safetensors",
584
+ "visual.blocks.19.norm2.weight": "model-00001-of-00002.safetensors",
585
+ "visual.blocks.2.attn.proj.bias": "model-00001-of-00002.safetensors",
586
+ "visual.blocks.2.attn.proj.weight": "model-00001-of-00002.safetensors",
587
+ "visual.blocks.2.attn.qkv.bias": "model-00001-of-00002.safetensors",
588
+ "visual.blocks.2.attn.qkv.weight": "model-00001-of-00002.safetensors",
589
+ "visual.blocks.2.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
590
+ "visual.blocks.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
591
+ "visual.blocks.2.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
592
+ "visual.blocks.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
593
+ "visual.blocks.2.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
594
+ "visual.blocks.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
595
+ "visual.blocks.2.norm1.weight": "model-00001-of-00002.safetensors",
596
+ "visual.blocks.2.norm2.weight": "model-00001-of-00002.safetensors",
597
+ "visual.blocks.20.attn.proj.bias": "model-00001-of-00002.safetensors",
598
+ "visual.blocks.20.attn.proj.weight": "model-00001-of-00002.safetensors",
599
+ "visual.blocks.20.attn.qkv.bias": "model-00001-of-00002.safetensors",
600
+ "visual.blocks.20.attn.qkv.weight": "model-00001-of-00002.safetensors",
601
+ "visual.blocks.20.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
602
+ "visual.blocks.20.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
603
+ "visual.blocks.20.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
604
+ "visual.blocks.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
605
+ "visual.blocks.20.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
606
+ "visual.blocks.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
607
+ "visual.blocks.20.norm1.weight": "model-00001-of-00002.safetensors",
608
+ "visual.blocks.20.norm2.weight": "model-00001-of-00002.safetensors",
609
+ "visual.blocks.21.attn.proj.bias": "model-00001-of-00002.safetensors",
610
+ "visual.blocks.21.attn.proj.weight": "model-00001-of-00002.safetensors",
611
+ "visual.blocks.21.attn.qkv.bias": "model-00001-of-00002.safetensors",
612
+ "visual.blocks.21.attn.qkv.weight": "model-00001-of-00002.safetensors",
613
+ "visual.blocks.21.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
614
+ "visual.blocks.21.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
615
+ "visual.blocks.21.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
616
+ "visual.blocks.21.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
617
+ "visual.blocks.21.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
618
+ "visual.blocks.21.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
619
+ "visual.blocks.21.norm1.weight": "model-00001-of-00002.safetensors",
620
+ "visual.blocks.21.norm2.weight": "model-00001-of-00002.safetensors",
621
+ "visual.blocks.22.attn.proj.bias": "model-00001-of-00002.safetensors",
622
+ "visual.blocks.22.attn.proj.weight": "model-00001-of-00002.safetensors",
623
+ "visual.blocks.22.attn.qkv.bias": "model-00001-of-00002.safetensors",
624
+ "visual.blocks.22.attn.qkv.weight": "model-00001-of-00002.safetensors",
625
+ "visual.blocks.22.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
626
+ "visual.blocks.22.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
627
+ "visual.blocks.22.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
628
+ "visual.blocks.22.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
629
+ "visual.blocks.22.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
630
+ "visual.blocks.22.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
631
+ "visual.blocks.22.norm1.weight": "model-00001-of-00002.safetensors",
632
+ "visual.blocks.22.norm2.weight": "model-00001-of-00002.safetensors",
633
+ "visual.blocks.23.attn.proj.bias": "model-00001-of-00002.safetensors",
634
+ "visual.blocks.23.attn.proj.weight": "model-00001-of-00002.safetensors",
635
+ "visual.blocks.23.attn.qkv.bias": "model-00001-of-00002.safetensors",
636
+ "visual.blocks.23.attn.qkv.weight": "model-00001-of-00002.safetensors",
637
+ "visual.blocks.23.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
638
+ "visual.blocks.23.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
639
+ "visual.blocks.23.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
640
+ "visual.blocks.23.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
641
+ "visual.blocks.23.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
642
+ "visual.blocks.23.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
643
+ "visual.blocks.23.norm1.weight": "model-00001-of-00002.safetensors",
644
+ "visual.blocks.23.norm2.weight": "model-00001-of-00002.safetensors",
645
+ "visual.blocks.24.attn.proj.bias": "model-00001-of-00002.safetensors",
646
+ "visual.blocks.24.attn.proj.weight": "model-00001-of-00002.safetensors",
647
+ "visual.blocks.24.attn.qkv.bias": "model-00001-of-00002.safetensors",
648
+ "visual.blocks.24.attn.qkv.weight": "model-00001-of-00002.safetensors",
649
+ "visual.blocks.24.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
650
+ "visual.blocks.24.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
651
+ "visual.blocks.24.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
652
+ "visual.blocks.24.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
653
+ "visual.blocks.24.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
654
+ "visual.blocks.24.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
655
+ "visual.blocks.24.norm1.weight": "model-00001-of-00002.safetensors",
656
+ "visual.blocks.24.norm2.weight": "model-00001-of-00002.safetensors",
657
+ "visual.blocks.25.attn.proj.bias": "model-00001-of-00002.safetensors",
658
+ "visual.blocks.25.attn.proj.weight": "model-00001-of-00002.safetensors",
659
+ "visual.blocks.25.attn.qkv.bias": "model-00001-of-00002.safetensors",
660
+ "visual.blocks.25.attn.qkv.weight": "model-00001-of-00002.safetensors",
661
+ "visual.blocks.25.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
662
+ "visual.blocks.25.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
663
+ "visual.blocks.25.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
664
+ "visual.blocks.25.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
665
+ "visual.blocks.25.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
666
+ "visual.blocks.25.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
667
+ "visual.blocks.25.norm1.weight": "model-00001-of-00002.safetensors",
668
+ "visual.blocks.25.norm2.weight": "model-00001-of-00002.safetensors",
669
+ "visual.blocks.26.attn.proj.bias": "model-00001-of-00002.safetensors",
670
+ "visual.blocks.26.attn.proj.weight": "model-00001-of-00002.safetensors",
671
+ "visual.blocks.26.attn.qkv.bias": "model-00001-of-00002.safetensors",
672
+ "visual.blocks.26.attn.qkv.weight": "model-00001-of-00002.safetensors",
673
+ "visual.blocks.26.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
674
+ "visual.blocks.26.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
675
+ "visual.blocks.26.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
676
+ "visual.blocks.26.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
677
+ "visual.blocks.26.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
678
+ "visual.blocks.26.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
679
+ "visual.blocks.26.norm1.weight": "model-00001-of-00002.safetensors",
680
+ "visual.blocks.26.norm2.weight": "model-00001-of-00002.safetensors",
681
+ "visual.blocks.27.attn.proj.bias": "model-00001-of-00002.safetensors",
682
+ "visual.blocks.27.attn.proj.weight": "model-00001-of-00002.safetensors",
683
+ "visual.blocks.27.attn.qkv.bias": "model-00001-of-00002.safetensors",
684
+ "visual.blocks.27.attn.qkv.weight": "model-00001-of-00002.safetensors",
685
+ "visual.blocks.27.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
686
+ "visual.blocks.27.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
687
+ "visual.blocks.27.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
688
+ "visual.blocks.27.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
689
+ "visual.blocks.27.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
690
+ "visual.blocks.27.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
691
+ "visual.blocks.27.norm1.weight": "model-00001-of-00002.safetensors",
692
+ "visual.blocks.27.norm2.weight": "model-00001-of-00002.safetensors",
693
+ "visual.blocks.28.attn.proj.bias": "model-00001-of-00002.safetensors",
694
+ "visual.blocks.28.attn.proj.weight": "model-00001-of-00002.safetensors",
695
+ "visual.blocks.28.attn.qkv.bias": "model-00001-of-00002.safetensors",
696
+ "visual.blocks.28.attn.qkv.weight": "model-00001-of-00002.safetensors",
697
+ "visual.blocks.28.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
698
+ "visual.blocks.28.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
699
+ "visual.blocks.28.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
700
+ "visual.blocks.28.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
701
+ "visual.blocks.28.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
702
+ "visual.blocks.28.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
703
+ "visual.blocks.28.norm1.weight": "model-00001-of-00002.safetensors",
704
+ "visual.blocks.28.norm2.weight": "model-00001-of-00002.safetensors",
705
+ "visual.blocks.29.attn.proj.bias": "model-00001-of-00002.safetensors",
706
+ "visual.blocks.29.attn.proj.weight": "model-00001-of-00002.safetensors",
707
+ "visual.blocks.29.attn.qkv.bias": "model-00001-of-00002.safetensors",
708
+ "visual.blocks.29.attn.qkv.weight": "model-00001-of-00002.safetensors",
709
+ "visual.blocks.29.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
710
+ "visual.blocks.29.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
711
+ "visual.blocks.29.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
712
+ "visual.blocks.29.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
713
+ "visual.blocks.29.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
714
+ "visual.blocks.29.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
715
+ "visual.blocks.29.norm1.weight": "model-00001-of-00002.safetensors",
716
+ "visual.blocks.29.norm2.weight": "model-00001-of-00002.safetensors",
717
+ "visual.blocks.3.attn.proj.bias": "model-00001-of-00002.safetensors",
718
+ "visual.blocks.3.attn.proj.weight": "model-00001-of-00002.safetensors",
719
+ "visual.blocks.3.attn.qkv.bias": "model-00001-of-00002.safetensors",
720
+ "visual.blocks.3.attn.qkv.weight": "model-00001-of-00002.safetensors",
721
+ "visual.blocks.3.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
722
+ "visual.blocks.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
723
+ "visual.blocks.3.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
724
+ "visual.blocks.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
725
+ "visual.blocks.3.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
726
+ "visual.blocks.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
727
+ "visual.blocks.3.norm1.weight": "model-00001-of-00002.safetensors",
728
+ "visual.blocks.3.norm2.weight": "model-00001-of-00002.safetensors",
729
+ "visual.blocks.30.attn.proj.bias": "model-00001-of-00002.safetensors",
730
+ "visual.blocks.30.attn.proj.weight": "model-00001-of-00002.safetensors",
731
+ "visual.blocks.30.attn.qkv.bias": "model-00001-of-00002.safetensors",
732
+ "visual.blocks.30.attn.qkv.weight": "model-00001-of-00002.safetensors",
733
+ "visual.blocks.30.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
734
+ "visual.blocks.30.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
735
+ "visual.blocks.30.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
736
+ "visual.blocks.30.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
737
+ "visual.blocks.30.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
738
+ "visual.blocks.30.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
739
+ "visual.blocks.30.norm1.weight": "model-00001-of-00002.safetensors",
740
+ "visual.blocks.30.norm2.weight": "model-00001-of-00002.safetensors",
741
+ "visual.blocks.31.attn.proj.bias": "model-00001-of-00002.safetensors",
742
+ "visual.blocks.31.attn.proj.weight": "model-00001-of-00002.safetensors",
743
+ "visual.blocks.31.attn.qkv.bias": "model-00001-of-00002.safetensors",
744
+ "visual.blocks.31.attn.qkv.weight": "model-00001-of-00002.safetensors",
745
+ "visual.blocks.31.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
746
+ "visual.blocks.31.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
747
+ "visual.blocks.31.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
748
+ "visual.blocks.31.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
749
+ "visual.blocks.31.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
750
+ "visual.blocks.31.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
751
+ "visual.blocks.31.norm1.weight": "model-00001-of-00002.safetensors",
752
+ "visual.blocks.31.norm2.weight": "model-00001-of-00002.safetensors",
753
+ "visual.blocks.4.attn.proj.bias": "model-00001-of-00002.safetensors",
754
+ "visual.blocks.4.attn.proj.weight": "model-00001-of-00002.safetensors",
755
+ "visual.blocks.4.attn.qkv.bias": "model-00001-of-00002.safetensors",
756
+ "visual.blocks.4.attn.qkv.weight": "model-00001-of-00002.safetensors",
757
+ "visual.blocks.4.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
758
+ "visual.blocks.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
759
+ "visual.blocks.4.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
760
+ "visual.blocks.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
761
+ "visual.blocks.4.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
762
+ "visual.blocks.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
763
+ "visual.blocks.4.norm1.weight": "model-00001-of-00002.safetensors",
764
+ "visual.blocks.4.norm2.weight": "model-00001-of-00002.safetensors",
765
+ "visual.blocks.5.attn.proj.bias": "model-00001-of-00002.safetensors",
766
+ "visual.blocks.5.attn.proj.weight": "model-00001-of-00002.safetensors",
767
+ "visual.blocks.5.attn.qkv.bias": "model-00001-of-00002.safetensors",
768
+ "visual.blocks.5.attn.qkv.weight": "model-00001-of-00002.safetensors",
769
+ "visual.blocks.5.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
770
+ "visual.blocks.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
771
+ "visual.blocks.5.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
772
+ "visual.blocks.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
773
+ "visual.blocks.5.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
774
+ "visual.blocks.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
775
+ "visual.blocks.5.norm1.weight": "model-00001-of-00002.safetensors",
776
+ "visual.blocks.5.norm2.weight": "model-00001-of-00002.safetensors",
777
+ "visual.blocks.6.attn.proj.bias": "model-00001-of-00002.safetensors",
778
+ "visual.blocks.6.attn.proj.weight": "model-00001-of-00002.safetensors",
779
+ "visual.blocks.6.attn.qkv.bias": "model-00001-of-00002.safetensors",
780
+ "visual.blocks.6.attn.qkv.weight": "model-00001-of-00002.safetensors",
781
+ "visual.blocks.6.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
782
+ "visual.blocks.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
783
+ "visual.blocks.6.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
784
+ "visual.blocks.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
785
+ "visual.blocks.6.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
786
+ "visual.blocks.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
787
+ "visual.blocks.6.norm1.weight": "model-00001-of-00002.safetensors",
788
+ "visual.blocks.6.norm2.weight": "model-00001-of-00002.safetensors",
789
+ "visual.blocks.7.attn.proj.bias": "model-00001-of-00002.safetensors",
790
+ "visual.blocks.7.attn.proj.weight": "model-00001-of-00002.safetensors",
791
+ "visual.blocks.7.attn.qkv.bias": "model-00001-of-00002.safetensors",
792
+ "visual.blocks.7.attn.qkv.weight": "model-00001-of-00002.safetensors",
793
+ "visual.blocks.7.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
794
+ "visual.blocks.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
795
+ "visual.blocks.7.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
796
+ "visual.blocks.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
797
+ "visual.blocks.7.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
798
+ "visual.blocks.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
799
+ "visual.blocks.7.norm1.weight": "model-00001-of-00002.safetensors",
800
+ "visual.blocks.7.norm2.weight": "model-00001-of-00002.safetensors",
801
+ "visual.blocks.8.attn.proj.bias": "model-00001-of-00002.safetensors",
802
+ "visual.blocks.8.attn.proj.weight": "model-00001-of-00002.safetensors",
803
+ "visual.blocks.8.attn.qkv.bias": "model-00001-of-00002.safetensors",
804
+ "visual.blocks.8.attn.qkv.weight": "model-00001-of-00002.safetensors",
805
+ "visual.blocks.8.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
806
+ "visual.blocks.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
807
+ "visual.blocks.8.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
808
+ "visual.blocks.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
809
+ "visual.blocks.8.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
810
+ "visual.blocks.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
811
+ "visual.blocks.8.norm1.weight": "model-00001-of-00002.safetensors",
812
+ "visual.blocks.8.norm2.weight": "model-00001-of-00002.safetensors",
813
+ "visual.blocks.9.attn.proj.bias": "model-00001-of-00002.safetensors",
814
+ "visual.blocks.9.attn.proj.weight": "model-00001-of-00002.safetensors",
815
+ "visual.blocks.9.attn.qkv.bias": "model-00001-of-00002.safetensors",
816
+ "visual.blocks.9.attn.qkv.weight": "model-00001-of-00002.safetensors",
817
+ "visual.blocks.9.mlp.down_proj.bias": "model-00001-of-00002.safetensors",
818
+ "visual.blocks.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
819
+ "visual.blocks.9.mlp.gate_proj.bias": "model-00001-of-00002.safetensors",
820
+ "visual.blocks.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
821
+ "visual.blocks.9.mlp.up_proj.bias": "model-00001-of-00002.safetensors",
822
+ "visual.blocks.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
823
+ "visual.blocks.9.norm1.weight": "model-00001-of-00002.safetensors",
824
+ "visual.blocks.9.norm2.weight": "model-00001-of-00002.safetensors",
825
+ "visual.merger.ln_q.weight": "model-00001-of-00002.safetensors",
826
+ "visual.merger.mlp.0.bias": "model-00001-of-00002.safetensors",
827
+ "visual.merger.mlp.0.weight": "model-00001-of-00002.safetensors",
828
+ "visual.merger.mlp.2.bias": "model-00001-of-00002.safetensors",
829
+ "visual.merger.mlp.2.weight": "model-00001-of-00002.safetensors",
830
+ "visual.patch_embed.proj.weight": "model-00001-of-00002.safetensors"
831
+ }
832
+ }
preprocessor_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "do_convert_rgb": true,
3
+ "do_normalize": true,
4
+ "do_rescale": true,
5
+ "do_resize": true,
6
+ "image_mean": [
7
+ 0.48145466,
8
+ 0.4578275,
9
+ 0.40821073
10
+ ],
11
+ "image_processor_type": "Qwen2VLImageProcessor",
12
+ "image_std": [
13
+ 0.26862954,
14
+ 0.26130258,
15
+ 0.27577711
16
+ ],
17
+ "max_pixels": 501760,
18
+ "merge_size": 2,
19
+ "min_pixels": 3136,
20
+ "patch_size": 14,
21
+ "processor_class": "Qwen2_5_VLProcessor",
22
+ "resample": 3,
23
+ "rescale_factor": 0.00392156862745098,
24
+ "size": {
25
+ "longest_edge": 12845056,
26
+ "shortest_edge": 3136
27
+ },
28
+ "temporal_patch_size": 2
29
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5eee858c5123a4279c3e1f7b81247343f356ac767940b2692a928ad929543214
3
+ size 11422063
tokenizer_config.json ADDED
@@ -0,0 +1,213 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "max_length": null,
204
+ "model_max_length": 131072,
205
+ "pad_to_multiple_of": null,
206
+ "pad_token": "<|endoftext|>",
207
+ "pad_token_type_id": 0,
208
+ "padding_side": "right",
209
+ "processor_class": "Qwen2_5_VLProcessor",
210
+ "split_special_tokens": false,
211
+ "tokenizer_class": "Qwen2Tokenizer",
212
+ "unk_token": null
213
+ }
trainer_state.json ADDED
@@ -0,0 +1,1984 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 0.6928406466512702,
6
+ "eval_steps": 500,
7
+ "global_step": 150,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "completion_length": 107.87500381469727,
14
+ "epoch": 0.004618937644341801,
15
+ "grad_norm": 10.236255645751953,
16
+ "kl": 0.0,
17
+ "learning_rate": 1e-06,
18
+ "loss": -0.0,
19
+ "reward": 1.8541667461395264,
20
+ "reward_std": 0.1378917135298252,
21
+ "rewards/accuracy_reward": 0.8541666865348816,
22
+ "rewards/format_reward": 1.0,
23
+ "step": 1
24
+ },
25
+ {
26
+ "completion_length": 96.77083587646484,
27
+ "epoch": 0.009237875288683603,
28
+ "grad_norm": 5.244990348815918,
29
+ "kl": 0.00017547607421875,
30
+ "learning_rate": 1e-06,
31
+ "loss": 0.0,
32
+ "reward": 1.7708333730697632,
33
+ "reward_std": 0.17311252653598785,
34
+ "rewards/accuracy_reward": 0.7708333432674408,
35
+ "rewards/format_reward": 1.0,
36
+ "step": 2
37
+ },
38
+ {
39
+ "completion_length": 120.25,
40
+ "epoch": 0.013856812933025405,
41
+ "grad_norm": 4.743775367736816,
42
+ "kl": 0.0006608963012695312,
43
+ "learning_rate": 1e-06,
44
+ "loss": 0.0,
45
+ "reward": 1.7916666865348816,
46
+ "reward_std": 0.179558377712965,
47
+ "rewards/accuracy_reward": 0.7916666865348816,
48
+ "rewards/format_reward": 1.0,
49
+ "step": 3
50
+ },
51
+ {
52
+ "completion_length": 94.3125,
53
+ "epoch": 0.018475750577367205,
54
+ "grad_norm": 3.1872682571411133,
55
+ "kl": 0.0009775161743164062,
56
+ "learning_rate": 1e-06,
57
+ "loss": 0.0,
58
+ "reward": 1.8125000596046448,
59
+ "reward_std": 0.1378917098045349,
60
+ "rewards/accuracy_reward": 0.8125000298023224,
61
+ "rewards/format_reward": 1.0,
62
+ "step": 4
63
+ },
64
+ {
65
+ "completion_length": 76.95833587646484,
66
+ "epoch": 0.023094688221709007,
67
+ "grad_norm": 5.366634368896484,
68
+ "kl": 0.00531768798828125,
69
+ "learning_rate": 1e-06,
70
+ "loss": 0.0002,
71
+ "reward": 1.8750000596046448,
72
+ "reward_std": 0.1666666716337204,
73
+ "rewards/accuracy_reward": 0.9166666865348816,
74
+ "rewards/format_reward": 0.9583333730697632,
75
+ "step": 5
76
+ },
77
+ {
78
+ "completion_length": 100.64583587646484,
79
+ "epoch": 0.02771362586605081,
80
+ "grad_norm": 3.2625043392181396,
81
+ "kl": 0.0061187744140625,
82
+ "learning_rate": 1e-06,
83
+ "loss": 0.0002,
84
+ "reward": 1.8958333730697632,
85
+ "reward_std": 0.17311251163482666,
86
+ "rewards/accuracy_reward": 0.8958333432674408,
87
+ "rewards/format_reward": 1.0,
88
+ "step": 6
89
+ },
90
+ {
91
+ "completion_length": 100.83333587646484,
92
+ "epoch": 0.03233256351039261,
93
+ "grad_norm": 2.418282985687256,
94
+ "kl": 0.00472259521484375,
95
+ "learning_rate": 1e-06,
96
+ "loss": 0.0002,
97
+ "reward": 1.7708333730697632,
98
+ "reward_std": 0.17311252281069756,
99
+ "rewards/accuracy_reward": 0.7708333730697632,
100
+ "rewards/format_reward": 1.0,
101
+ "step": 7
102
+ },
103
+ {
104
+ "completion_length": 111.625,
105
+ "epoch": 0.03695150115473441,
106
+ "grad_norm": 8.21818733215332,
107
+ "kl": 0.003204345703125,
108
+ "learning_rate": 1e-06,
109
+ "loss": 0.0001,
110
+ "reward": 1.8750000596046448,
111
+ "reward_std": 0.13144585862755775,
112
+ "rewards/accuracy_reward": 0.8750000298023224,
113
+ "rewards/format_reward": 1.0,
114
+ "step": 8
115
+ },
116
+ {
117
+ "completion_length": 93.5,
118
+ "epoch": 0.04157043879907621,
119
+ "grad_norm": 4.702052593231201,
120
+ "kl": 0.008941650390625,
121
+ "learning_rate": 1e-06,
122
+ "loss": 0.0004,
123
+ "reward": 1.8125000596046448,
124
+ "reward_std": 0.25644585490226746,
125
+ "rewards/accuracy_reward": 0.8125000298023224,
126
+ "rewards/format_reward": 1.0,
127
+ "step": 9
128
+ },
129
+ {
130
+ "completion_length": 148.33333587646484,
131
+ "epoch": 0.046189376443418015,
132
+ "grad_norm": 2.0280299186706543,
133
+ "kl": 0.002277374267578125,
134
+ "learning_rate": 1e-06,
135
+ "loss": 0.0001,
136
+ "reward": 1.8125000596046448,
137
+ "reward_std": 0.18600423261523247,
138
+ "rewards/accuracy_reward": 0.8125000298023224,
139
+ "rewards/format_reward": 1.0,
140
+ "step": 10
141
+ },
142
+ {
143
+ "completion_length": 76.89583587646484,
144
+ "epoch": 0.050808314087759814,
145
+ "grad_norm": 3.9683003425598145,
146
+ "kl": 0.003360748291015625,
147
+ "learning_rate": 1e-06,
148
+ "loss": 0.0001,
149
+ "reward": 1.8541667461395264,
150
+ "reward_std": 0.1250000037252903,
151
+ "rewards/accuracy_reward": 0.8541666865348816,
152
+ "rewards/format_reward": 1.0,
153
+ "step": 11
154
+ },
155
+ {
156
+ "completion_length": 96.02083587646484,
157
+ "epoch": 0.05542725173210162,
158
+ "grad_norm": 10.515838623046875,
159
+ "kl": 0.01108551025390625,
160
+ "learning_rate": 1e-06,
161
+ "loss": 0.0004,
162
+ "reward": 1.7083333730697632,
163
+ "reward_std": 0.29811252653598785,
164
+ "rewards/accuracy_reward": 0.7083333730697632,
165
+ "rewards/format_reward": 1.0,
166
+ "step": 12
167
+ },
168
+ {
169
+ "completion_length": 75.54166793823242,
170
+ "epoch": 0.06004618937644342,
171
+ "grad_norm": 4.704844951629639,
172
+ "kl": 0.0057830810546875,
173
+ "learning_rate": 1e-06,
174
+ "loss": 0.0002,
175
+ "reward": 1.8958333730697632,
176
+ "reward_std": 0.1250000037252903,
177
+ "rewards/accuracy_reward": 0.8958333432674408,
178
+ "rewards/format_reward": 1.0,
179
+ "step": 13
180
+ },
181
+ {
182
+ "completion_length": 100.41667175292969,
183
+ "epoch": 0.06466512702078522,
184
+ "grad_norm": 7.272250175476074,
185
+ "kl": 0.005889892578125,
186
+ "learning_rate": 1e-06,
187
+ "loss": 0.0002,
188
+ "reward": 1.7916667461395264,
189
+ "reward_std": 0.25,
190
+ "rewards/accuracy_reward": 0.7916666865348816,
191
+ "rewards/format_reward": 1.0,
192
+ "step": 14
193
+ },
194
+ {
195
+ "completion_length": 104.33333587646484,
196
+ "epoch": 0.06928406466512702,
197
+ "grad_norm": 3.6556761264801025,
198
+ "kl": 0.0079803466796875,
199
+ "learning_rate": 1e-06,
200
+ "loss": 0.0003,
201
+ "reward": 1.9375000596046448,
202
+ "reward_std": 0.1250000037252903,
203
+ "rewards/accuracy_reward": 0.9375000298023224,
204
+ "rewards/format_reward": 1.0,
205
+ "step": 15
206
+ },
207
+ {
208
+ "completion_length": 94.54167175292969,
209
+ "epoch": 0.07390300230946882,
210
+ "grad_norm": 4.878111362457275,
211
+ "kl": 0.00466156005859375,
212
+ "learning_rate": 1e-06,
213
+ "loss": 0.0002,
214
+ "reward": 1.7291666865348816,
215
+ "reward_std": 0.17311252281069756,
216
+ "rewards/accuracy_reward": 0.7291666865348816,
217
+ "rewards/format_reward": 1.0,
218
+ "step": 16
219
+ },
220
+ {
221
+ "completion_length": 69.5625,
222
+ "epoch": 0.07852193995381063,
223
+ "grad_norm": 11.191930770874023,
224
+ "kl": 0.0043792724609375,
225
+ "learning_rate": 1e-06,
226
+ "loss": 0.0002,
227
+ "reward": 1.8125000596046448,
228
+ "reward_std": 0.2212250456213951,
229
+ "rewards/accuracy_reward": 0.8125000298023224,
230
+ "rewards/format_reward": 1.0,
231
+ "step": 17
232
+ },
233
+ {
234
+ "completion_length": 89.70833396911621,
235
+ "epoch": 0.08314087759815242,
236
+ "grad_norm": 3.1972787380218506,
237
+ "kl": 0.0032033920288085938,
238
+ "learning_rate": 1e-06,
239
+ "loss": 0.0001,
240
+ "reward": 1.8541666865348816,
241
+ "reward_std": 0.2212250456213951,
242
+ "rewards/accuracy_reward": 0.8541666865348816,
243
+ "rewards/format_reward": 1.0,
244
+ "step": 18
245
+ },
246
+ {
247
+ "completion_length": 81.89583587646484,
248
+ "epoch": 0.08775981524249422,
249
+ "grad_norm": 30.53135108947754,
250
+ "kl": 0.007843017578125,
251
+ "learning_rate": 1e-06,
252
+ "loss": 0.0003,
253
+ "reward": 1.9375000596046448,
254
+ "reward_std": 0.1250000037252903,
255
+ "rewards/accuracy_reward": 0.9375000298023224,
256
+ "rewards/format_reward": 1.0,
257
+ "step": 19
258
+ },
259
+ {
260
+ "completion_length": 115.5625057220459,
261
+ "epoch": 0.09237875288683603,
262
+ "grad_norm": 2.5540764331817627,
263
+ "kl": 0.0017900466918945312,
264
+ "learning_rate": 1e-06,
265
+ "loss": 0.0001,
266
+ "reward": 1.7916666865348816,
267
+ "reward_std": 0.2500000111758709,
268
+ "rewards/accuracy_reward": 0.7916666865348816,
269
+ "rewards/format_reward": 1.0,
270
+ "step": 20
271
+ },
272
+ {
273
+ "completion_length": 107.08333587646484,
274
+ "epoch": 0.09699769053117784,
275
+ "grad_norm": 1.230578899383545,
276
+ "kl": 0.0011348724365234375,
277
+ "learning_rate": 1e-06,
278
+ "loss": 0.0,
279
+ "reward": 1.8750000596046448,
280
+ "reward_std": 0.1666666716337204,
281
+ "rewards/accuracy_reward": 0.8750000298023224,
282
+ "rewards/format_reward": 1.0,
283
+ "step": 21
284
+ },
285
+ {
286
+ "completion_length": 46.52083396911621,
287
+ "epoch": 0.10161662817551963,
288
+ "grad_norm": 6.826656341552734,
289
+ "kl": 0.02459096908569336,
290
+ "learning_rate": 1e-06,
291
+ "loss": 0.001,
292
+ "reward": 1.8958333730697632,
293
+ "reward_std": 0.2083333432674408,
294
+ "rewards/accuracy_reward": 0.8958333432674408,
295
+ "rewards/format_reward": 1.0,
296
+ "step": 22
297
+ },
298
+ {
299
+ "completion_length": 79.6875,
300
+ "epoch": 0.10623556581986143,
301
+ "grad_norm": 6.442953109741211,
302
+ "kl": 0.004077911376953125,
303
+ "learning_rate": 1e-06,
304
+ "loss": 0.0002,
305
+ "reward": 1.8125000596046448,
306
+ "reward_std": 0.3045583665370941,
307
+ "rewards/accuracy_reward": 0.8333333730697632,
308
+ "rewards/format_reward": 0.9791666865348816,
309
+ "step": 23
310
+ },
311
+ {
312
+ "completion_length": 80.70833587646484,
313
+ "epoch": 0.11085450346420324,
314
+ "grad_norm": 9.262118339538574,
315
+ "kl": 0.0145263671875,
316
+ "learning_rate": 1e-06,
317
+ "loss": 0.0006,
318
+ "reward": 1.7708333730697632,
319
+ "reward_std": 0.25644584745168686,
320
+ "rewards/accuracy_reward": 0.7708333432674408,
321
+ "rewards/format_reward": 1.0,
322
+ "step": 24
323
+ },
324
+ {
325
+ "completion_length": 72.6875,
326
+ "epoch": 0.11547344110854503,
327
+ "grad_norm": 2.5963733196258545,
328
+ "kl": 0.019866943359375,
329
+ "learning_rate": 1e-06,
330
+ "loss": 0.0008,
331
+ "reward": 1.8750000596046448,
332
+ "reward_std": 0.0833333358168602,
333
+ "rewards/accuracy_reward": 0.8750000298023224,
334
+ "rewards/format_reward": 1.0,
335
+ "step": 25
336
+ },
337
+ {
338
+ "completion_length": 79.37500190734863,
339
+ "epoch": 0.12009237875288684,
340
+ "grad_norm": 8.336856842041016,
341
+ "kl": 0.02008056640625,
342
+ "learning_rate": 1e-06,
343
+ "loss": 0.0008,
344
+ "reward": 1.6875000596046448,
345
+ "reward_std": 0.25644585117697716,
346
+ "rewards/accuracy_reward": 0.6875000298023224,
347
+ "rewards/format_reward": 1.0,
348
+ "step": 26
349
+ },
350
+ {
351
+ "completion_length": 54.64583396911621,
352
+ "epoch": 0.12471131639722864,
353
+ "grad_norm": 7.557518482208252,
354
+ "kl": 0.01947021484375,
355
+ "learning_rate": 1e-06,
356
+ "loss": 0.0008,
357
+ "reward": 1.8125,
358
+ "reward_std": 0.2083333358168602,
359
+ "rewards/accuracy_reward": 0.8125,
360
+ "rewards/format_reward": 1.0,
361
+ "step": 27
362
+ },
363
+ {
364
+ "completion_length": 57.4375,
365
+ "epoch": 0.12933025404157045,
366
+ "grad_norm": 4.195393085479736,
367
+ "kl": 0.004122734069824219,
368
+ "learning_rate": 1e-06,
369
+ "loss": 0.0002,
370
+ "reward": 1.9583333730697632,
371
+ "reward_std": 0.0833333358168602,
372
+ "rewards/accuracy_reward": 0.9583333432674408,
373
+ "rewards/format_reward": 1.0,
374
+ "step": 28
375
+ },
376
+ {
377
+ "completion_length": 31.750000953674316,
378
+ "epoch": 0.13394919168591224,
379
+ "grad_norm": 8.026168823242188,
380
+ "kl": 0.0205078125,
381
+ "learning_rate": 1e-06,
382
+ "loss": 0.0008,
383
+ "reward": 1.8333333730697632,
384
+ "reward_std": 0.0833333358168602,
385
+ "rewards/accuracy_reward": 0.8333333432674408,
386
+ "rewards/format_reward": 1.0,
387
+ "step": 29
388
+ },
389
+ {
390
+ "completion_length": 63.0625,
391
+ "epoch": 0.13856812933025403,
392
+ "grad_norm": 9.261226654052734,
393
+ "kl": 0.01236724853515625,
394
+ "learning_rate": 1e-06,
395
+ "loss": 0.0005,
396
+ "reward": 1.875,
397
+ "reward_std": 0.048112522810697556,
398
+ "rewards/accuracy_reward": 0.875,
399
+ "rewards/format_reward": 1.0,
400
+ "step": 30
401
+ },
402
+ {
403
+ "completion_length": 81.93750190734863,
404
+ "epoch": 0.14318706697459585,
405
+ "grad_norm": 8.847457885742188,
406
+ "kl": 0.01412200927734375,
407
+ "learning_rate": 1e-06,
408
+ "loss": 0.0006,
409
+ "reward": 1.8750000596046448,
410
+ "reward_std": 0.179558377712965,
411
+ "rewards/accuracy_reward": 0.8958333730697632,
412
+ "rewards/format_reward": 0.9791666865348816,
413
+ "step": 31
414
+ },
415
+ {
416
+ "completion_length": 63.125,
417
+ "epoch": 0.14780600461893764,
418
+ "grad_norm": 9.623985290527344,
419
+ "kl": 0.0164337158203125,
420
+ "learning_rate": 1e-06,
421
+ "loss": 0.0007,
422
+ "reward": 1.8333333730697632,
423
+ "reward_std": 0.2628917098045349,
424
+ "rewards/accuracy_reward": 0.8333333432674408,
425
+ "rewards/format_reward": 1.0,
426
+ "step": 32
427
+ },
428
+ {
429
+ "completion_length": 65.35416793823242,
430
+ "epoch": 0.15242494226327943,
431
+ "grad_norm": 4.50661563873291,
432
+ "kl": 0.01575469970703125,
433
+ "learning_rate": 1e-06,
434
+ "loss": 0.0006,
435
+ "reward": 1.6875000596046448,
436
+ "reward_std": 0.2083333358168602,
437
+ "rewards/accuracy_reward": 0.6875000149011612,
438
+ "rewards/format_reward": 1.0,
439
+ "step": 33
440
+ },
441
+ {
442
+ "completion_length": 65.10416793823242,
443
+ "epoch": 0.15704387990762125,
444
+ "grad_norm": 8.077963829040527,
445
+ "kl": 0.06109619140625,
446
+ "learning_rate": 1e-06,
447
+ "loss": 0.0024,
448
+ "reward": 1.8750000596046448,
449
+ "reward_std": 0.2500000074505806,
450
+ "rewards/accuracy_reward": 0.8750000298023224,
451
+ "rewards/format_reward": 1.0,
452
+ "step": 34
453
+ },
454
+ {
455
+ "completion_length": 74.45833587646484,
456
+ "epoch": 0.16166281755196305,
457
+ "grad_norm": 9.616883277893066,
458
+ "kl": 0.00418853759765625,
459
+ "learning_rate": 1e-06,
460
+ "loss": 0.0002,
461
+ "reward": 1.9166666865348816,
462
+ "reward_std": 0.0833333358168602,
463
+ "rewards/accuracy_reward": 0.9166666865348816,
464
+ "rewards/format_reward": 1.0,
465
+ "step": 35
466
+ },
467
+ {
468
+ "completion_length": 56.16666793823242,
469
+ "epoch": 0.16628175519630484,
470
+ "grad_norm": 8.547237396240234,
471
+ "kl": 0.014141082763671875,
472
+ "learning_rate": 1e-06,
473
+ "loss": 0.0006,
474
+ "reward": 1.875,
475
+ "reward_std": 0.1666666716337204,
476
+ "rewards/accuracy_reward": 0.875,
477
+ "rewards/format_reward": 1.0,
478
+ "step": 36
479
+ },
480
+ {
481
+ "completion_length": 97.93750381469727,
482
+ "epoch": 0.17090069284064666,
483
+ "grad_norm": 0.9761996865272522,
484
+ "kl": 0.01053619384765625,
485
+ "learning_rate": 1e-06,
486
+ "loss": 0.0004,
487
+ "reward": 1.9166666865348816,
488
+ "reward_std": 0.1666666679084301,
489
+ "rewards/accuracy_reward": 0.9166666865348816,
490
+ "rewards/format_reward": 1.0,
491
+ "step": 37
492
+ },
493
+ {
494
+ "completion_length": 101.79166793823242,
495
+ "epoch": 0.17551963048498845,
496
+ "grad_norm": 5.636431694030762,
497
+ "kl": 0.0035552978515625,
498
+ "learning_rate": 1e-06,
499
+ "loss": 0.0001,
500
+ "reward": 1.8541667461395264,
501
+ "reward_std": 0.2212250456213951,
502
+ "rewards/accuracy_reward": 0.8541666865348816,
503
+ "rewards/format_reward": 1.0,
504
+ "step": 38
505
+ },
506
+ {
507
+ "completion_length": 50.29166793823242,
508
+ "epoch": 0.18013856812933027,
509
+ "grad_norm": 5.020724773406982,
510
+ "kl": 0.006103515625,
511
+ "learning_rate": 1e-06,
512
+ "loss": 0.0002,
513
+ "reward": 1.8750000596046448,
514
+ "reward_std": 0.179558377712965,
515
+ "rewards/accuracy_reward": 0.8750000298023224,
516
+ "rewards/format_reward": 1.0,
517
+ "step": 39
518
+ },
519
+ {
520
+ "completion_length": 68.02083587646484,
521
+ "epoch": 0.18475750577367206,
522
+ "grad_norm": 1.0703792572021484,
523
+ "kl": 0.0052642822265625,
524
+ "learning_rate": 1e-06,
525
+ "loss": 0.0002,
526
+ "reward": 1.9166667461395264,
527
+ "reward_std": 0.13144585862755775,
528
+ "rewards/accuracy_reward": 0.9166666865348816,
529
+ "rewards/format_reward": 1.0,
530
+ "step": 40
531
+ },
532
+ {
533
+ "completion_length": 75.22916984558105,
534
+ "epoch": 0.18937644341801385,
535
+ "grad_norm": 2.469010829925537,
536
+ "kl": 0.0019931793212890625,
537
+ "learning_rate": 1e-06,
538
+ "loss": 0.0001,
539
+ "reward": 1.8958333730697632,
540
+ "reward_std": 0.08977919071912766,
541
+ "rewards/accuracy_reward": 0.8958333432674408,
542
+ "rewards/format_reward": 1.0,
543
+ "step": 41
544
+ },
545
+ {
546
+ "completion_length": 75.1875,
547
+ "epoch": 0.19399538106235567,
548
+ "grad_norm": 4.2055230140686035,
549
+ "kl": 0.003253936767578125,
550
+ "learning_rate": 1e-06,
551
+ "loss": 0.0001,
552
+ "reward": 1.9375000596046448,
553
+ "reward_std": 0.08977919071912766,
554
+ "rewards/accuracy_reward": 0.9375000298023224,
555
+ "rewards/format_reward": 1.0,
556
+ "step": 42
557
+ },
558
+ {
559
+ "completion_length": 79.54166793823242,
560
+ "epoch": 0.19861431870669746,
561
+ "grad_norm": 7.644351482391357,
562
+ "kl": 0.0106658935546875,
563
+ "learning_rate": 1e-06,
564
+ "loss": 0.0004,
565
+ "reward": 1.875,
566
+ "reward_std": 0.25,
567
+ "rewards/accuracy_reward": 0.875,
568
+ "rewards/format_reward": 1.0,
569
+ "step": 43
570
+ },
571
+ {
572
+ "completion_length": 81.04166793823242,
573
+ "epoch": 0.20323325635103925,
574
+ "grad_norm": 0.7677356600761414,
575
+ "kl": 0.00148773193359375,
576
+ "learning_rate": 1e-06,
577
+ "loss": 0.0001,
578
+ "reward": 1.8750000596046448,
579
+ "reward_std": 0.21477919444441795,
580
+ "rewards/accuracy_reward": 0.8750000298023224,
581
+ "rewards/format_reward": 1.0,
582
+ "step": 44
583
+ },
584
+ {
585
+ "completion_length": 62.770835876464844,
586
+ "epoch": 0.20785219399538107,
587
+ "grad_norm": 4.3740692138671875,
588
+ "kl": 0.002414703369140625,
589
+ "learning_rate": 1e-06,
590
+ "loss": 0.0001,
591
+ "reward": 1.8750000596046448,
592
+ "reward_std": 0.1666666716337204,
593
+ "rewards/accuracy_reward": 0.8750000298023224,
594
+ "rewards/format_reward": 1.0,
595
+ "step": 45
596
+ },
597
+ {
598
+ "completion_length": 78.35416793823242,
599
+ "epoch": 0.21247113163972287,
600
+ "grad_norm": 4.38349723815918,
601
+ "kl": 0.005157470703125,
602
+ "learning_rate": 1e-06,
603
+ "loss": 0.0002,
604
+ "reward": 1.9375000596046448,
605
+ "reward_std": 0.1250000037252903,
606
+ "rewards/accuracy_reward": 0.9375000298023224,
607
+ "rewards/format_reward": 1.0,
608
+ "step": 46
609
+ },
610
+ {
611
+ "completion_length": 59.9375,
612
+ "epoch": 0.21709006928406466,
613
+ "grad_norm": 0.012896657921373844,
614
+ "kl": 0.001483917236328125,
615
+ "learning_rate": 1e-06,
616
+ "loss": 0.0001,
617
+ "reward": 2.0,
618
+ "reward_std": 0.0,
619
+ "rewards/accuracy_reward": 1.0,
620
+ "rewards/format_reward": 1.0,
621
+ "step": 47
622
+ },
623
+ {
624
+ "completion_length": 63.520835876464844,
625
+ "epoch": 0.22170900692840648,
626
+ "grad_norm": 1.7839175462722778,
627
+ "kl": 0.0340423583984375,
628
+ "learning_rate": 1e-06,
629
+ "loss": 0.0014,
630
+ "reward": 1.9791666865348816,
631
+ "reward_std": 0.0416666679084301,
632
+ "rewards/accuracy_reward": 0.9791666865348816,
633
+ "rewards/format_reward": 1.0,
634
+ "step": 48
635
+ },
636
+ {
637
+ "completion_length": 52.41666793823242,
638
+ "epoch": 0.22632794457274827,
639
+ "grad_norm": 15.218417167663574,
640
+ "kl": 0.0085296630859375,
641
+ "learning_rate": 1e-06,
642
+ "loss": 0.0003,
643
+ "reward": 1.875,
644
+ "reward_std": 0.0833333358168602,
645
+ "rewards/accuracy_reward": 0.875,
646
+ "rewards/format_reward": 1.0,
647
+ "step": 49
648
+ },
649
+ {
650
+ "completion_length": 42.12500286102295,
651
+ "epoch": 0.23094688221709006,
652
+ "grad_norm": 0.7014623284339905,
653
+ "kl": 0.001987457275390625,
654
+ "learning_rate": 1e-06,
655
+ "loss": 0.0001,
656
+ "reward": 1.9583333730697632,
657
+ "reward_std": 0.0833333358168602,
658
+ "rewards/accuracy_reward": 0.9583333432674408,
659
+ "rewards/format_reward": 1.0,
660
+ "step": 50
661
+ },
662
+ {
663
+ "completion_length": 48.666666984558105,
664
+ "epoch": 0.23556581986143188,
665
+ "grad_norm": 0.49798333644866943,
666
+ "kl": 0.0025177001953125,
667
+ "learning_rate": 1e-06,
668
+ "loss": 0.0001,
669
+ "reward": 1.9375,
670
+ "reward_std": 0.08977919071912766,
671
+ "rewards/accuracy_reward": 0.9375,
672
+ "rewards/format_reward": 1.0,
673
+ "step": 51
674
+ },
675
+ {
676
+ "completion_length": 67.47916793823242,
677
+ "epoch": 0.24018475750577367,
678
+ "grad_norm": 0.28330135345458984,
679
+ "kl": 0.00286102294921875,
680
+ "learning_rate": 1e-06,
681
+ "loss": 0.0001,
682
+ "reward": 1.9583333730697632,
683
+ "reward_std": 0.048112522810697556,
684
+ "rewards/accuracy_reward": 0.9583333432674408,
685
+ "rewards/format_reward": 1.0,
686
+ "step": 52
687
+ },
688
+ {
689
+ "completion_length": 58.020835876464844,
690
+ "epoch": 0.24480369515011546,
691
+ "grad_norm": 4.528405666351318,
692
+ "kl": 0.004150390625,
693
+ "learning_rate": 1e-06,
694
+ "loss": 0.0002,
695
+ "reward": 1.8958333730697632,
696
+ "reward_std": 0.0416666679084301,
697
+ "rewards/accuracy_reward": 0.8958333432674408,
698
+ "rewards/format_reward": 1.0,
699
+ "step": 53
700
+ },
701
+ {
702
+ "completion_length": 47.91666793823242,
703
+ "epoch": 0.24942263279445728,
704
+ "grad_norm": 0.3298056125640869,
705
+ "kl": 0.00391387939453125,
706
+ "learning_rate": 1e-06,
707
+ "loss": 0.0002,
708
+ "reward": 1.9791666865348816,
709
+ "reward_std": 0.0416666679084301,
710
+ "rewards/accuracy_reward": 0.9791666865348816,
711
+ "rewards/format_reward": 1.0,
712
+ "step": 54
713
+ },
714
+ {
715
+ "completion_length": 33.47916793823242,
716
+ "epoch": 0.2540415704387991,
717
+ "grad_norm": 0.016688158735632896,
718
+ "kl": 0.00406646728515625,
719
+ "learning_rate": 1e-06,
720
+ "loss": 0.0002,
721
+ "reward": 2.0,
722
+ "reward_std": 0.0,
723
+ "rewards/accuracy_reward": 1.0,
724
+ "rewards/format_reward": 1.0,
725
+ "step": 55
726
+ },
727
+ {
728
+ "completion_length": 55.979169845581055,
729
+ "epoch": 0.2586605080831409,
730
+ "grad_norm": 0.3446481227874756,
731
+ "kl": 0.004150390625,
732
+ "learning_rate": 1e-06,
733
+ "loss": 0.0002,
734
+ "reward": 1.9791666865348816,
735
+ "reward_std": 0.0416666679084301,
736
+ "rewards/accuracy_reward": 0.9791666865348816,
737
+ "rewards/format_reward": 1.0,
738
+ "step": 56
739
+ },
740
+ {
741
+ "completion_length": 31.604167938232422,
742
+ "epoch": 0.2632794457274827,
743
+ "grad_norm": 4.186825275421143,
744
+ "kl": 0.0166015625,
745
+ "learning_rate": 1e-06,
746
+ "loss": 0.0007,
747
+ "reward": 1.8750000596046448,
748
+ "reward_std": 0.0833333358168602,
749
+ "rewards/accuracy_reward": 0.8750000298023224,
750
+ "rewards/format_reward": 1.0,
751
+ "step": 57
752
+ },
753
+ {
754
+ "completion_length": 54.708335876464844,
755
+ "epoch": 0.2678983833718245,
756
+ "grad_norm": 0.45439592003822327,
757
+ "kl": 0.005859375,
758
+ "learning_rate": 1e-06,
759
+ "loss": 0.0002,
760
+ "reward": 1.8958333730697632,
761
+ "reward_std": 0.0416666679084301,
762
+ "rewards/accuracy_reward": 0.8958333730697632,
763
+ "rewards/format_reward": 1.0,
764
+ "step": 58
765
+ },
766
+ {
767
+ "completion_length": 44.14583396911621,
768
+ "epoch": 0.27251732101616627,
769
+ "grad_norm": 0.3110947012901306,
770
+ "kl": 0.01617431640625,
771
+ "learning_rate": 1e-06,
772
+ "loss": 0.0006,
773
+ "reward": 1.9583333730697632,
774
+ "reward_std": 0.048112522810697556,
775
+ "rewards/accuracy_reward": 0.9583333432674408,
776
+ "rewards/format_reward": 1.0,
777
+ "step": 59
778
+ },
779
+ {
780
+ "completion_length": 56.56250190734863,
781
+ "epoch": 0.27713625866050806,
782
+ "grad_norm": 4.412627220153809,
783
+ "kl": 0.00714111328125,
784
+ "learning_rate": 1e-06,
785
+ "loss": 0.0003,
786
+ "reward": 1.8750000596046448,
787
+ "reward_std": 0.1666666716337204,
788
+ "rewards/accuracy_reward": 0.8750000298023224,
789
+ "rewards/format_reward": 1.0,
790
+ "step": 60
791
+ },
792
+ {
793
+ "completion_length": 24.52083396911621,
794
+ "epoch": 0.2817551963048499,
795
+ "grad_norm": 12.474504470825195,
796
+ "kl": 0.02862548828125,
797
+ "learning_rate": 1e-06,
798
+ "loss": 0.0011,
799
+ "reward": 1.7500000596046448,
800
+ "reward_std": 0.0833333358168602,
801
+ "rewards/accuracy_reward": 0.7500000298023224,
802
+ "rewards/format_reward": 1.0,
803
+ "step": 61
804
+ },
805
+ {
806
+ "completion_length": 42.08333396911621,
807
+ "epoch": 0.2863741339491917,
808
+ "grad_norm": 6.133255481719971,
809
+ "kl": 0.02166748046875,
810
+ "learning_rate": 1e-06,
811
+ "loss": 0.0009,
812
+ "reward": 1.9375,
813
+ "reward_std": 0.0416666679084301,
814
+ "rewards/accuracy_reward": 0.9375,
815
+ "rewards/format_reward": 1.0,
816
+ "step": 62
817
+ },
818
+ {
819
+ "completion_length": 32.33333396911621,
820
+ "epoch": 0.2909930715935335,
821
+ "grad_norm": 18.329042434692383,
822
+ "kl": 0.01953125,
823
+ "learning_rate": 1e-06,
824
+ "loss": 0.0008,
825
+ "reward": 1.8958333730697632,
826
+ "reward_std": 0.1250000037252903,
827
+ "rewards/accuracy_reward": 0.8958333432674408,
828
+ "rewards/format_reward": 1.0,
829
+ "step": 63
830
+ },
831
+ {
832
+ "completion_length": 41.87500190734863,
833
+ "epoch": 0.2956120092378753,
834
+ "grad_norm": 0.8285086750984192,
835
+ "kl": 0.00627899169921875,
836
+ "learning_rate": 1e-06,
837
+ "loss": 0.0003,
838
+ "reward": 1.8333333730697632,
839
+ "reward_std": 0.1666666679084301,
840
+ "rewards/accuracy_reward": 0.8333333730697632,
841
+ "rewards/format_reward": 1.0,
842
+ "step": 64
843
+ },
844
+ {
845
+ "completion_length": 41.395835876464844,
846
+ "epoch": 0.3002309468822171,
847
+ "grad_norm": 12.128033638000488,
848
+ "kl": 0.01610565185546875,
849
+ "learning_rate": 1e-06,
850
+ "loss": 0.0006,
851
+ "reward": 1.9375,
852
+ "reward_std": 0.125,
853
+ "rewards/accuracy_reward": 0.9375,
854
+ "rewards/format_reward": 1.0,
855
+ "step": 65
856
+ },
857
+ {
858
+ "completion_length": 51.145835876464844,
859
+ "epoch": 0.30484988452655887,
860
+ "grad_norm": 0.4265430271625519,
861
+ "kl": 0.0070648193359375,
862
+ "learning_rate": 1e-06,
863
+ "loss": 0.0003,
864
+ "reward": 1.9583333730697632,
865
+ "reward_std": 0.0833333358168602,
866
+ "rewards/accuracy_reward": 0.9583333432674408,
867
+ "rewards/format_reward": 1.0,
868
+ "step": 66
869
+ },
870
+ {
871
+ "completion_length": 43.50000190734863,
872
+ "epoch": 0.3094688221709007,
873
+ "grad_norm": 5.070745468139648,
874
+ "kl": 0.0081787109375,
875
+ "learning_rate": 1e-06,
876
+ "loss": 0.0003,
877
+ "reward": 1.8958333730697632,
878
+ "reward_std": 0.0416666679084301,
879
+ "rewards/accuracy_reward": 0.8958333432674408,
880
+ "rewards/format_reward": 1.0,
881
+ "step": 67
882
+ },
883
+ {
884
+ "completion_length": 42.604166984558105,
885
+ "epoch": 0.3140877598152425,
886
+ "grad_norm": 8.272510528564453,
887
+ "kl": 0.01300048828125,
888
+ "learning_rate": 1e-06,
889
+ "loss": 0.0005,
890
+ "reward": 1.8333333730697632,
891
+ "reward_std": 0.1666666716337204,
892
+ "rewards/accuracy_reward": 0.8333333432674408,
893
+ "rewards/format_reward": 1.0,
894
+ "step": 68
895
+ },
896
+ {
897
+ "completion_length": 45.33333396911621,
898
+ "epoch": 0.3187066974595843,
899
+ "grad_norm": 0.4940468668937683,
900
+ "kl": 0.00400543212890625,
901
+ "learning_rate": 1e-06,
902
+ "loss": 0.0002,
903
+ "reward": 1.9583333730697632,
904
+ "reward_std": 0.0833333358168602,
905
+ "rewards/accuracy_reward": 0.9583333730697632,
906
+ "rewards/format_reward": 1.0,
907
+ "step": 69
908
+ },
909
+ {
910
+ "completion_length": 34.70833492279053,
911
+ "epoch": 0.3233256351039261,
912
+ "grad_norm": 26.54204750061035,
913
+ "kl": 0.02557373046875,
914
+ "learning_rate": 1e-06,
915
+ "loss": 0.001,
916
+ "reward": 1.8541666865348816,
917
+ "reward_std": 0.1250000037252903,
918
+ "rewards/accuracy_reward": 0.875,
919
+ "rewards/format_reward": 0.9791666865348816,
920
+ "step": 70
921
+ },
922
+ {
923
+ "completion_length": 18.750000953674316,
924
+ "epoch": 0.3279445727482679,
925
+ "grad_norm": 14.518416404724121,
926
+ "kl": 0.00531005859375,
927
+ "learning_rate": 1e-06,
928
+ "loss": 0.0002,
929
+ "reward": 1.9375000596046448,
930
+ "reward_std": 0.08977919071912766,
931
+ "rewards/accuracy_reward": 0.9375000298023224,
932
+ "rewards/format_reward": 1.0,
933
+ "step": 71
934
+ },
935
+ {
936
+ "completion_length": 28.541666984558105,
937
+ "epoch": 0.3325635103926097,
938
+ "grad_norm": 9.401073455810547,
939
+ "kl": 0.004241943359375,
940
+ "learning_rate": 1e-06,
941
+ "loss": 0.0002,
942
+ "reward": 1.9375,
943
+ "reward_std": 0.0416666679084301,
944
+ "rewards/accuracy_reward": 0.9375,
945
+ "rewards/format_reward": 1.0,
946
+ "step": 72
947
+ },
948
+ {
949
+ "completion_length": 33.47916793823242,
950
+ "epoch": 0.3371824480369515,
951
+ "grad_norm": 0.5438477396965027,
952
+ "kl": 0.00969696044921875,
953
+ "learning_rate": 1e-06,
954
+ "loss": 0.0004,
955
+ "reward": 1.9791666865348816,
956
+ "reward_std": 0.0416666679084301,
957
+ "rewards/accuracy_reward": 0.9791666865348816,
958
+ "rewards/format_reward": 1.0,
959
+ "step": 73
960
+ },
961
+ {
962
+ "completion_length": 28.625000953674316,
963
+ "epoch": 0.3418013856812933,
964
+ "grad_norm": 12.923347473144531,
965
+ "kl": 0.006134033203125,
966
+ "learning_rate": 1e-06,
967
+ "loss": 0.0002,
968
+ "reward": 1.8541666865348816,
969
+ "reward_std": 0.08977919071912766,
970
+ "rewards/accuracy_reward": 0.8541666865348816,
971
+ "rewards/format_reward": 1.0,
972
+ "step": 74
973
+ },
974
+ {
975
+ "completion_length": 38.875,
976
+ "epoch": 0.3464203233256351,
977
+ "grad_norm": 0.082447350025177,
978
+ "kl": 0.0061798095703125,
979
+ "learning_rate": 1e-06,
980
+ "loss": 0.0002,
981
+ "reward": 2.0,
982
+ "reward_std": 0.0,
983
+ "rewards/accuracy_reward": 1.0,
984
+ "rewards/format_reward": 1.0,
985
+ "step": 75
986
+ },
987
+ {
988
+ "completion_length": 32.291666984558105,
989
+ "epoch": 0.3510392609699769,
990
+ "grad_norm": 6.839282989501953,
991
+ "kl": 0.02349853515625,
992
+ "learning_rate": 1e-06,
993
+ "loss": 0.0009,
994
+ "reward": 1.8750000596046448,
995
+ "reward_std": 0.0833333358168602,
996
+ "rewards/accuracy_reward": 0.8750000298023224,
997
+ "rewards/format_reward": 1.0,
998
+ "step": 76
999
+ },
1000
+ {
1001
+ "completion_length": 29.812500953674316,
1002
+ "epoch": 0.3556581986143187,
1003
+ "grad_norm": 0.014031085185706615,
1004
+ "kl": 0.0072021484375,
1005
+ "learning_rate": 1e-06,
1006
+ "loss": 0.0003,
1007
+ "reward": 1.9166666865348816,
1008
+ "reward_std": 0.0,
1009
+ "rewards/accuracy_reward": 0.9166666865348816,
1010
+ "rewards/format_reward": 1.0,
1011
+ "step": 77
1012
+ },
1013
+ {
1014
+ "completion_length": 19.812500476837158,
1015
+ "epoch": 0.36027713625866054,
1016
+ "grad_norm": 0.3273457884788513,
1017
+ "kl": 0.0062103271484375,
1018
+ "learning_rate": 1e-06,
1019
+ "loss": 0.0002,
1020
+ "reward": 1.9791666865348816,
1021
+ "reward_std": 0.0416666679084301,
1022
+ "rewards/accuracy_reward": 0.9791666865348816,
1023
+ "rewards/format_reward": 1.0,
1024
+ "step": 78
1025
+ },
1026
+ {
1027
+ "completion_length": 25.354167461395264,
1028
+ "epoch": 0.3648960739030023,
1029
+ "grad_norm": 0.3809925615787506,
1030
+ "kl": 0.00506591796875,
1031
+ "learning_rate": 1e-06,
1032
+ "loss": 0.0002,
1033
+ "reward": 1.9791666865348816,
1034
+ "reward_std": 0.0416666679084301,
1035
+ "rewards/accuracy_reward": 0.9791666865348816,
1036
+ "rewards/format_reward": 1.0,
1037
+ "step": 79
1038
+ },
1039
+ {
1040
+ "completion_length": 18.791667461395264,
1041
+ "epoch": 0.3695150115473441,
1042
+ "grad_norm": 0.3350464105606079,
1043
+ "kl": 0.0046234130859375,
1044
+ "learning_rate": 1e-06,
1045
+ "loss": 0.0002,
1046
+ "reward": 1.9791666865348816,
1047
+ "reward_std": 0.0416666679084301,
1048
+ "rewards/accuracy_reward": 0.9791666865348816,
1049
+ "rewards/format_reward": 1.0,
1050
+ "step": 80
1051
+ },
1052
+ {
1053
+ "completion_length": 18.83333396911621,
1054
+ "epoch": 0.3741339491916859,
1055
+ "grad_norm": 0.16990438103675842,
1056
+ "kl": 0.01031494140625,
1057
+ "learning_rate": 1e-06,
1058
+ "loss": 0.0004,
1059
+ "reward": 1.9166666865348816,
1060
+ "reward_std": 0.0,
1061
+ "rewards/accuracy_reward": 0.9166666865348816,
1062
+ "rewards/format_reward": 1.0,
1063
+ "step": 81
1064
+ },
1065
+ {
1066
+ "completion_length": 26.895833492279053,
1067
+ "epoch": 0.3787528868360277,
1068
+ "grad_norm": 42.352142333984375,
1069
+ "kl": 0.0153961181640625,
1070
+ "learning_rate": 1e-06,
1071
+ "loss": 0.0006,
1072
+ "reward": 1.9166666865348816,
1073
+ "reward_std": 0.0833333358168602,
1074
+ "rewards/accuracy_reward": 0.9166666865348816,
1075
+ "rewards/format_reward": 1.0,
1076
+ "step": 82
1077
+ },
1078
+ {
1079
+ "completion_length": 22.791666984558105,
1080
+ "epoch": 0.3833718244803695,
1081
+ "grad_norm": 38.687313079833984,
1082
+ "kl": 0.023101806640625,
1083
+ "learning_rate": 1e-06,
1084
+ "loss": 0.0009,
1085
+ "reward": 1.7708333730697632,
1086
+ "reward_std": 0.17311252653598785,
1087
+ "rewards/accuracy_reward": 0.7708333432674408,
1088
+ "rewards/format_reward": 1.0,
1089
+ "step": 83
1090
+ },
1091
+ {
1092
+ "completion_length": 15.166666984558105,
1093
+ "epoch": 0.38799076212471134,
1094
+ "grad_norm": 11.10213851928711,
1095
+ "kl": 0.00698089599609375,
1096
+ "learning_rate": 1e-06,
1097
+ "loss": 0.0003,
1098
+ "reward": 1.9791666865348816,
1099
+ "reward_std": 0.0416666679084301,
1100
+ "rewards/accuracy_reward": 0.9791666865348816,
1101
+ "rewards/format_reward": 1.0,
1102
+ "step": 84
1103
+ },
1104
+ {
1105
+ "completion_length": 20.6875,
1106
+ "epoch": 0.39260969976905313,
1107
+ "grad_norm": 0.2621253430843353,
1108
+ "kl": 0.01202392578125,
1109
+ "learning_rate": 1e-06,
1110
+ "loss": 0.0005,
1111
+ "reward": 1.9791666865348816,
1112
+ "reward_std": 0.0416666679084301,
1113
+ "rewards/accuracy_reward": 0.9791666865348816,
1114
+ "rewards/format_reward": 1.0,
1115
+ "step": 85
1116
+ },
1117
+ {
1118
+ "completion_length": 33.02083396911621,
1119
+ "epoch": 0.3972286374133949,
1120
+ "grad_norm": 0.24522998929023743,
1121
+ "kl": 0.005706787109375,
1122
+ "learning_rate": 1e-06,
1123
+ "loss": 0.0002,
1124
+ "reward": 2.0,
1125
+ "reward_std": 0.0,
1126
+ "rewards/accuracy_reward": 1.0,
1127
+ "rewards/format_reward": 1.0,
1128
+ "step": 86
1129
+ },
1130
+ {
1131
+ "completion_length": 25.25,
1132
+ "epoch": 0.4018475750577367,
1133
+ "grad_norm": 0.32983526587486267,
1134
+ "kl": 0.0078277587890625,
1135
+ "learning_rate": 1e-06,
1136
+ "loss": 0.0003,
1137
+ "reward": 1.8958333730697632,
1138
+ "reward_std": 0.0416666679084301,
1139
+ "rewards/accuracy_reward": 0.8958333432674408,
1140
+ "rewards/format_reward": 1.0,
1141
+ "step": 87
1142
+ },
1143
+ {
1144
+ "completion_length": 29.416666984558105,
1145
+ "epoch": 0.4064665127020785,
1146
+ "grad_norm": 10.310896873474121,
1147
+ "kl": 0.022125244140625,
1148
+ "learning_rate": 1e-06,
1149
+ "loss": 0.0009,
1150
+ "reward": 1.9375,
1151
+ "reward_std": 0.0416666679084301,
1152
+ "rewards/accuracy_reward": 0.9375,
1153
+ "rewards/format_reward": 1.0,
1154
+ "step": 88
1155
+ },
1156
+ {
1157
+ "completion_length": 52.645835876464844,
1158
+ "epoch": 0.4110854503464203,
1159
+ "grad_norm": 0.3584893047809601,
1160
+ "kl": 0.02850341796875,
1161
+ "learning_rate": 1e-06,
1162
+ "loss": 0.0011,
1163
+ "reward": 1.8958333730697632,
1164
+ "reward_std": 0.0416666679084301,
1165
+ "rewards/accuracy_reward": 0.8958333432674408,
1166
+ "rewards/format_reward": 1.0,
1167
+ "step": 89
1168
+ },
1169
+ {
1170
+ "completion_length": 20.750000476837158,
1171
+ "epoch": 0.41570438799076215,
1172
+ "grad_norm": 1.2553701400756836,
1173
+ "kl": 0.0139312744140625,
1174
+ "learning_rate": 1e-06,
1175
+ "loss": 0.0006,
1176
+ "reward": 1.9791666865348816,
1177
+ "reward_std": 0.0416666679084301,
1178
+ "rewards/accuracy_reward": 0.9791666865348816,
1179
+ "rewards/format_reward": 1.0,
1180
+ "step": 90
1181
+ },
1182
+ {
1183
+ "completion_length": 39.9791693687439,
1184
+ "epoch": 0.42032332563510394,
1185
+ "grad_norm": 0.2528979182243347,
1186
+ "kl": 0.0077056884765625,
1187
+ "learning_rate": 1e-06,
1188
+ "loss": 0.0003,
1189
+ "reward": 1.9791666865348816,
1190
+ "reward_std": 0.0416666679084301,
1191
+ "rewards/accuracy_reward": 0.9791666865348816,
1192
+ "rewards/format_reward": 1.0,
1193
+ "step": 91
1194
+ },
1195
+ {
1196
+ "completion_length": 33.83333396911621,
1197
+ "epoch": 0.42494226327944573,
1198
+ "grad_norm": 0.5499228835105896,
1199
+ "kl": 0.011077880859375,
1200
+ "learning_rate": 1e-06,
1201
+ "loss": 0.0004,
1202
+ "reward": 1.9583333730697632,
1203
+ "reward_std": 0.0833333358168602,
1204
+ "rewards/accuracy_reward": 0.9583333730697632,
1205
+ "rewards/format_reward": 1.0,
1206
+ "step": 92
1207
+ },
1208
+ {
1209
+ "completion_length": 27.541666984558105,
1210
+ "epoch": 0.4295612009237875,
1211
+ "grad_norm": 0.012784978374838829,
1212
+ "kl": 0.0097503662109375,
1213
+ "learning_rate": 1e-06,
1214
+ "loss": 0.0004,
1215
+ "reward": 2.0,
1216
+ "reward_std": 0.0,
1217
+ "rewards/accuracy_reward": 1.0,
1218
+ "rewards/format_reward": 1.0,
1219
+ "step": 93
1220
+ },
1221
+ {
1222
+ "completion_length": 24.229167461395264,
1223
+ "epoch": 0.4341801385681293,
1224
+ "grad_norm": 13.934257507324219,
1225
+ "kl": 0.014495849609375,
1226
+ "learning_rate": 1e-06,
1227
+ "loss": 0.0006,
1228
+ "reward": 1.9583333730697632,
1229
+ "reward_std": 0.0833333358168602,
1230
+ "rewards/accuracy_reward": 0.9583333432674408,
1231
+ "rewards/format_reward": 1.0,
1232
+ "step": 94
1233
+ },
1234
+ {
1235
+ "completion_length": 33.33333492279053,
1236
+ "epoch": 0.4387990762124711,
1237
+ "grad_norm": 0.22108934819698334,
1238
+ "kl": 0.0045166015625,
1239
+ "learning_rate": 1e-06,
1240
+ "loss": 0.0002,
1241
+ "reward": 1.8958333730697632,
1242
+ "reward_std": 0.0416666679084301,
1243
+ "rewards/accuracy_reward": 0.8958333432674408,
1244
+ "rewards/format_reward": 1.0,
1245
+ "step": 95
1246
+ },
1247
+ {
1248
+ "completion_length": 20.875000953674316,
1249
+ "epoch": 0.44341801385681295,
1250
+ "grad_norm": 0.01029158290475607,
1251
+ "kl": 0.00502777099609375,
1252
+ "learning_rate": 1e-06,
1253
+ "loss": 0.0002,
1254
+ "reward": 2.0,
1255
+ "reward_std": 0.0,
1256
+ "rewards/accuracy_reward": 1.0,
1257
+ "rewards/format_reward": 1.0,
1258
+ "step": 96
1259
+ },
1260
+ {
1261
+ "completion_length": 31.583334922790527,
1262
+ "epoch": 0.44803695150115475,
1263
+ "grad_norm": 0.28462010622024536,
1264
+ "kl": 0.0048828125,
1265
+ "learning_rate": 1e-06,
1266
+ "loss": 0.0002,
1267
+ "reward": 1.9791666865348816,
1268
+ "reward_std": 0.0416666679084301,
1269
+ "rewards/accuracy_reward": 0.9791666865348816,
1270
+ "rewards/format_reward": 1.0,
1271
+ "step": 97
1272
+ },
1273
+ {
1274
+ "completion_length": 15.0,
1275
+ "epoch": 0.45265588914549654,
1276
+ "grad_norm": 0.047917552292346954,
1277
+ "kl": 0.0049591064453125,
1278
+ "learning_rate": 1e-06,
1279
+ "loss": 0.0002,
1280
+ "reward": 2.0,
1281
+ "reward_std": 0.0,
1282
+ "rewards/accuracy_reward": 1.0,
1283
+ "rewards/format_reward": 1.0,
1284
+ "step": 98
1285
+ },
1286
+ {
1287
+ "completion_length": 18.479166984558105,
1288
+ "epoch": 0.45727482678983833,
1289
+ "grad_norm": 22.465944290161133,
1290
+ "kl": 0.0059356689453125,
1291
+ "learning_rate": 1e-06,
1292
+ "loss": 0.0002,
1293
+ "reward": 1.9375,
1294
+ "reward_std": 0.08977919071912766,
1295
+ "rewards/accuracy_reward": 0.9375,
1296
+ "rewards/format_reward": 1.0,
1297
+ "step": 99
1298
+ },
1299
+ {
1300
+ "completion_length": 25.083333492279053,
1301
+ "epoch": 0.4618937644341801,
1302
+ "grad_norm": 0.008041063323616982,
1303
+ "kl": 0.003936767578125,
1304
+ "learning_rate": 1e-06,
1305
+ "loss": 0.0002,
1306
+ "reward": 2.0,
1307
+ "reward_std": 0.0,
1308
+ "rewards/accuracy_reward": 1.0,
1309
+ "rewards/format_reward": 1.0,
1310
+ "step": 100
1311
+ },
1312
+ {
1313
+ "completion_length": 37.833335876464844,
1314
+ "epoch": 0.4665127020785219,
1315
+ "grad_norm": 14.107870101928711,
1316
+ "kl": 0.007110595703125,
1317
+ "learning_rate": 1e-06,
1318
+ "loss": 0.0003,
1319
+ "reward": 1.7500000596046448,
1320
+ "reward_std": 0.1666666716337204,
1321
+ "rewards/accuracy_reward": 0.7500000298023224,
1322
+ "rewards/format_reward": 1.0,
1323
+ "step": 101
1324
+ },
1325
+ {
1326
+ "completion_length": 15.104166984558105,
1327
+ "epoch": 0.47113163972286376,
1328
+ "grad_norm": 15.883159637451172,
1329
+ "kl": 0.0056915283203125,
1330
+ "learning_rate": 1e-06,
1331
+ "loss": 0.0002,
1332
+ "reward": 1.9791666865348816,
1333
+ "reward_std": 0.0416666679084301,
1334
+ "rewards/accuracy_reward": 0.9791666865348816,
1335
+ "rewards/format_reward": 1.0,
1336
+ "step": 102
1337
+ },
1338
+ {
1339
+ "completion_length": 18.979167461395264,
1340
+ "epoch": 0.47575057736720555,
1341
+ "grad_norm": 11.000266075134277,
1342
+ "kl": 0.0062103271484375,
1343
+ "learning_rate": 1e-06,
1344
+ "loss": 0.0002,
1345
+ "reward": 1.9375,
1346
+ "reward_std": 0.0416666679084301,
1347
+ "rewards/accuracy_reward": 0.9375,
1348
+ "rewards/format_reward": 1.0,
1349
+ "step": 103
1350
+ },
1351
+ {
1352
+ "completion_length": 18.875000953674316,
1353
+ "epoch": 0.48036951501154734,
1354
+ "grad_norm": 0.06595253199338913,
1355
+ "kl": 0.0058135986328125,
1356
+ "learning_rate": 1e-06,
1357
+ "loss": 0.0002,
1358
+ "reward": 1.8333333730697632,
1359
+ "reward_std": 0.0,
1360
+ "rewards/accuracy_reward": 0.8333333730697632,
1361
+ "rewards/format_reward": 1.0,
1362
+ "step": 104
1363
+ },
1364
+ {
1365
+ "completion_length": 20.312500476837158,
1366
+ "epoch": 0.48498845265588914,
1367
+ "grad_norm": 7.73568868637085,
1368
+ "kl": 0.01102447509765625,
1369
+ "learning_rate": 1e-06,
1370
+ "loss": 0.0004,
1371
+ "reward": 1.9583333730697632,
1372
+ "reward_std": 0.048112522810697556,
1373
+ "rewards/accuracy_reward": 0.9583333432674408,
1374
+ "rewards/format_reward": 1.0,
1375
+ "step": 105
1376
+ },
1377
+ {
1378
+ "completion_length": 33.91666793823242,
1379
+ "epoch": 0.4896073903002309,
1380
+ "grad_norm": 1.0296730995178223,
1381
+ "kl": 0.0074462890625,
1382
+ "learning_rate": 1e-06,
1383
+ "loss": 0.0003,
1384
+ "reward": 1.9375,
1385
+ "reward_std": 0.0416666679084301,
1386
+ "rewards/accuracy_reward": 0.9375,
1387
+ "rewards/format_reward": 1.0,
1388
+ "step": 106
1389
+ },
1390
+ {
1391
+ "completion_length": 20.000000476837158,
1392
+ "epoch": 0.4942263279445728,
1393
+ "grad_norm": 0.011166680604219437,
1394
+ "kl": 0.0047149658203125,
1395
+ "learning_rate": 1e-06,
1396
+ "loss": 0.0002,
1397
+ "reward": 2.0,
1398
+ "reward_std": 0.0,
1399
+ "rewards/accuracy_reward": 1.0,
1400
+ "rewards/format_reward": 1.0,
1401
+ "step": 107
1402
+ },
1403
+ {
1404
+ "completion_length": 20.4375,
1405
+ "epoch": 0.49884526558891457,
1406
+ "grad_norm": 0.09496494382619858,
1407
+ "kl": 0.00506591796875,
1408
+ "learning_rate": 1e-06,
1409
+ "loss": 0.0002,
1410
+ "reward": 2.0,
1411
+ "reward_std": 0.0,
1412
+ "rewards/accuracy_reward": 1.0,
1413
+ "rewards/format_reward": 1.0,
1414
+ "step": 108
1415
+ },
1416
+ {
1417
+ "completion_length": 19.791666984558105,
1418
+ "epoch": 0.5034642032332564,
1419
+ "grad_norm": 0.013560502789914608,
1420
+ "kl": 0.00475311279296875,
1421
+ "learning_rate": 1e-06,
1422
+ "loss": 0.0002,
1423
+ "reward": 2.0,
1424
+ "reward_std": 0.0,
1425
+ "rewards/accuracy_reward": 1.0,
1426
+ "rewards/format_reward": 1.0,
1427
+ "step": 109
1428
+ },
1429
+ {
1430
+ "completion_length": 15.0,
1431
+ "epoch": 0.5080831408775982,
1432
+ "grad_norm": 0.056342754513025284,
1433
+ "kl": 0.00507354736328125,
1434
+ "learning_rate": 1e-06,
1435
+ "loss": 0.0002,
1436
+ "reward": 1.9166666865348816,
1437
+ "reward_std": 0.0,
1438
+ "rewards/accuracy_reward": 0.9166666865348816,
1439
+ "rewards/format_reward": 1.0,
1440
+ "step": 110
1441
+ },
1442
+ {
1443
+ "completion_length": 31.125001907348633,
1444
+ "epoch": 0.5127020785219399,
1445
+ "grad_norm": 12.659052848815918,
1446
+ "kl": 0.0098724365234375,
1447
+ "learning_rate": 1e-06,
1448
+ "loss": 0.0004,
1449
+ "reward": 1.9166666865348816,
1450
+ "reward_std": 0.0833333358168602,
1451
+ "rewards/accuracy_reward": 0.9166666865348816,
1452
+ "rewards/format_reward": 1.0,
1453
+ "step": 111
1454
+ },
1455
+ {
1456
+ "completion_length": 21.0,
1457
+ "epoch": 0.5173210161662818,
1458
+ "grad_norm": 2.68220591545105,
1459
+ "kl": 0.01091766357421875,
1460
+ "learning_rate": 1e-06,
1461
+ "loss": 0.0004,
1462
+ "reward": 1.9166666865348816,
1463
+ "reward_std": 0.0,
1464
+ "rewards/accuracy_reward": 0.9166666865348816,
1465
+ "rewards/format_reward": 1.0,
1466
+ "step": 112
1467
+ },
1468
+ {
1469
+ "completion_length": 29.041666984558105,
1470
+ "epoch": 0.5219399538106235,
1471
+ "grad_norm": 38.36140823364258,
1472
+ "kl": 0.0079193115234375,
1473
+ "learning_rate": 1e-06,
1474
+ "loss": 0.0003,
1475
+ "reward": 1.9375000596046448,
1476
+ "reward_std": 0.08977919071912766,
1477
+ "rewards/accuracy_reward": 0.9375000298023224,
1478
+ "rewards/format_reward": 1.0,
1479
+ "step": 113
1480
+ },
1481
+ {
1482
+ "completion_length": 26.375000953674316,
1483
+ "epoch": 0.5265588914549654,
1484
+ "grad_norm": 4.6412272453308105,
1485
+ "kl": 0.024200439453125,
1486
+ "learning_rate": 1e-06,
1487
+ "loss": 0.001,
1488
+ "reward": 1.7708333730697632,
1489
+ "reward_std": 0.08977919071912766,
1490
+ "rewards/accuracy_reward": 0.7708333432674408,
1491
+ "rewards/format_reward": 1.0,
1492
+ "step": 114
1493
+ },
1494
+ {
1495
+ "completion_length": 24.70833396911621,
1496
+ "epoch": 0.5311778290993071,
1497
+ "grad_norm": 0.01729178987443447,
1498
+ "kl": 0.014862060546875,
1499
+ "learning_rate": 1e-06,
1500
+ "loss": 0.0006,
1501
+ "reward": 2.0,
1502
+ "reward_std": 0.0,
1503
+ "rewards/accuracy_reward": 1.0,
1504
+ "rewards/format_reward": 1.0,
1505
+ "step": 115
1506
+ },
1507
+ {
1508
+ "completion_length": 22.875,
1509
+ "epoch": 0.535796766743649,
1510
+ "grad_norm": 1.4758672714233398,
1511
+ "kl": 0.011444091796875,
1512
+ "learning_rate": 1e-06,
1513
+ "loss": 0.0005,
1514
+ "reward": 1.9166666865348816,
1515
+ "reward_std": 0.0,
1516
+ "rewards/accuracy_reward": 0.9166666865348816,
1517
+ "rewards/format_reward": 1.0,
1518
+ "step": 116
1519
+ },
1520
+ {
1521
+ "completion_length": 45.125,
1522
+ "epoch": 0.5404157043879908,
1523
+ "grad_norm": 0.3602856695652008,
1524
+ "kl": 0.01806640625,
1525
+ "learning_rate": 1e-06,
1526
+ "loss": 0.0007,
1527
+ "reward": 1.9791666865348816,
1528
+ "reward_std": 0.0416666679084301,
1529
+ "rewards/accuracy_reward": 0.9791666865348816,
1530
+ "rewards/format_reward": 1.0,
1531
+ "step": 117
1532
+ },
1533
+ {
1534
+ "completion_length": 32.33333396911621,
1535
+ "epoch": 0.5450346420323325,
1536
+ "grad_norm": 11.787064552307129,
1537
+ "kl": 0.0201416015625,
1538
+ "learning_rate": 1e-06,
1539
+ "loss": 0.0008,
1540
+ "reward": 1.9791666865348816,
1541
+ "reward_std": 0.0416666679084301,
1542
+ "rewards/accuracy_reward": 0.9791666865348816,
1543
+ "rewards/format_reward": 1.0,
1544
+ "step": 118
1545
+ },
1546
+ {
1547
+ "completion_length": 33.10416793823242,
1548
+ "epoch": 0.5496535796766744,
1549
+ "grad_norm": 16.938676834106445,
1550
+ "kl": 0.0124664306640625,
1551
+ "learning_rate": 1e-06,
1552
+ "loss": 0.0005,
1553
+ "reward": 1.9375,
1554
+ "reward_std": 0.0416666679084301,
1555
+ "rewards/accuracy_reward": 0.9375,
1556
+ "rewards/format_reward": 1.0,
1557
+ "step": 119
1558
+ },
1559
+ {
1560
+ "completion_length": 21.854167461395264,
1561
+ "epoch": 0.5542725173210161,
1562
+ "grad_norm": 5.987547874450684,
1563
+ "kl": 0.017303466796875,
1564
+ "learning_rate": 1e-06,
1565
+ "loss": 0.0007,
1566
+ "reward": 1.8958333730697632,
1567
+ "reward_std": 0.0416666679084301,
1568
+ "rewards/accuracy_reward": 0.8958333730697632,
1569
+ "rewards/format_reward": 1.0,
1570
+ "step": 120
1571
+ },
1572
+ {
1573
+ "completion_length": 24.729167938232422,
1574
+ "epoch": 0.558891454965358,
1575
+ "grad_norm": 0.01790229044854641,
1576
+ "kl": 0.009857177734375,
1577
+ "learning_rate": 1e-06,
1578
+ "loss": 0.0004,
1579
+ "reward": 1.9166666865348816,
1580
+ "reward_std": 0.0,
1581
+ "rewards/accuracy_reward": 0.9166666865348816,
1582
+ "rewards/format_reward": 1.0,
1583
+ "step": 121
1584
+ },
1585
+ {
1586
+ "completion_length": 15.333333492279053,
1587
+ "epoch": 0.5635103926096998,
1588
+ "grad_norm": 0.004795704036951065,
1589
+ "kl": 0.0053558349609375,
1590
+ "learning_rate": 1e-06,
1591
+ "loss": 0.0002,
1592
+ "reward": 2.0,
1593
+ "reward_std": 0.0,
1594
+ "rewards/accuracy_reward": 1.0,
1595
+ "rewards/format_reward": 1.0,
1596
+ "step": 122
1597
+ },
1598
+ {
1599
+ "completion_length": 19.25,
1600
+ "epoch": 0.5681293302540416,
1601
+ "grad_norm": 0.021862277761101723,
1602
+ "kl": 0.0130615234375,
1603
+ "learning_rate": 1e-06,
1604
+ "loss": 0.0005,
1605
+ "reward": 2.0,
1606
+ "reward_std": 0.0,
1607
+ "rewards/accuracy_reward": 1.0,
1608
+ "rewards/format_reward": 1.0,
1609
+ "step": 123
1610
+ },
1611
+ {
1612
+ "completion_length": 18.20833396911621,
1613
+ "epoch": 0.5727482678983834,
1614
+ "grad_norm": 0.01567975804209709,
1615
+ "kl": 0.0094451904296875,
1616
+ "learning_rate": 1e-06,
1617
+ "loss": 0.0004,
1618
+ "reward": 2.0,
1619
+ "reward_std": 0.0,
1620
+ "rewards/accuracy_reward": 1.0,
1621
+ "rewards/format_reward": 1.0,
1622
+ "step": 124
1623
+ },
1624
+ {
1625
+ "completion_length": 21.479166984558105,
1626
+ "epoch": 0.5773672055427251,
1627
+ "grad_norm": 8.731499671936035,
1628
+ "kl": 0.0161590576171875,
1629
+ "learning_rate": 1e-06,
1630
+ "loss": 0.0006,
1631
+ "reward": 1.9791666865348816,
1632
+ "reward_std": 0.0416666679084301,
1633
+ "rewards/accuracy_reward": 0.9791666865348816,
1634
+ "rewards/format_reward": 1.0,
1635
+ "step": 125
1636
+ },
1637
+ {
1638
+ "completion_length": 15.083333492279053,
1639
+ "epoch": 0.581986143187067,
1640
+ "grad_norm": 25.284887313842773,
1641
+ "kl": 0.006011962890625,
1642
+ "learning_rate": 1e-06,
1643
+ "loss": 0.0002,
1644
+ "reward": 1.9583333730697632,
1645
+ "reward_std": 0.048112522810697556,
1646
+ "rewards/accuracy_reward": 0.9583333432674408,
1647
+ "rewards/format_reward": 1.0,
1648
+ "step": 126
1649
+ },
1650
+ {
1651
+ "completion_length": 24.312500953674316,
1652
+ "epoch": 0.5866050808314087,
1653
+ "grad_norm": 0.015062646940350533,
1654
+ "kl": 0.0047454833984375,
1655
+ "learning_rate": 1e-06,
1656
+ "loss": 0.0002,
1657
+ "reward": 2.0,
1658
+ "reward_std": 0.0,
1659
+ "rewards/accuracy_reward": 1.0,
1660
+ "rewards/format_reward": 1.0,
1661
+ "step": 127
1662
+ },
1663
+ {
1664
+ "completion_length": 37.66666793823242,
1665
+ "epoch": 0.5912240184757506,
1666
+ "grad_norm": 0.048227909952402115,
1667
+ "kl": 0.0377197265625,
1668
+ "learning_rate": 1e-06,
1669
+ "loss": 0.0015,
1670
+ "reward": 1.9166666865348816,
1671
+ "reward_std": 0.0,
1672
+ "rewards/accuracy_reward": 0.9166666865348816,
1673
+ "rewards/format_reward": 1.0,
1674
+ "step": 128
1675
+ },
1676
+ {
1677
+ "completion_length": 19.291667461395264,
1678
+ "epoch": 0.5958429561200924,
1679
+ "grad_norm": 8.027989387512207,
1680
+ "kl": 0.0084075927734375,
1681
+ "learning_rate": 1e-06,
1682
+ "loss": 0.0003,
1683
+ "reward": 1.8750000596046448,
1684
+ "reward_std": 0.048112522810697556,
1685
+ "rewards/accuracy_reward": 0.8750000298023224,
1686
+ "rewards/format_reward": 1.0,
1687
+ "step": 129
1688
+ },
1689
+ {
1690
+ "completion_length": 15.083333492279053,
1691
+ "epoch": 0.6004618937644342,
1692
+ "grad_norm": 0.0062526981346309185,
1693
+ "kl": 0.00661468505859375,
1694
+ "learning_rate": 1e-06,
1695
+ "loss": 0.0003,
1696
+ "reward": 2.0,
1697
+ "reward_std": 0.0,
1698
+ "rewards/accuracy_reward": 1.0,
1699
+ "rewards/format_reward": 1.0,
1700
+ "step": 130
1701
+ },
1702
+ {
1703
+ "completion_length": 22.375000476837158,
1704
+ "epoch": 0.605080831408776,
1705
+ "grad_norm": 0.026607630774378777,
1706
+ "kl": 0.0137176513671875,
1707
+ "learning_rate": 1e-06,
1708
+ "loss": 0.0005,
1709
+ "reward": 2.0,
1710
+ "reward_std": 0.0,
1711
+ "rewards/accuracy_reward": 1.0,
1712
+ "rewards/format_reward": 1.0,
1713
+ "step": 131
1714
+ },
1715
+ {
1716
+ "completion_length": 20.95833396911621,
1717
+ "epoch": 0.6096997690531177,
1718
+ "grad_norm": 0.00871030893176794,
1719
+ "kl": 0.0045928955078125,
1720
+ "learning_rate": 1e-06,
1721
+ "loss": 0.0002,
1722
+ "reward": 2.0,
1723
+ "reward_std": 0.0,
1724
+ "rewards/accuracy_reward": 1.0,
1725
+ "rewards/format_reward": 1.0,
1726
+ "step": 132
1727
+ },
1728
+ {
1729
+ "completion_length": 19.291666984558105,
1730
+ "epoch": 0.6143187066974596,
1731
+ "grad_norm": 0.0312328077852726,
1732
+ "kl": 0.0061187744140625,
1733
+ "learning_rate": 1e-06,
1734
+ "loss": 0.0002,
1735
+ "reward": 1.9166666865348816,
1736
+ "reward_std": 0.0,
1737
+ "rewards/accuracy_reward": 0.9166666865348816,
1738
+ "rewards/format_reward": 1.0,
1739
+ "step": 133
1740
+ },
1741
+ {
1742
+ "completion_length": 35.750000953674316,
1743
+ "epoch": 0.6189376443418014,
1744
+ "grad_norm": 0.07837596535682678,
1745
+ "kl": 0.01300048828125,
1746
+ "learning_rate": 1e-06,
1747
+ "loss": 0.0005,
1748
+ "reward": 2.0,
1749
+ "reward_std": 0.0,
1750
+ "rewards/accuracy_reward": 1.0,
1751
+ "rewards/format_reward": 1.0,
1752
+ "step": 134
1753
+ },
1754
+ {
1755
+ "completion_length": 15.250000476837158,
1756
+ "epoch": 0.6235565819861432,
1757
+ "grad_norm": 0.02661307342350483,
1758
+ "kl": 0.0044708251953125,
1759
+ "learning_rate": 1e-06,
1760
+ "loss": 0.0002,
1761
+ "reward": 1.8333333730697632,
1762
+ "reward_std": 0.0,
1763
+ "rewards/accuracy_reward": 0.8333333730697632,
1764
+ "rewards/format_reward": 1.0,
1765
+ "step": 135
1766
+ },
1767
+ {
1768
+ "completion_length": 47.916669845581055,
1769
+ "epoch": 0.628175519630485,
1770
+ "grad_norm": 0.025101438164711,
1771
+ "kl": 0.0069580078125,
1772
+ "learning_rate": 1e-06,
1773
+ "loss": 0.0003,
1774
+ "reward": 1.9166666865348816,
1775
+ "reward_std": 0.0,
1776
+ "rewards/accuracy_reward": 0.9166666865348816,
1777
+ "rewards/format_reward": 1.0,
1778
+ "step": 136
1779
+ },
1780
+ {
1781
+ "completion_length": 26.479167461395264,
1782
+ "epoch": 0.6327944572748267,
1783
+ "grad_norm": 22.01622200012207,
1784
+ "kl": 0.02655029296875,
1785
+ "learning_rate": 1e-06,
1786
+ "loss": 0.0011,
1787
+ "reward": 1.9791666865348816,
1788
+ "reward_std": 0.0416666679084301,
1789
+ "rewards/accuracy_reward": 0.9791666865348816,
1790
+ "rewards/format_reward": 1.0,
1791
+ "step": 137
1792
+ },
1793
+ {
1794
+ "completion_length": 31.95833396911621,
1795
+ "epoch": 0.6374133949191686,
1796
+ "grad_norm": 26.566116333007812,
1797
+ "kl": 0.012664794921875,
1798
+ "learning_rate": 1e-06,
1799
+ "loss": 0.0005,
1800
+ "reward": 1.8541666865348816,
1801
+ "reward_std": 0.08977919071912766,
1802
+ "rewards/accuracy_reward": 0.8541666865348816,
1803
+ "rewards/format_reward": 1.0,
1804
+ "step": 138
1805
+ },
1806
+ {
1807
+ "completion_length": 24.416667461395264,
1808
+ "epoch": 0.6420323325635104,
1809
+ "grad_norm": 0.47595617175102234,
1810
+ "kl": 0.006439208984375,
1811
+ "learning_rate": 1e-06,
1812
+ "loss": 0.0003,
1813
+ "reward": 1.9791666865348816,
1814
+ "reward_std": 0.0416666679084301,
1815
+ "rewards/accuracy_reward": 0.9791666865348816,
1816
+ "rewards/format_reward": 1.0,
1817
+ "step": 139
1818
+ },
1819
+ {
1820
+ "completion_length": 20.437500476837158,
1821
+ "epoch": 0.6466512702078522,
1822
+ "grad_norm": 0.010236713103950024,
1823
+ "kl": 0.005096435546875,
1824
+ "learning_rate": 1e-06,
1825
+ "loss": 0.0002,
1826
+ "reward": 1.9166666865348816,
1827
+ "reward_std": 0.0,
1828
+ "rewards/accuracy_reward": 0.9166666865348816,
1829
+ "rewards/format_reward": 1.0,
1830
+ "step": 140
1831
+ },
1832
+ {
1833
+ "completion_length": 35.16666793823242,
1834
+ "epoch": 0.651270207852194,
1835
+ "grad_norm": 0.3795807659626007,
1836
+ "kl": 0.0071563720703125,
1837
+ "learning_rate": 1e-06,
1838
+ "loss": 0.0003,
1839
+ "reward": 1.9791666865348816,
1840
+ "reward_std": 0.0416666679084301,
1841
+ "rewards/accuracy_reward": 0.9791666865348816,
1842
+ "rewards/format_reward": 1.0,
1843
+ "step": 141
1844
+ },
1845
+ {
1846
+ "completion_length": 27.229166984558105,
1847
+ "epoch": 0.6558891454965358,
1848
+ "grad_norm": 0.025517858564853668,
1849
+ "kl": 0.0072021484375,
1850
+ "learning_rate": 1e-06,
1851
+ "loss": 0.0003,
1852
+ "reward": 2.0,
1853
+ "reward_std": 0.0,
1854
+ "rewards/accuracy_reward": 1.0,
1855
+ "rewards/format_reward": 1.0,
1856
+ "step": 142
1857
+ },
1858
+ {
1859
+ "completion_length": 15.0,
1860
+ "epoch": 0.6605080831408776,
1861
+ "grad_norm": 7.9069013595581055,
1862
+ "kl": 0.00848388671875,
1863
+ "learning_rate": 1e-06,
1864
+ "loss": 0.0003,
1865
+ "reward": 1.9791666865348816,
1866
+ "reward_std": 0.0416666679084301,
1867
+ "rewards/accuracy_reward": 0.9791666865348816,
1868
+ "rewards/format_reward": 1.0,
1869
+ "step": 143
1870
+ },
1871
+ {
1872
+ "completion_length": 17.83333396911621,
1873
+ "epoch": 0.6651270207852193,
1874
+ "grad_norm": 0.014802374877035618,
1875
+ "kl": 0.00531005859375,
1876
+ "learning_rate": 1e-06,
1877
+ "loss": 0.0002,
1878
+ "reward": 1.8333333730697632,
1879
+ "reward_std": 0.0,
1880
+ "rewards/accuracy_reward": 0.8333333730697632,
1881
+ "rewards/format_reward": 1.0,
1882
+ "step": 144
1883
+ },
1884
+ {
1885
+ "completion_length": 23.291667461395264,
1886
+ "epoch": 0.6697459584295612,
1887
+ "grad_norm": 8.15732479095459,
1888
+ "kl": 0.005279541015625,
1889
+ "learning_rate": 1e-06,
1890
+ "loss": 0.0002,
1891
+ "reward": 1.9583333730697632,
1892
+ "reward_std": 0.048112522810697556,
1893
+ "rewards/accuracy_reward": 0.9583333432674408,
1894
+ "rewards/format_reward": 1.0,
1895
+ "step": 145
1896
+ },
1897
+ {
1898
+ "completion_length": 21.791667461395264,
1899
+ "epoch": 0.674364896073903,
1900
+ "grad_norm": 0.008288037963211536,
1901
+ "kl": 0.00370025634765625,
1902
+ "learning_rate": 1e-06,
1903
+ "loss": 0.0001,
1904
+ "reward": 2.0,
1905
+ "reward_std": 0.0,
1906
+ "rewards/accuracy_reward": 1.0,
1907
+ "rewards/format_reward": 1.0,
1908
+ "step": 146
1909
+ },
1910
+ {
1911
+ "completion_length": 34.47916793823242,
1912
+ "epoch": 0.6789838337182448,
1913
+ "grad_norm": 0.3849964439868927,
1914
+ "kl": 0.011077880859375,
1915
+ "learning_rate": 1e-06,
1916
+ "loss": 0.0004,
1917
+ "reward": 1.8125000596046448,
1918
+ "reward_std": 0.0416666679084301,
1919
+ "rewards/accuracy_reward": 0.8125000298023224,
1920
+ "rewards/format_reward": 1.0,
1921
+ "step": 147
1922
+ },
1923
+ {
1924
+ "completion_length": 28.166667461395264,
1925
+ "epoch": 0.6836027713625866,
1926
+ "grad_norm": 0.012812400236725807,
1927
+ "kl": 0.00555419921875,
1928
+ "learning_rate": 1e-06,
1929
+ "loss": 0.0002,
1930
+ "reward": 2.0,
1931
+ "reward_std": 0.0,
1932
+ "rewards/accuracy_reward": 1.0,
1933
+ "rewards/format_reward": 1.0,
1934
+ "step": 148
1935
+ },
1936
+ {
1937
+ "completion_length": 45.85416793823242,
1938
+ "epoch": 0.6882217090069284,
1939
+ "grad_norm": 0.016709528863430023,
1940
+ "kl": 0.009246826171875,
1941
+ "learning_rate": 1e-06,
1942
+ "loss": 0.0004,
1943
+ "reward": 2.0,
1944
+ "reward_std": 0.0,
1945
+ "rewards/accuracy_reward": 1.0,
1946
+ "rewards/format_reward": 1.0,
1947
+ "step": 149
1948
+ },
1949
+ {
1950
+ "completion_length": 51.25000286102295,
1951
+ "epoch": 0.6928406466512702,
1952
+ "grad_norm": 0.6184998154640198,
1953
+ "kl": 0.012664794921875,
1954
+ "learning_rate": 1e-06,
1955
+ "loss": 0.0005,
1956
+ "reward": 1.9583333730697632,
1957
+ "reward_std": 0.0833333358168602,
1958
+ "rewards/accuracy_reward": 0.9583333730697632,
1959
+ "rewards/format_reward": 1.0,
1960
+ "step": 150
1961
+ }
1962
+ ],
1963
+ "logging_steps": 1.0,
1964
+ "max_steps": 216,
1965
+ "num_input_tokens_seen": 0,
1966
+ "num_train_epochs": 1,
1967
+ "save_steps": 50,
1968
+ "stateful_callbacks": {
1969
+ "TrainerControl": {
1970
+ "args": {
1971
+ "should_epoch_stop": false,
1972
+ "should_evaluate": false,
1973
+ "should_log": false,
1974
+ "should_save": true,
1975
+ "should_training_stop": false
1976
+ },
1977
+ "attributes": {}
1978
+ }
1979
+ },
1980
+ "total_flos": 0.0,
1981
+ "train_batch_size": 1,
1982
+ "trial_name": null,
1983
+ "trial_params": null
1984
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8a7a2f054527796e0ba9c47954b767a4f67afee51a35f76dc61f19f2a4cd1111
3
+ size 7352
vocab.json ADDED
The diff for this file is too large to render. See raw diff