kiddothe2b commited on
Commit
8ba0b00
·
1 Parent(s): 2105e90

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -5
README.md CHANGED
@@ -33,9 +33,9 @@ Note that this model is primarily aimed at being fine-tuned on tasks that use th
33
  You can use this model directly with a pipeline for masked language modeling:
34
 
35
  ```python
36
- from transformers import pipeline
37
- mlm_model = pipeline('fill-mask', model='kiddothe2b/hierarchical-transformer-EC2-mini-1024', trust_remote_code=True)
38
- mlm_model("Hello I'm a <mask> model.")
39
  ```
40
 
41
  You can also fine-tun it for SequenceClassification, SequentialSentenceClassification, and MultipleChoice down-stream tasks:
@@ -43,7 +43,7 @@ You can also fine-tun it for SequenceClassification, SequentialSentenceClassific
43
  ```python
44
  from transformers import AutoTokenizer, AutoModelforSequenceClassification
45
  tokenizer = AutoTokenizer.from_pretrained("kiddothe2b/hierarchical-transformer-EC2-mini-1024", trust_remote_code=True)
46
- doc_classifier = AutoModelforSequenceClassification(model='kiddothe2b/hierarchical-transformer-EC2-mini-1024', trust_remote_code=True)
47
  ```
48
 
49
  ## Limitations and bias
@@ -96,7 +96,8 @@ The following hyperparameters were used during training:
96
  - Tokenizers 0.11.6
97
 
98
 
99
- ##Citing
 
100
  If you use HAT in your research, please cite [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification](https://arxiv.org/abs/xxx)
101
 
102
  ```
 
33
  You can use this model directly with a pipeline for masked language modeling:
34
 
35
  ```python
36
+ from transformers import AutoTokenizer, AutoModelforForMaskedLM
37
+ tokenizer = AutoTokenizer.from_pretrained("kiddothe2b/hierarchical-transformer-EC2-mini-1024", trust_remote_code=True)
38
+ mlm_model = AutoModelforForMaskedLM(model="kiddothe2b/hierarchical-transformer-EC2-mini-1024", trust_remote_code=True)
39
  ```
40
 
41
  You can also fine-tun it for SequenceClassification, SequentialSentenceClassification, and MultipleChoice down-stream tasks:
 
43
  ```python
44
  from transformers import AutoTokenizer, AutoModelforSequenceClassification
45
  tokenizer = AutoTokenizer.from_pretrained("kiddothe2b/hierarchical-transformer-EC2-mini-1024", trust_remote_code=True)
46
+ doc_classifier = AutoModelforSequenceClassification(model="kiddothe2b/hierarchical-transformer-EC2-mini-1024", trust_remote_code=True)
47
  ```
48
 
49
  ## Limitations and bias
 
96
  - Tokenizers 0.11.6
97
 
98
 
99
+ ## Citing
100
+
101
  If you use HAT in your research, please cite [An Exploration of Hierarchical Attention Transformers for Efficient Long Document Classification](https://arxiv.org/abs/xxx)
102
 
103
  ```