--- library_name: transformers license: cc-by-nc-4.0 base_model: kinleyrabgay/nllb-200-600M-dzo-eng tags: - generated_from_trainer metrics: - bleu model-index: - name: nllb-200-600M-dzo-eng results: [] --- # nllb-200-600M-dzo-eng This model is a fine-tuned version of [facebook/nllb-200-distilled-600M](https://huggingface.co/facebook/nllb-200-distilled-600M) on [kinleyrabgay/dz_to_en](https://huggingface.co/datasets/kinleyrabgay/dz_to_en) dataset. It achieves the following results on the evaluation set: - Loss: 0.0774 - Bleu: 59.5127 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0765 | 1.0 | 1250 | 0.0746 | 58.0373 | | 0.0576 | 2.0 | 2500 | 0.0728 | 58.5746 | | 0.0465 | 3.0 | 3750 | 0.0735 | 59.3099 | | 0.0381 | 4.0 | 5000 | 0.0758 | 59.2493 | | 0.033 | 5.0 | 6250 | 0.0774 | 59.5127 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1 ## Usage ```python from transformers import pipeline translator = pipeline( "translation", model="kinleyrabgay/nllb-200-600M-dzo-eng", src_lang="dzo_Tibt", tgt_lang="eng_Latn" ) dz_text = "ག་ནི་བ་ ཡིད་ཕྲོག" translation = translator(dz_text) print(translation[0]['translation_text']) ```