--- library_name: peft license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: whisper-large-v3-turbo-Punjabi-Version1 results: [] --- # whisper-large-v3-turbo-Punjabi-Version1 This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.3767 - Wer: 56.5078 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 20000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:-----:|:---------------:|:-------:| | 0.2097 | 15.625 | 2000 | 0.3250 | 59.6746 | | 0.138 | 31.25 | 4000 | 0.2924 | 56.5078 | | 0.0979 | 46.875 | 6000 | 0.2903 | 54.3870 | | 0.0732 | 62.5 | 8000 | 0.3096 | 55.8977 | | 0.0528 | 78.125 | 10000 | 0.3214 | 53.8059 | | 0.0421 | 93.75 | 12000 | 0.3443 | 56.4207 | | 0.0299 | 109.375 | 14000 | 0.3594 | 55.2876 | | 0.0267 | 125.0 | 16000 | 0.3767 | 56.5078 | ### Framework versions - PEFT 0.14.0 - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0