Upload 3 files
Browse files- conversation.py +395 -0
- modeling_intern_vit.py +430 -0
- modeling_internvl_chat.py +543 -0
conversation.py
ADDED
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Conversation prompt templates.
|
3 |
+
|
4 |
+
We kindly request that you import fastchat instead of copying this file if you wish to use it.
|
5 |
+
If you have changes in mind, please contribute back so the community can benefit collectively and continue to maintain these valuable templates.
|
6 |
+
|
7 |
+
Modified from https://github.com/lm-sys/FastChat/blob/main/fastchat/conversation.py
|
8 |
+
"""
|
9 |
+
|
10 |
+
import dataclasses
|
11 |
+
from enum import IntEnum, auto
|
12 |
+
from typing import Dict, List, Tuple, Union
|
13 |
+
|
14 |
+
|
15 |
+
class SeparatorStyle(IntEnum):
|
16 |
+
"""Separator styles."""
|
17 |
+
|
18 |
+
ADD_COLON_SINGLE = auto()
|
19 |
+
ADD_COLON_TWO = auto()
|
20 |
+
ADD_COLON_SPACE_SINGLE = auto()
|
21 |
+
NO_COLON_SINGLE = auto()
|
22 |
+
NO_COLON_TWO = auto()
|
23 |
+
ADD_NEW_LINE_SINGLE = auto()
|
24 |
+
LLAMA2 = auto()
|
25 |
+
CHATGLM = auto()
|
26 |
+
CHATML = auto()
|
27 |
+
CHATINTERN = auto()
|
28 |
+
DOLLY = auto()
|
29 |
+
RWKV = auto()
|
30 |
+
PHOENIX = auto()
|
31 |
+
ROBIN = auto()
|
32 |
+
FALCON_CHAT = auto()
|
33 |
+
CHATGLM3 = auto()
|
34 |
+
INTERNVL_ZH = auto()
|
35 |
+
MPT = auto()
|
36 |
+
|
37 |
+
|
38 |
+
@dataclasses.dataclass
|
39 |
+
class Conversation:
|
40 |
+
"""A class that manages prompt templates and keeps all conversation history."""
|
41 |
+
|
42 |
+
# The name of this template
|
43 |
+
name: str
|
44 |
+
# The template of the system prompt
|
45 |
+
system_template: str = '{system_message}'
|
46 |
+
# The system message
|
47 |
+
system_message: str = ''
|
48 |
+
# The names of two roles
|
49 |
+
roles: Tuple[str] = ('USER', 'ASSISTANT')
|
50 |
+
# All messages. Each item is (role, message).
|
51 |
+
messages: List[List[str]] = ()
|
52 |
+
# The number of few shot examples
|
53 |
+
offset: int = 0
|
54 |
+
# The separator style and configurations
|
55 |
+
sep_style: SeparatorStyle = SeparatorStyle.ADD_COLON_SINGLE
|
56 |
+
sep: str = '\n'
|
57 |
+
sep2: str = None
|
58 |
+
# Stop criteria (the default one is EOS token)
|
59 |
+
stop_str: Union[str, List[str]] = None
|
60 |
+
# Stops generation if meeting any token in this list
|
61 |
+
stop_token_ids: List[int] = None
|
62 |
+
|
63 |
+
def get_prompt(self) -> str:
|
64 |
+
"""Get the prompt for generation."""
|
65 |
+
system_prompt = self.system_template.format(system_message=self.system_message)
|
66 |
+
if self.sep_style == SeparatorStyle.ADD_COLON_SINGLE:
|
67 |
+
ret = system_prompt + self.sep
|
68 |
+
for role, message in self.messages:
|
69 |
+
if message:
|
70 |
+
ret += role + ': ' + message + self.sep
|
71 |
+
else:
|
72 |
+
ret += role + ':'
|
73 |
+
return ret
|
74 |
+
elif self.sep_style == SeparatorStyle.ADD_COLON_TWO:
|
75 |
+
seps = [self.sep, self.sep2]
|
76 |
+
ret = system_prompt + seps[0]
|
77 |
+
for i, (role, message) in enumerate(self.messages):
|
78 |
+
if message:
|
79 |
+
ret += role + ': ' + message + seps[i % 2]
|
80 |
+
else:
|
81 |
+
ret += role + ':'
|
82 |
+
return ret
|
83 |
+
elif self.sep_style == SeparatorStyle.ADD_COLON_SPACE_SINGLE:
|
84 |
+
ret = system_prompt + self.sep
|
85 |
+
for role, message in self.messages:
|
86 |
+
if message:
|
87 |
+
ret += role + ': ' + message + self.sep
|
88 |
+
else:
|
89 |
+
ret += role + ': ' # must be end with a space
|
90 |
+
return ret
|
91 |
+
elif self.sep_style == SeparatorStyle.ADD_NEW_LINE_SINGLE:
|
92 |
+
ret = '' if system_prompt == '' else system_prompt + self.sep
|
93 |
+
for role, message in self.messages:
|
94 |
+
if message:
|
95 |
+
ret += role + '\n' + message + self.sep
|
96 |
+
else:
|
97 |
+
ret += role + '\n'
|
98 |
+
return ret
|
99 |
+
elif self.sep_style == SeparatorStyle.NO_COLON_SINGLE:
|
100 |
+
ret = system_prompt
|
101 |
+
for role, message in self.messages:
|
102 |
+
if message:
|
103 |
+
ret += role + message + self.sep
|
104 |
+
else:
|
105 |
+
ret += role
|
106 |
+
return ret
|
107 |
+
elif self.sep_style == SeparatorStyle.NO_COLON_TWO:
|
108 |
+
seps = [self.sep, self.sep2]
|
109 |
+
ret = system_prompt
|
110 |
+
for i, (role, message) in enumerate(self.messages):
|
111 |
+
if message:
|
112 |
+
ret += role + message + seps[i % 2]
|
113 |
+
else:
|
114 |
+
ret += role
|
115 |
+
return ret
|
116 |
+
elif self.sep_style == SeparatorStyle.RWKV:
|
117 |
+
ret = system_prompt
|
118 |
+
for i, (role, message) in enumerate(self.messages):
|
119 |
+
if message:
|
120 |
+
ret += (
|
121 |
+
role
|
122 |
+
+ ': '
|
123 |
+
+ message.replace('\r\n', '\n').replace('\n\n', '\n')
|
124 |
+
)
|
125 |
+
ret += '\n\n'
|
126 |
+
else:
|
127 |
+
ret += role + ':'
|
128 |
+
return ret
|
129 |
+
elif self.sep_style == SeparatorStyle.LLAMA2:
|
130 |
+
seps = [self.sep, self.sep2]
|
131 |
+
if self.system_message:
|
132 |
+
ret = system_prompt
|
133 |
+
else:
|
134 |
+
ret = '[INST] '
|
135 |
+
for i, (role, message) in enumerate(self.messages):
|
136 |
+
tag = self.roles[i % 2]
|
137 |
+
if message:
|
138 |
+
if i == 0:
|
139 |
+
ret += message + ' '
|
140 |
+
else:
|
141 |
+
ret += tag + ' ' + message + seps[i % 2]
|
142 |
+
else:
|
143 |
+
ret += tag
|
144 |
+
return ret
|
145 |
+
elif self.sep_style == SeparatorStyle.CHATGLM:
|
146 |
+
# source: https://huggingface.co/THUDM/chatglm-6b/blob/1d240ba371910e9282298d4592532d7f0f3e9f3e/modeling_chatglm.py#L1302-L1308
|
147 |
+
# source2: https://huggingface.co/THUDM/chatglm2-6b/blob/e186c891cf64310ac66ef10a87e6635fa6c2a579/modeling_chatglm.py#L926
|
148 |
+
round_add_n = 1 if self.name == 'chatglm2' else 0
|
149 |
+
if system_prompt:
|
150 |
+
ret = system_prompt + self.sep
|
151 |
+
else:
|
152 |
+
ret = ''
|
153 |
+
|
154 |
+
for i, (role, message) in enumerate(self.messages):
|
155 |
+
if i % 2 == 0:
|
156 |
+
ret += f'[Round {i//2 + round_add_n}]{self.sep}'
|
157 |
+
|
158 |
+
if message:
|
159 |
+
ret += f'{role}:{message}{self.sep}'
|
160 |
+
else:
|
161 |
+
ret += f'{role}:'
|
162 |
+
return ret
|
163 |
+
elif self.sep_style == SeparatorStyle.CHATML:
|
164 |
+
ret = '' if system_prompt == '' else system_prompt + self.sep + '\n'
|
165 |
+
for role, message in self.messages:
|
166 |
+
if message:
|
167 |
+
ret += role + '\n' + message + self.sep + '\n'
|
168 |
+
else:
|
169 |
+
ret += role + '\n'
|
170 |
+
return ret
|
171 |
+
elif self.sep_style == SeparatorStyle.CHATGLM3:
|
172 |
+
ret = ''
|
173 |
+
if self.system_message:
|
174 |
+
ret += system_prompt
|
175 |
+
for role, message in self.messages:
|
176 |
+
if message:
|
177 |
+
ret += role + '\n' + ' ' + message
|
178 |
+
else:
|
179 |
+
ret += role
|
180 |
+
return ret
|
181 |
+
elif self.sep_style == SeparatorStyle.CHATINTERN:
|
182 |
+
# source: https://huggingface.co/internlm/internlm-chat-7b-8k/blob/bd546fa984b4b0b86958f56bf37f94aa75ab8831/modeling_internlm.py#L771
|
183 |
+
seps = [self.sep, self.sep2]
|
184 |
+
ret = system_prompt
|
185 |
+
for i, (role, message) in enumerate(self.messages):
|
186 |
+
# if i % 2 == 0:
|
187 |
+
# ret += "<s>"
|
188 |
+
if message:
|
189 |
+
ret += role + ':' + message + seps[i % 2] + '\n'
|
190 |
+
else:
|
191 |
+
ret += role + ':'
|
192 |
+
return ret
|
193 |
+
elif self.sep_style == SeparatorStyle.DOLLY:
|
194 |
+
seps = [self.sep, self.sep2]
|
195 |
+
ret = system_prompt
|
196 |
+
for i, (role, message) in enumerate(self.messages):
|
197 |
+
if message:
|
198 |
+
ret += role + ':\n' + message + seps[i % 2]
|
199 |
+
if i % 2 == 1:
|
200 |
+
ret += '\n\n'
|
201 |
+
else:
|
202 |
+
ret += role + ':\n'
|
203 |
+
return ret
|
204 |
+
elif self.sep_style == SeparatorStyle.PHOENIX:
|
205 |
+
ret = system_prompt
|
206 |
+
for role, message in self.messages:
|
207 |
+
if message:
|
208 |
+
ret += role + ': ' + '<s>' + message + '</s>'
|
209 |
+
else:
|
210 |
+
ret += role + ': ' + '<s>'
|
211 |
+
return ret
|
212 |
+
elif self.sep_style == SeparatorStyle.ROBIN:
|
213 |
+
ret = system_prompt + self.sep
|
214 |
+
for role, message in self.messages:
|
215 |
+
if message:
|
216 |
+
ret += role + ':\n' + message + self.sep
|
217 |
+
else:
|
218 |
+
ret += role + ':\n'
|
219 |
+
return ret
|
220 |
+
elif self.sep_style == SeparatorStyle.FALCON_CHAT:
|
221 |
+
ret = ''
|
222 |
+
if self.system_message:
|
223 |
+
ret += system_prompt + self.sep
|
224 |
+
for role, message in self.messages:
|
225 |
+
if message:
|
226 |
+
ret += role + ': ' + message + self.sep
|
227 |
+
else:
|
228 |
+
ret += role + ':'
|
229 |
+
|
230 |
+
return ret
|
231 |
+
elif self.sep_style == SeparatorStyle.INTERNVL_ZH:
|
232 |
+
seps = [self.sep, self.sep2]
|
233 |
+
ret = self.system_message + seps[0]
|
234 |
+
for i, (role, message) in enumerate(self.messages):
|
235 |
+
if message:
|
236 |
+
ret += role + ': ' + message + seps[i % 2]
|
237 |
+
else:
|
238 |
+
ret += role + ':'
|
239 |
+
return ret
|
240 |
+
elif self.sep_style == SeparatorStyle.MPT:
|
241 |
+
ret = system_prompt + self.sep
|
242 |
+
for role, message in self.messages:
|
243 |
+
if message:
|
244 |
+
if type(message) is tuple:
|
245 |
+
message, _, _ = message
|
246 |
+
ret += role + message + self.sep
|
247 |
+
else:
|
248 |
+
ret += role
|
249 |
+
return ret
|
250 |
+
else:
|
251 |
+
raise ValueError(f'Invalid style: {self.sep_style}')
|
252 |
+
|
253 |
+
def set_system_message(self, system_message: str):
|
254 |
+
"""Set the system message."""
|
255 |
+
self.system_message = system_message
|
256 |
+
|
257 |
+
def append_message(self, role: str, message: str):
|
258 |
+
"""Append a new message."""
|
259 |
+
self.messages.append([role, message])
|
260 |
+
|
261 |
+
def update_last_message(self, message: str):
|
262 |
+
"""Update the last output.
|
263 |
+
|
264 |
+
The last message is typically set to be None when constructing the prompt,
|
265 |
+
so we need to update it in-place after getting the response from a model.
|
266 |
+
"""
|
267 |
+
self.messages[-1][1] = message
|
268 |
+
|
269 |
+
def to_gradio_chatbot(self):
|
270 |
+
"""Convert the conversation to gradio chatbot format."""
|
271 |
+
ret = []
|
272 |
+
for i, (role, msg) in enumerate(self.messages[self.offset :]):
|
273 |
+
if i % 2 == 0:
|
274 |
+
ret.append([msg, None])
|
275 |
+
else:
|
276 |
+
ret[-1][-1] = msg
|
277 |
+
return ret
|
278 |
+
|
279 |
+
def to_openai_api_messages(self):
|
280 |
+
"""Convert the conversation to OpenAI chat completion format."""
|
281 |
+
ret = [{'role': 'system', 'content': self.system_message}]
|
282 |
+
|
283 |
+
for i, (_, msg) in enumerate(self.messages[self.offset :]):
|
284 |
+
if i % 2 == 0:
|
285 |
+
ret.append({'role': 'user', 'content': msg})
|
286 |
+
else:
|
287 |
+
if msg is not None:
|
288 |
+
ret.append({'role': 'assistant', 'content': msg})
|
289 |
+
return ret
|
290 |
+
|
291 |
+
def copy(self):
|
292 |
+
return Conversation(
|
293 |
+
name=self.name,
|
294 |
+
system_template=self.system_template,
|
295 |
+
system_message=self.system_message,
|
296 |
+
roles=self.roles,
|
297 |
+
messages=[[x, y] for x, y in self.messages],
|
298 |
+
offset=self.offset,
|
299 |
+
sep_style=self.sep_style,
|
300 |
+
sep=self.sep,
|
301 |
+
sep2=self.sep2,
|
302 |
+
stop_str=self.stop_str,
|
303 |
+
stop_token_ids=self.stop_token_ids,
|
304 |
+
)
|
305 |
+
|
306 |
+
def dict(self):
|
307 |
+
return {
|
308 |
+
'template_name': self.name,
|
309 |
+
'system_message': self.system_message,
|
310 |
+
'roles': self.roles,
|
311 |
+
'messages': self.messages,
|
312 |
+
'offset': self.offset,
|
313 |
+
}
|
314 |
+
|
315 |
+
|
316 |
+
# A global registry for all conversation templates
|
317 |
+
conv_templates: Dict[str, Conversation] = {}
|
318 |
+
|
319 |
+
|
320 |
+
def register_conv_template(template: Conversation, override: bool = False):
|
321 |
+
"""Register a new conversation template."""
|
322 |
+
if not override:
|
323 |
+
assert (
|
324 |
+
template.name not in conv_templates
|
325 |
+
), f'{template.name} has been registered.'
|
326 |
+
|
327 |
+
conv_templates[template.name] = template
|
328 |
+
|
329 |
+
|
330 |
+
def get_conv_template(name: str) -> Conversation:
|
331 |
+
"""Get a conversation template."""
|
332 |
+
return conv_templates[name].copy()
|
333 |
+
|
334 |
+
|
335 |
+
# Both Hermes-2 and internlm2-chat are chatml-format conversation templates. The difference
|
336 |
+
# is that during training, the preprocessing function for the Hermes-2 template doesn't add
|
337 |
+
# <s> at the beginning of the tokenized sequence, while the internlm2-chat template does.
|
338 |
+
# Therefore, they are completely equivalent during inference.
|
339 |
+
register_conv_template(
|
340 |
+
Conversation(
|
341 |
+
name='Hermes-2',
|
342 |
+
system_template='<|im_start|>system\n{system_message}',
|
343 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
344 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
345 |
+
# system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
346 |
+
system_message='Bạn là một mô hình trí tuệ nhân tạo đa phương thức Tiếng Việt có tên gọi là Vintern, được phát triển bởi người Việt. Bạn là một trợ lý trí tuệ nhân tạo hữu ích và không gây hại.',
|
347 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
|
348 |
+
sep_style=SeparatorStyle.MPT,
|
349 |
+
sep='<|im_end|>',
|
350 |
+
stop_str='<|endoftext|>',
|
351 |
+
)
|
352 |
+
)
|
353 |
+
|
354 |
+
|
355 |
+
register_conv_template(
|
356 |
+
Conversation(
|
357 |
+
name='internlm2-chat',
|
358 |
+
system_template='<|im_start|>system\n{system_message}',
|
359 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
360 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
361 |
+
# system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
362 |
+
system_message='Bạn là một mô hình trí tuệ nhân tạo đa phương thức Tiếng Việt có tên gọi là Vintern, được phát triển bởi người Việt. Bạn là một trợ lý trí tuệ nhân tạo hữu ích và không gây hại.',
|
363 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
|
364 |
+
sep_style=SeparatorStyle.MPT,
|
365 |
+
sep='<|im_end|>',
|
366 |
+
)
|
367 |
+
)
|
368 |
+
|
369 |
+
|
370 |
+
register_conv_template(
|
371 |
+
Conversation(
|
372 |
+
name='phi3-chat',
|
373 |
+
system_template='<|system|>\n{system_message}',
|
374 |
+
# note: The new system prompt was not used here to avoid changes in benchmark performance.
|
375 |
+
# system_message='我是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
376 |
+
# system_message='你是由上海人工智能实验室联合商汤科技开发的书生多模态大模型,英文名叫InternVL, 是一个有用无害的人工智能助手。',
|
377 |
+
system_message='Bạn là một mô hình trí tuệ nhân tạo đa phương thức Tiếng Việt có tên gọi là Vintern, được phát triển bởi người Việt. Bạn là một trợ lý trí tuệ nhân tạo hữu ích và không gây hại.',
|
378 |
+
roles=('<|user|>\n', '<|assistant|>\n'),
|
379 |
+
sep_style=SeparatorStyle.MPT,
|
380 |
+
sep='<|end|>',
|
381 |
+
)
|
382 |
+
)
|
383 |
+
|
384 |
+
|
385 |
+
register_conv_template(
|
386 |
+
Conversation(
|
387 |
+
name='internvl2_5',
|
388 |
+
system_template='<|im_start|>system\n{system_message}',
|
389 |
+
# system_message='你是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。',
|
390 |
+
system_message='Bạn là một mô hình trí tuệ nhân tạo đa phương thức Tiếng Việt có tên gọi là Vintern, được phát triển bởi người Việt. Bạn là một trợ lý trí tuệ nhân tạo hữu ích và không gây hại.',
|
391 |
+
roles=('<|im_start|>user\n', '<|im_start|>assistant\n'),
|
392 |
+
sep_style=SeparatorStyle.MPT,
|
393 |
+
sep='<|im_end|>\n',
|
394 |
+
)
|
395 |
+
)
|
modeling_intern_vit.py
ADDED
@@ -0,0 +1,430 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
from typing import Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from einops import rearrange
|
13 |
+
from timm.models.layers import DropPath
|
14 |
+
from torch import nn
|
15 |
+
from transformers.activations import ACT2FN
|
16 |
+
from transformers.modeling_outputs import (BaseModelOutput,
|
17 |
+
BaseModelOutputWithPooling)
|
18 |
+
from transformers.modeling_utils import PreTrainedModel
|
19 |
+
from transformers.utils import logging
|
20 |
+
|
21 |
+
from .configuration_intern_vit import InternVisionConfig
|
22 |
+
|
23 |
+
try:
|
24 |
+
from flash_attn.bert_padding import pad_input, unpad_input
|
25 |
+
from flash_attn.flash_attn_interface import \
|
26 |
+
flash_attn_varlen_qkvpacked_func
|
27 |
+
has_flash_attn = True
|
28 |
+
except:
|
29 |
+
print('FlashAttention2 is not installed.')
|
30 |
+
has_flash_attn = False
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
|
35 |
+
class FlashAttention(nn.Module):
|
36 |
+
"""Implement the scaled dot product attention with softmax.
|
37 |
+
Arguments
|
38 |
+
---------
|
39 |
+
softmax_scale: The temperature to use for the softmax attention.
|
40 |
+
(default: 1/sqrt(d_keys) where d_keys is computed at
|
41 |
+
runtime)
|
42 |
+
attention_dropout: The dropout rate to apply to the attention
|
43 |
+
(default: 0.0)
|
44 |
+
"""
|
45 |
+
|
46 |
+
def __init__(self, softmax_scale=None, attention_dropout=0.0, device=None, dtype=None):
|
47 |
+
super().__init__()
|
48 |
+
self.softmax_scale = softmax_scale
|
49 |
+
self.dropout_p = attention_dropout
|
50 |
+
|
51 |
+
def forward(self, qkv, key_padding_mask=None, causal=False, cu_seqlens=None,
|
52 |
+
max_s=None, need_weights=False):
|
53 |
+
"""Implements the multihead softmax attention.
|
54 |
+
Arguments
|
55 |
+
---------
|
56 |
+
qkv: The tensor containing the query, key, and value. (B, S, 3, H, D) if key_padding_mask is None
|
57 |
+
if unpadded: (nnz, 3, h, d)
|
58 |
+
key_padding_mask: a bool tensor of shape (B, S)
|
59 |
+
"""
|
60 |
+
assert not need_weights
|
61 |
+
assert qkv.dtype in [torch.float16, torch.bfloat16]
|
62 |
+
assert qkv.is_cuda
|
63 |
+
|
64 |
+
if cu_seqlens is None:
|
65 |
+
batch_size = qkv.shape[0]
|
66 |
+
seqlen = qkv.shape[1]
|
67 |
+
if key_padding_mask is None:
|
68 |
+
qkv = rearrange(qkv, 'b s ... -> (b s) ...')
|
69 |
+
max_s = seqlen
|
70 |
+
cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
|
71 |
+
device=qkv.device)
|
72 |
+
output = flash_attn_varlen_qkvpacked_func(
|
73 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
74 |
+
softmax_scale=self.softmax_scale, causal=causal
|
75 |
+
)
|
76 |
+
output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
|
77 |
+
else:
|
78 |
+
nheads = qkv.shape[-2]
|
79 |
+
x = rearrange(qkv, 'b s three h d -> b s (three h d)')
|
80 |
+
x_unpad, indices, cu_seqlens, max_s = unpad_input(x, key_padding_mask)
|
81 |
+
x_unpad = rearrange(x_unpad, 'nnz (three h d) -> nnz three h d', three=3, h=nheads)
|
82 |
+
output_unpad = flash_attn_varlen_qkvpacked_func(
|
83 |
+
x_unpad, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
84 |
+
softmax_scale=self.softmax_scale, causal=causal
|
85 |
+
)
|
86 |
+
output = rearrange(pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'),
|
87 |
+
indices, batch_size, seqlen),
|
88 |
+
'b s (h d) -> b s h d', h=nheads)
|
89 |
+
else:
|
90 |
+
assert max_s is not None
|
91 |
+
output = flash_attn_varlen_qkvpacked_func(
|
92 |
+
qkv, cu_seqlens, max_s, self.dropout_p if self.training else 0.0,
|
93 |
+
softmax_scale=self.softmax_scale, causal=causal
|
94 |
+
)
|
95 |
+
|
96 |
+
return output, None
|
97 |
+
|
98 |
+
|
99 |
+
class InternRMSNorm(nn.Module):
|
100 |
+
def __init__(self, hidden_size, eps=1e-6):
|
101 |
+
super().__init__()
|
102 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
103 |
+
self.variance_epsilon = eps
|
104 |
+
|
105 |
+
def forward(self, hidden_states):
|
106 |
+
input_dtype = hidden_states.dtype
|
107 |
+
hidden_states = hidden_states.to(torch.float32)
|
108 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
109 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
110 |
+
return self.weight * hidden_states.to(input_dtype)
|
111 |
+
|
112 |
+
|
113 |
+
try:
|
114 |
+
from apex.normalization import FusedRMSNorm
|
115 |
+
|
116 |
+
InternRMSNorm = FusedRMSNorm # noqa
|
117 |
+
|
118 |
+
logger.info('Discovered apex.normalization.FusedRMSNorm - will use it instead of InternRMSNorm')
|
119 |
+
except ImportError:
|
120 |
+
# using the normal InternRMSNorm
|
121 |
+
pass
|
122 |
+
except Exception:
|
123 |
+
logger.warning('discovered apex but it failed to load, falling back to InternRMSNorm')
|
124 |
+
pass
|
125 |
+
|
126 |
+
|
127 |
+
NORM2FN = {
|
128 |
+
'rms_norm': InternRMSNorm,
|
129 |
+
'layer_norm': nn.LayerNorm,
|
130 |
+
}
|
131 |
+
|
132 |
+
|
133 |
+
class InternVisionEmbeddings(nn.Module):
|
134 |
+
def __init__(self, config: InternVisionConfig):
|
135 |
+
super().__init__()
|
136 |
+
self.config = config
|
137 |
+
self.embed_dim = config.hidden_size
|
138 |
+
self.image_size = config.image_size
|
139 |
+
self.patch_size = config.patch_size
|
140 |
+
|
141 |
+
self.class_embedding = nn.Parameter(
|
142 |
+
torch.randn(1, 1, self.embed_dim),
|
143 |
+
)
|
144 |
+
|
145 |
+
self.patch_embedding = nn.Conv2d(
|
146 |
+
in_channels=3, out_channels=self.embed_dim, kernel_size=self.patch_size, stride=self.patch_size
|
147 |
+
)
|
148 |
+
|
149 |
+
self.num_patches = (self.image_size // self.patch_size) ** 2
|
150 |
+
self.num_positions = self.num_patches + 1
|
151 |
+
|
152 |
+
self.position_embedding = nn.Parameter(torch.randn(1, self.num_positions, self.embed_dim))
|
153 |
+
|
154 |
+
def _get_pos_embed(self, pos_embed, H, W):
|
155 |
+
target_dtype = pos_embed.dtype
|
156 |
+
pos_embed = pos_embed.float().reshape(
|
157 |
+
1, self.image_size // self.patch_size, self.image_size // self.patch_size, -1).permute(0, 3, 1, 2)
|
158 |
+
pos_embed = F.interpolate(pos_embed, size=(H, W), mode='bicubic', align_corners=False). \
|
159 |
+
reshape(1, -1, H * W).permute(0, 2, 1).to(target_dtype)
|
160 |
+
return pos_embed
|
161 |
+
|
162 |
+
def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
|
163 |
+
target_dtype = self.patch_embedding.weight.dtype
|
164 |
+
patch_embeds = self.patch_embedding(pixel_values) # shape = [*, channel, width, height]
|
165 |
+
batch_size, _, height, width = patch_embeds.shape
|
166 |
+
patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
|
167 |
+
class_embeds = self.class_embedding.expand(batch_size, 1, -1).to(target_dtype)
|
168 |
+
embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
|
169 |
+
position_embedding = torch.cat([
|
170 |
+
self.position_embedding[:, :1, :],
|
171 |
+
self._get_pos_embed(self.position_embedding[:, 1:, :], height, width)
|
172 |
+
], dim=1)
|
173 |
+
embeddings = embeddings + position_embedding.to(target_dtype)
|
174 |
+
return embeddings
|
175 |
+
|
176 |
+
|
177 |
+
class InternAttention(nn.Module):
|
178 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
179 |
+
|
180 |
+
def __init__(self, config: InternVisionConfig):
|
181 |
+
super().__init__()
|
182 |
+
self.config = config
|
183 |
+
self.embed_dim = config.hidden_size
|
184 |
+
self.num_heads = config.num_attention_heads
|
185 |
+
self.use_flash_attn = config.use_flash_attn and has_flash_attn
|
186 |
+
if config.use_flash_attn and not has_flash_attn:
|
187 |
+
print('Warning: Flash Attention is not available, use_flash_attn is set to False.')
|
188 |
+
self.head_dim = self.embed_dim // self.num_heads
|
189 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
190 |
+
raise ValueError(
|
191 |
+
f'embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:'
|
192 |
+
f' {self.num_heads}).'
|
193 |
+
)
|
194 |
+
|
195 |
+
self.scale = self.head_dim ** -0.5
|
196 |
+
self.qkv = nn.Linear(self.embed_dim, 3 * self.embed_dim, bias=config.qkv_bias)
|
197 |
+
self.attn_drop = nn.Dropout(config.attention_dropout)
|
198 |
+
self.proj_drop = nn.Dropout(config.dropout)
|
199 |
+
|
200 |
+
self.qk_normalization = config.qk_normalization
|
201 |
+
|
202 |
+
if self.qk_normalization:
|
203 |
+
self.q_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
204 |
+
self.k_norm = InternRMSNorm(self.embed_dim, eps=config.layer_norm_eps)
|
205 |
+
|
206 |
+
if self.use_flash_attn:
|
207 |
+
self.inner_attn = FlashAttention(attention_dropout=config.attention_dropout)
|
208 |
+
self.proj = nn.Linear(self.embed_dim, self.embed_dim)
|
209 |
+
|
210 |
+
def _naive_attn(self, x):
|
211 |
+
B, N, C = x.shape
|
212 |
+
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
213 |
+
q, k, v = qkv.unbind(0) # make torchscript happy (cannot use tensor as tuple)
|
214 |
+
|
215 |
+
if self.qk_normalization:
|
216 |
+
B_, H_, N_, D_ = q.shape
|
217 |
+
q = self.q_norm(q.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
218 |
+
k = self.k_norm(k.transpose(1, 2).flatten(-2, -1)).view(B_, N_, H_, D_).transpose(1, 2)
|
219 |
+
|
220 |
+
attn = ((q * self.scale) @ k.transpose(-2, -1))
|
221 |
+
attn = attn.softmax(dim=-1)
|
222 |
+
attn = self.attn_drop(attn)
|
223 |
+
|
224 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
225 |
+
x = self.proj(x)
|
226 |
+
x = self.proj_drop(x)
|
227 |
+
return x
|
228 |
+
|
229 |
+
def _flash_attn(self, x, key_padding_mask=None, need_weights=False):
|
230 |
+
qkv = self.qkv(x)
|
231 |
+
qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, h=self.num_heads)
|
232 |
+
|
233 |
+
if self.qk_normalization:
|
234 |
+
q, k, v = qkv.unbind(2)
|
235 |
+
q = self.q_norm(q.flatten(-2, -1)).view(q.shape)
|
236 |
+
k = self.k_norm(k.flatten(-2, -1)).view(k.shape)
|
237 |
+
qkv = torch.stack([q, k, v], dim=2)
|
238 |
+
|
239 |
+
context, _ = self.inner_attn(
|
240 |
+
qkv, key_padding_mask=key_padding_mask, need_weights=need_weights, causal=False
|
241 |
+
)
|
242 |
+
outs = self.proj(rearrange(context, 'b s h d -> b s (h d)'))
|
243 |
+
outs = self.proj_drop(outs)
|
244 |
+
return outs
|
245 |
+
|
246 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
247 |
+
x = self._naive_attn(hidden_states) if not self.use_flash_attn else self._flash_attn(hidden_states)
|
248 |
+
return x
|
249 |
+
|
250 |
+
|
251 |
+
class InternMLP(nn.Module):
|
252 |
+
def __init__(self, config: InternVisionConfig):
|
253 |
+
super().__init__()
|
254 |
+
self.config = config
|
255 |
+
self.act = ACT2FN[config.hidden_act]
|
256 |
+
self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
|
257 |
+
self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
|
258 |
+
|
259 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
260 |
+
hidden_states = self.fc1(hidden_states)
|
261 |
+
hidden_states = self.act(hidden_states)
|
262 |
+
hidden_states = self.fc2(hidden_states)
|
263 |
+
return hidden_states
|
264 |
+
|
265 |
+
|
266 |
+
class InternVisionEncoderLayer(nn.Module):
|
267 |
+
def __init__(self, config: InternVisionConfig, drop_path_rate: float):
|
268 |
+
super().__init__()
|
269 |
+
self.embed_dim = config.hidden_size
|
270 |
+
self.intermediate_size = config.intermediate_size
|
271 |
+
self.norm_type = config.norm_type
|
272 |
+
|
273 |
+
self.attn = InternAttention(config)
|
274 |
+
self.mlp = InternMLP(config)
|
275 |
+
self.norm1 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
276 |
+
self.norm2 = NORM2FN[self.norm_type](self.embed_dim, eps=config.layer_norm_eps)
|
277 |
+
|
278 |
+
self.ls1 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
279 |
+
self.ls2 = nn.Parameter(config.initializer_factor * torch.ones(self.embed_dim))
|
280 |
+
self.drop_path1 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
281 |
+
self.drop_path2 = DropPath(drop_path_rate) if drop_path_rate > 0. else nn.Identity()
|
282 |
+
|
283 |
+
def forward(
|
284 |
+
self,
|
285 |
+
hidden_states: torch.Tensor,
|
286 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor], Optional[Tuple[torch.FloatTensor]]]:
|
287 |
+
"""
|
288 |
+
Args:
|
289 |
+
hidden_states (`Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
290 |
+
"""
|
291 |
+
hidden_states = hidden_states + self.drop_path1(self.attn(self.norm1(hidden_states).to(hidden_states.dtype)) * self.ls1)
|
292 |
+
|
293 |
+
hidden_states = hidden_states + self.drop_path2(self.mlp(self.norm2(hidden_states).to(hidden_states.dtype)) * self.ls2)
|
294 |
+
|
295 |
+
return hidden_states
|
296 |
+
|
297 |
+
|
298 |
+
class InternVisionEncoder(nn.Module):
|
299 |
+
"""
|
300 |
+
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
|
301 |
+
[`InternEncoderLayer`].
|
302 |
+
|
303 |
+
Args:
|
304 |
+
config (`InternConfig`):
|
305 |
+
The corresponding vision configuration for the `InternEncoder`.
|
306 |
+
"""
|
307 |
+
|
308 |
+
def __init__(self, config: InternVisionConfig):
|
309 |
+
super().__init__()
|
310 |
+
self.config = config
|
311 |
+
# stochastic depth decay rule
|
312 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, config.num_hidden_layers)]
|
313 |
+
self.layers = nn.ModuleList([
|
314 |
+
InternVisionEncoderLayer(config, dpr[idx]) for idx in range(config.num_hidden_layers)])
|
315 |
+
self.gradient_checkpointing = True
|
316 |
+
|
317 |
+
def forward(
|
318 |
+
self,
|
319 |
+
inputs_embeds,
|
320 |
+
output_hidden_states: Optional[bool] = None,
|
321 |
+
return_dict: Optional[bool] = None,
|
322 |
+
) -> Union[Tuple, BaseModelOutput]:
|
323 |
+
r"""
|
324 |
+
Args:
|
325 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
326 |
+
Embedded representation of the inputs. Should be float, not int tokens.
|
327 |
+
output_hidden_states (`bool`, *optional*):
|
328 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
329 |
+
for more detail.
|
330 |
+
return_dict (`bool`, *optional*):
|
331 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
332 |
+
"""
|
333 |
+
output_hidden_states = (
|
334 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
335 |
+
)
|
336 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
337 |
+
|
338 |
+
encoder_states = () if output_hidden_states else None
|
339 |
+
hidden_states = inputs_embeds
|
340 |
+
|
341 |
+
for idx, encoder_layer in enumerate(self.layers):
|
342 |
+
if output_hidden_states:
|
343 |
+
encoder_states = encoder_states + (hidden_states,)
|
344 |
+
if self.gradient_checkpointing and self.training:
|
345 |
+
layer_outputs = torch.utils.checkpoint.checkpoint(
|
346 |
+
encoder_layer,
|
347 |
+
hidden_states)
|
348 |
+
else:
|
349 |
+
layer_outputs = encoder_layer(
|
350 |
+
hidden_states,
|
351 |
+
)
|
352 |
+
hidden_states = layer_outputs
|
353 |
+
|
354 |
+
if output_hidden_states:
|
355 |
+
encoder_states = encoder_states + (hidden_states,)
|
356 |
+
|
357 |
+
if not return_dict:
|
358 |
+
return tuple(v for v in [hidden_states, encoder_states] if v is not None)
|
359 |
+
return BaseModelOutput(
|
360 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states
|
361 |
+
)
|
362 |
+
|
363 |
+
|
364 |
+
class InternVisionModel(PreTrainedModel):
|
365 |
+
main_input_name = 'pixel_values'
|
366 |
+
_supports_flash_attn_2 = True
|
367 |
+
config_class = InternVisionConfig
|
368 |
+
_no_split_modules = ['InternVisionEncoderLayer']
|
369 |
+
|
370 |
+
def __init__(self, config: InternVisionConfig):
|
371 |
+
super().__init__(config)
|
372 |
+
self.config = config
|
373 |
+
|
374 |
+
self.embeddings = InternVisionEmbeddings(config)
|
375 |
+
self.encoder = InternVisionEncoder(config)
|
376 |
+
|
377 |
+
def resize_pos_embeddings(self, old_size, new_size, patch_size):
|
378 |
+
pos_emb = self.embeddings.position_embedding
|
379 |
+
_, num_positions, embed_dim = pos_emb.shape
|
380 |
+
cls_emb = pos_emb[:, :1, :]
|
381 |
+
pos_emb = pos_emb[:, 1:, :].reshape(1, old_size // patch_size, old_size // patch_size, -1).permute(0, 3, 1, 2)
|
382 |
+
pos_emb = F.interpolate(pos_emb.float(), size=new_size // patch_size, mode='bicubic', align_corners=False)
|
383 |
+
pos_emb = pos_emb.to(cls_emb.dtype).reshape(1, embed_dim, -1).permute(0, 2, 1)
|
384 |
+
pos_emb = torch.cat([cls_emb, pos_emb], dim=1)
|
385 |
+
self.embeddings.position_embedding = nn.Parameter(pos_emb)
|
386 |
+
self.embeddings.image_size = new_size
|
387 |
+
logger.info('Resized position embeddings from {} to {}'.format(old_size, new_size))
|
388 |
+
|
389 |
+
def get_input_embeddings(self):
|
390 |
+
return self.embeddings
|
391 |
+
|
392 |
+
def forward(
|
393 |
+
self,
|
394 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
395 |
+
output_hidden_states: Optional[bool] = None,
|
396 |
+
return_dict: Optional[bool] = None,
|
397 |
+
pixel_embeds: Optional[torch.FloatTensor] = None,
|
398 |
+
) -> Union[Tuple, BaseModelOutputWithPooling]:
|
399 |
+
output_hidden_states = (
|
400 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
401 |
+
)
|
402 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
403 |
+
|
404 |
+
if pixel_values is None and pixel_embeds is None:
|
405 |
+
raise ValueError('You have to specify pixel_values or pixel_embeds')
|
406 |
+
|
407 |
+
if pixel_embeds is not None:
|
408 |
+
hidden_states = pixel_embeds
|
409 |
+
else:
|
410 |
+
if len(pixel_values.shape) == 4:
|
411 |
+
hidden_states = self.embeddings(pixel_values)
|
412 |
+
else:
|
413 |
+
raise ValueError(f'wrong pixel_values size: {pixel_values.shape}')
|
414 |
+
encoder_outputs = self.encoder(
|
415 |
+
inputs_embeds=hidden_states,
|
416 |
+
output_hidden_states=output_hidden_states,
|
417 |
+
return_dict=return_dict,
|
418 |
+
)
|
419 |
+
last_hidden_state = encoder_outputs.last_hidden_state
|
420 |
+
pooled_output = last_hidden_state[:, 0, :]
|
421 |
+
|
422 |
+
if not return_dict:
|
423 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
424 |
+
|
425 |
+
return BaseModelOutputWithPooling(
|
426 |
+
last_hidden_state=last_hidden_state,
|
427 |
+
pooler_output=pooled_output,
|
428 |
+
hidden_states=encoder_outputs.hidden_states,
|
429 |
+
attentions=encoder_outputs.attentions,
|
430 |
+
)
|
modeling_internvl_chat.py
ADDED
@@ -0,0 +1,543 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# InternVL
|
3 |
+
# Copyright (c) 2024 OpenGVLab
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# --------------------------------------------------------
|
6 |
+
|
7 |
+
import warnings
|
8 |
+
from typing import List, Optional, Tuple, Union
|
9 |
+
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
import transformers
|
12 |
+
from torch import nn
|
13 |
+
from torch.nn import CrossEntropyLoss
|
14 |
+
from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM,
|
15 |
+
Qwen2ForCausalLM)
|
16 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
17 |
+
from transformers.modeling_utils import PreTrainedModel
|
18 |
+
from transformers.utils import ModelOutput, logging
|
19 |
+
|
20 |
+
from .configuration_internvl_chat import InternVLChatConfig
|
21 |
+
from .conversation import get_conv_template
|
22 |
+
from .modeling_intern_vit import InternVisionModel, has_flash_attn
|
23 |
+
from PIL import Image, ImageDraw, ImageFont
|
24 |
+
import numpy as np
|
25 |
+
import cv2
|
26 |
+
import imageio
|
27 |
+
from scipy.ndimage import gaussian_filter
|
28 |
+
from PIL import Image, ImageDraw, ImageFont
|
29 |
+
import tqdm
|
30 |
+
import random
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
def version_cmp(v1, v2, op='eq'):
|
35 |
+
import operator
|
36 |
+
|
37 |
+
from packaging import version
|
38 |
+
op_func = getattr(operator, op)
|
39 |
+
return op_func(version.parse(v1), version.parse(v2))
|
40 |
+
|
41 |
+
def draw_text_to_image(text, font, image_width=500, min_height=500, bg_color=(255, 255, 255)):
|
42 |
+
paragraphs = text.split('\n')
|
43 |
+
# Danh sách chứa tất cả các dòng văn bản sau khi được xử lý
|
44 |
+
lines = []
|
45 |
+
total_height = 0
|
46 |
+
for paragraph in paragraphs:
|
47 |
+
words = paragraph.split(' ')
|
48 |
+
current_line = ""
|
49 |
+
for word in words:
|
50 |
+
test_line = current_line + word + " "
|
51 |
+
bbox = font.getbbox(test_line)
|
52 |
+
width = bbox[2] - bbox[0]
|
53 |
+
if width <= image_width - 20: # Trừ lề khoảng 10px mỗi bên
|
54 |
+
current_line = test_line
|
55 |
+
else:
|
56 |
+
lines.append(current_line)
|
57 |
+
current_line = word + " "
|
58 |
+
total_height += font.getbbox(current_line)[3]
|
59 |
+
lines.append(current_line) # Thêm dòng cuối cùng của đoạn văn
|
60 |
+
total_height += font.getbbox(current_line)[3]
|
61 |
+
total_height = int(total_height*1.25)
|
62 |
+
if total_height < min_height:
|
63 |
+
total_height = min_height
|
64 |
+
image = Image.new('RGB', (image_width, total_height), color=bg_color)
|
65 |
+
draw = ImageDraw.Draw(image)
|
66 |
+
# Vẽ đoạn văn bản tiếng Việt lên ảnh, từng dòng một
|
67 |
+
text_color = tuple(random.randint(0, 1) for _ in range(3))
|
68 |
+
y_text = 10
|
69 |
+
for line in lines:
|
70 |
+
draw.text((10, y_text), line, font=font, fill=text_color)
|
71 |
+
y_text += font.getbbox(line)[3] * 1.2
|
72 |
+
return image
|
73 |
+
|
74 |
+
def load_image_v2(image_file, input_size=448, max_num=12):
|
75 |
+
image = Image.open(image_file).convert('RGB')
|
76 |
+
transform = build_transform(input_size=input_size)
|
77 |
+
images, target_aspect_ratio = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num)
|
78 |
+
pixel_values = [transform(image) for image in images]
|
79 |
+
pixel_values = torch.stack(pixel_values)
|
80 |
+
return pixel_values, target_aspect_ratio
|
81 |
+
|
82 |
+
def adjust_overlay(overlay, text_img):
|
83 |
+
h_o, w_o = overlay.shape[:2]
|
84 |
+
h_t, w_t = text_img.shape[:2]
|
85 |
+
|
86 |
+
if h_o > w_o: # Overlay là ảnh đứng
|
87 |
+
# Resize overlay sao cho h = h_t, giữ nguyên tỷ lệ
|
88 |
+
new_h = h_t
|
89 |
+
new_w = int(w_o * (new_h / h_o))
|
90 |
+
overlay_resized = cv2.resize(overlay, (new_w, new_h))
|
91 |
+
else: # Overlay là ảnh ngang
|
92 |
+
# Giữ nguyên overlay, nhưng nếu h < h_t thì thêm padding trắng
|
93 |
+
overlay_resized = overlay.copy()
|
94 |
+
|
95 |
+
# Thêm padding trắng nếu overlay có h < h_t
|
96 |
+
if overlay_resized.shape[0] < h_t:
|
97 |
+
pad_h = h_t - overlay_resized.shape[0]
|
98 |
+
padding = np.ones((pad_h, overlay_resized.shape[1], 3), dtype=np.uint8) * 255
|
99 |
+
overlay_resized = np.vstack((overlay_resized, padding)) # Padding vào dưới
|
100 |
+
|
101 |
+
# Đảm bảo overlay có cùng chiều cao với text_img
|
102 |
+
if overlay_resized.shape[0] != h_t:
|
103 |
+
overlay_resized = cv2.resize(overlay_resized, (overlay_resized.shape[1], h_t))
|
104 |
+
|
105 |
+
return overlay_resized
|
106 |
+
|
107 |
+
class InternVLChatModel(PreTrainedModel):
|
108 |
+
config_class = InternVLChatConfig
|
109 |
+
main_input_name = 'pixel_values'
|
110 |
+
base_model_prefix = 'language_model'
|
111 |
+
_supports_flash_attn_2 = True
|
112 |
+
_no_split_modules = ['InternVisionModel', 'LlamaDecoderLayer', 'Qwen2DecoderLayer']
|
113 |
+
|
114 |
+
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
|
115 |
+
super().__init__(config)
|
116 |
+
|
117 |
+
assert version_cmp(transformers.__version__, '4.37.0', 'ge')
|
118 |
+
image_size = config.force_image_size or config.vision_config.image_size
|
119 |
+
patch_size = config.vision_config.patch_size
|
120 |
+
self.patch_size = patch_size
|
121 |
+
self.select_layer = config.select_layer
|
122 |
+
self.template = config.template
|
123 |
+
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
|
124 |
+
self.downsample_ratio = config.downsample_ratio
|
125 |
+
self.ps_version = config.ps_version
|
126 |
+
use_flash_attn = use_flash_attn if has_flash_attn else False
|
127 |
+
config.vision_config.use_flash_attn = True if use_flash_attn else False
|
128 |
+
config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
|
129 |
+
|
130 |
+
logger.info(f'num_image_token: {self.num_image_token}')
|
131 |
+
logger.info(f'ps_version: {self.ps_version}')
|
132 |
+
if vision_model is not None:
|
133 |
+
self.vision_model = vision_model
|
134 |
+
else:
|
135 |
+
self.vision_model = InternVisionModel(config.vision_config)
|
136 |
+
if language_model is not None:
|
137 |
+
self.language_model = language_model
|
138 |
+
else:
|
139 |
+
if config.llm_config.architectures[0] == 'LlamaForCausalLM':
|
140 |
+
self.language_model = LlamaForCausalLM(config.llm_config)
|
141 |
+
elif config.llm_config.architectures[0] == 'Qwen2ForCausalLM':
|
142 |
+
self.language_model = Qwen2ForCausalLM(config.llm_config)
|
143 |
+
else:
|
144 |
+
raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.')
|
145 |
+
|
146 |
+
vit_hidden_size = config.vision_config.hidden_size
|
147 |
+
llm_hidden_size = config.llm_config.hidden_size
|
148 |
+
|
149 |
+
self.mlp1 = nn.Sequential(
|
150 |
+
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
|
151 |
+
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
|
152 |
+
nn.GELU(),
|
153 |
+
nn.Linear(llm_hidden_size, llm_hidden_size)
|
154 |
+
)
|
155 |
+
|
156 |
+
self.img_context_token_id = None
|
157 |
+
self.conv_template = get_conv_template(self.template)
|
158 |
+
self.system_message = self.conv_template.system_message
|
159 |
+
|
160 |
+
def forward(
|
161 |
+
self,
|
162 |
+
pixel_values: torch.FloatTensor,
|
163 |
+
input_ids: torch.LongTensor = None,
|
164 |
+
attention_mask: Optional[torch.Tensor] = None,
|
165 |
+
position_ids: Optional[torch.LongTensor] = None,
|
166 |
+
image_flags: Optional[torch.LongTensor] = None,
|
167 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
168 |
+
labels: Optional[torch.LongTensor] = None,
|
169 |
+
use_cache: Optional[bool] = None,
|
170 |
+
output_attentions: Optional[bool] = None,
|
171 |
+
output_hidden_states: Optional[bool] = None,
|
172 |
+
return_dict: Optional[bool] = None,
|
173 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
174 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
175 |
+
|
176 |
+
image_flags = image_flags.squeeze(-1)
|
177 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()
|
178 |
+
|
179 |
+
vit_embeds = self.extract_feature(pixel_values)
|
180 |
+
vit_embeds = vit_embeds[image_flags == 1]
|
181 |
+
vit_batch_size = pixel_values.shape[0]
|
182 |
+
|
183 |
+
B, N, C = input_embeds.shape
|
184 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
185 |
+
|
186 |
+
if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
|
187 |
+
print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')
|
188 |
+
|
189 |
+
input_ids = input_ids.reshape(B * N)
|
190 |
+
selected = (input_ids == self.img_context_token_id)
|
191 |
+
try:
|
192 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
|
193 |
+
except Exception as e:
|
194 |
+
vit_embeds = vit_embeds.reshape(-1, C)
|
195 |
+
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
|
196 |
+
f'vit_embeds.shape={vit_embeds.shape}')
|
197 |
+
n_token = selected.sum()
|
198 |
+
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token]
|
199 |
+
|
200 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
201 |
+
|
202 |
+
outputs = self.language_model(
|
203 |
+
inputs_embeds=input_embeds,
|
204 |
+
attention_mask=attention_mask,
|
205 |
+
position_ids=position_ids,
|
206 |
+
past_key_values=past_key_values,
|
207 |
+
use_cache=use_cache,
|
208 |
+
output_attentions=output_attentions,
|
209 |
+
output_hidden_states=output_hidden_states,
|
210 |
+
return_dict=return_dict,
|
211 |
+
)
|
212 |
+
logits = outputs.logits
|
213 |
+
|
214 |
+
loss = None
|
215 |
+
if labels is not None:
|
216 |
+
# Shift so that tokens < n predict n
|
217 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
218 |
+
shift_labels = labels[..., 1:].contiguous()
|
219 |
+
# Flatten the tokens
|
220 |
+
loss_fct = CrossEntropyLoss()
|
221 |
+
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
|
222 |
+
shift_labels = shift_labels.view(-1)
|
223 |
+
# Enable model parallelism
|
224 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
225 |
+
loss = loss_fct(shift_logits, shift_labels)
|
226 |
+
|
227 |
+
if not return_dict:
|
228 |
+
output = (logits,) + outputs[1:]
|
229 |
+
return (loss,) + output if loss is not None else output
|
230 |
+
|
231 |
+
return CausalLMOutputWithPast(
|
232 |
+
loss=loss,
|
233 |
+
logits=logits,
|
234 |
+
past_key_values=outputs.past_key_values,
|
235 |
+
hidden_states=outputs.hidden_states,
|
236 |
+
attentions=outputs.attentions,
|
237 |
+
)
|
238 |
+
|
239 |
+
def pixel_shuffle(self, x, scale_factor=0.5):
|
240 |
+
n, w, h, c = x.size()
|
241 |
+
# N, W, H, C --> N, W, H * scale, C // scale
|
242 |
+
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
|
243 |
+
# N, W, H * scale, C // scale --> N, H * scale, W, C // scale
|
244 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
245 |
+
# N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
|
246 |
+
x = x.view(n, int(h * scale_factor), int(w * scale_factor),
|
247 |
+
int(c / (scale_factor * scale_factor)))
|
248 |
+
if self.ps_version == 'v1':
|
249 |
+
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
|
250 |
+
'which results in a transposed image.')
|
251 |
+
else:
|
252 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
253 |
+
return x
|
254 |
+
|
255 |
+
def extract_feature(self, pixel_values):
|
256 |
+
if self.select_layer == -1:
|
257 |
+
vit_embeds = self.vision_model(
|
258 |
+
pixel_values=pixel_values,
|
259 |
+
output_hidden_states=False,
|
260 |
+
return_dict=True).last_hidden_state
|
261 |
+
else:
|
262 |
+
vit_embeds = self.vision_model(
|
263 |
+
pixel_values=pixel_values,
|
264 |
+
output_hidden_states=True,
|
265 |
+
return_dict=True).hidden_states[self.select_layer]
|
266 |
+
vit_embeds = vit_embeds[:, 1:, :]
|
267 |
+
|
268 |
+
h = w = int(vit_embeds.shape[1] ** 0.5)
|
269 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
|
270 |
+
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
|
271 |
+
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
|
272 |
+
vit_embeds = self.mlp1(vit_embeds)
|
273 |
+
return vit_embeds
|
274 |
+
|
275 |
+
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
|
276 |
+
history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
|
277 |
+
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
|
278 |
+
if history is not None or return_history:
|
279 |
+
print('Now multi-turn chat is not supported in batch_chat.')
|
280 |
+
raise NotImplementedError
|
281 |
+
|
282 |
+
if image_counts is not None:
|
283 |
+
num_patches_list = image_counts
|
284 |
+
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')
|
285 |
+
|
286 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
287 |
+
self.img_context_token_id = img_context_token_id
|
288 |
+
|
289 |
+
if verbose and pixel_values is not None:
|
290 |
+
image_bs = pixel_values.shape[0]
|
291 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
292 |
+
|
293 |
+
queries = []
|
294 |
+
for idx, num_patches in enumerate(num_patches_list):
|
295 |
+
question = questions[idx]
|
296 |
+
if pixel_values is not None and '<image>' not in question:
|
297 |
+
question = '<image>\n' + question
|
298 |
+
template = get_conv_template(self.template)
|
299 |
+
template.system_message = self.system_message
|
300 |
+
template.append_message(template.roles[0], question)
|
301 |
+
template.append_message(template.roles[1], None)
|
302 |
+
query = template.get_prompt()
|
303 |
+
|
304 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
305 |
+
query = query.replace('<image>', image_tokens, 1)
|
306 |
+
queries.append(query)
|
307 |
+
|
308 |
+
tokenizer.padding_side = 'left'
|
309 |
+
model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
|
310 |
+
input_ids = model_inputs['input_ids'].to(self.device)
|
311 |
+
attention_mask = model_inputs['attention_mask'].to(self.device)
|
312 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
|
313 |
+
generation_config['eos_token_id'] = eos_token_id
|
314 |
+
generation_output = self.generate(
|
315 |
+
pixel_values=pixel_values,
|
316 |
+
input_ids=input_ids,
|
317 |
+
attention_mask=attention_mask,
|
318 |
+
**generation_config
|
319 |
+
)
|
320 |
+
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
|
321 |
+
responses = [response.split(template.sep.strip())[0].strip() for response in responses]
|
322 |
+
return responses
|
323 |
+
|
324 |
+
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
|
325 |
+
num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
|
326 |
+
verbose=False, attention_visualize=False,last_visualize_layers=7,raw_image_path="",target_aspect_ratio=(1,1)):
|
327 |
+
|
328 |
+
if history is None and pixel_values is not None and '<image>' not in question:
|
329 |
+
question = '<image>\n' + question
|
330 |
+
|
331 |
+
if num_patches_list is None:
|
332 |
+
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
|
333 |
+
assert pixel_values is None or len(pixel_values) == sum(num_patches_list)
|
334 |
+
|
335 |
+
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
|
336 |
+
self.img_context_token_id = img_context_token_id
|
337 |
+
|
338 |
+
template = get_conv_template(self.template)
|
339 |
+
template.system_message = self.system_message
|
340 |
+
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
|
341 |
+
|
342 |
+
history = [] if history is None else history
|
343 |
+
for (old_question, old_answer) in history:
|
344 |
+
template.append_message(template.roles[0], old_question)
|
345 |
+
template.append_message(template.roles[1], old_answer)
|
346 |
+
template.append_message(template.roles[0], question)
|
347 |
+
template.append_message(template.roles[1], None)
|
348 |
+
query = template.get_prompt()
|
349 |
+
|
350 |
+
if verbose and pixel_values is not None:
|
351 |
+
image_bs = pixel_values.shape[0]
|
352 |
+
print(f'dynamic ViT batch size: {image_bs}')
|
353 |
+
|
354 |
+
for num_patches in num_patches_list:
|
355 |
+
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
|
356 |
+
query = query.replace('<image>', image_tokens, 1)
|
357 |
+
|
358 |
+
model_inputs = tokenizer(query, return_tensors='pt')
|
359 |
+
input_ids = model_inputs['input_ids'].to(self.device)
|
360 |
+
attention_mask = model_inputs['attention_mask'].to(self.device)
|
361 |
+
generation_config['eos_token_id'] = eos_token_id
|
362 |
+
if attention_visualize:
|
363 |
+
generation_output = self.generate(
|
364 |
+
pixel_values=pixel_values,
|
365 |
+
input_ids=input_ids,
|
366 |
+
attention_mask=attention_mask,
|
367 |
+
attention_visualize=attention_visualize,
|
368 |
+
output_hidden_states=True,
|
369 |
+
**generation_config
|
370 |
+
)
|
371 |
+
return generation_output, query
|
372 |
+
#################################### Attention visualize ##################################################
|
373 |
+
# attentions_tensors = []
|
374 |
+
# for tok_ in generation_output["attentions"]:
|
375 |
+
# attentions_tensors.append([])
|
376 |
+
# for lay_ in tok_ :
|
377 |
+
# attentions_tensors[-1].append(lay_.detach().cpu().type(torch.float).numpy())
|
378 |
+
# attention_scores = attentions_tensors
|
379 |
+
# query_ = tokenizer(query)
|
380 |
+
# start_img_token_index = int(np.where(np.array(query_["input_ids"])==tokenizer("<img>")["input_ids"][0])[0]+1)
|
381 |
+
# end_img_token_index = int(np.where(np.array(query_["input_ids"])==tokenizer("</img>")["input_ids"][0])[0]-256)
|
382 |
+
# if end_img_token_index - start_img_token_index == 0 :
|
383 |
+
# end_img_token_index = int(np.where(np.array(query_["input_ids"])==tokenizer("</img>")["input_ids"][0])[0])
|
384 |
+
|
385 |
+
# # Đọc ảnh gốc
|
386 |
+
# image = cv2.imread(raw_image_path)
|
387 |
+
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
388 |
+
# # Resize ảnh nhỏ hơn để giảm dung lượng GIF
|
389 |
+
# scale_factor = 1. # Giảm 50% kích thước
|
390 |
+
# # Font chữ
|
391 |
+
# font = ImageFont.truetype("DejaVuSans.ttf", 15)
|
392 |
+
# alpha = 0.4
|
393 |
+
# # Lưu danh sách frames GIF
|
394 |
+
# visualization_frames = []
|
395 |
+
# # Chuỗi sinh ra
|
396 |
+
# generated_text = ""
|
397 |
+
# frame_step = 1
|
398 |
+
# # Lặp qua từng token
|
399 |
+
# for index_focus in tqdm.tqdm(range(0, generation_output.sequences.shape[1], frame_step)):
|
400 |
+
# token_text = tokenizer.decode(generation_output.sequences[0, index_focus])
|
401 |
+
# generated_text += token_text # Ghép chữ lại
|
402 |
+
# # Tạo heatmap trung bình từ các lớp attention
|
403 |
+
# heat_maps = []
|
404 |
+
# for i in range(1, 8):
|
405 |
+
# heat_maps.append(
|
406 |
+
# self.visualize_attention(
|
407 |
+
# attention_scores[index_focus], layer=-i, head=None,
|
408 |
+
# start_img_token_index=start_img_token_index, end_img_token_index=end_img_token_index, target_aspect_ratio=target_aspect_ratio
|
409 |
+
# )[0]
|
410 |
+
# )
|
411 |
+
# heatmap = np.array(heat_maps).mean(0)
|
412 |
+
# # Resize heatmap về kích thước ảnh gốc
|
413 |
+
# heatmap = cv2.resize(heatmap, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_CUBIC)
|
414 |
+
# # Làm mượt heatmap
|
415 |
+
# heatmap_smooth = gaussian_filter(heatmap, sigma=1)
|
416 |
+
# # Chuẩn hóa heatmap về 0-255
|
417 |
+
# heatmap_norm = cv2.normalize(heatmap_smooth, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8)
|
418 |
+
# heatmap_color = cv2.applyColorMap(heatmap_norm, cv2.COLORMAP_JET)
|
419 |
+
# heatmap_color = cv2.cvtColor(heatmap_color, cv2.COLOR_BGR2RGB)
|
420 |
+
# # Overlay ảnh heatmap lên ảnh gốc
|
421 |
+
# overlay = cv2.addWeighted(image, 1 - alpha, heatmap_color, alpha, 0)
|
422 |
+
# # Tạo ảnh chứa text b��n phải
|
423 |
+
# text_img = draw_text_to_image(generated_text, font, image_width=600, min_height=500)
|
424 |
+
# text_img = np.array(text_img)
|
425 |
+
# # text_img = cv2.resize(np.array(text_img),(overlay.shape[1],overlay.shape[0]))
|
426 |
+
# # combined_image = np.hstack((overlay, text_img))
|
427 |
+
# ## Đảm bảo overlay và text_img có cùng kích thước
|
428 |
+
# overlay_adjusted = adjust_overlay(overlay, text_img)
|
429 |
+
# # Ghép ảnh
|
430 |
+
# combined_image = np.hstack((overlay_adjusted, text_img))
|
431 |
+
# # Lưu vào danh sách frames
|
432 |
+
# visualization_frames.append(combined_image)
|
433 |
+
|
434 |
+
# generation_output = generation_output.sequences
|
435 |
+
# response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
|
436 |
+
# response = response.split(template.sep.strip())[0].strip()
|
437 |
+
# history.append((question, response))
|
438 |
+
# if return_history:
|
439 |
+
# return response, history, visualization_frames
|
440 |
+
# else:
|
441 |
+
# query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
|
442 |
+
# query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
|
443 |
+
# if verbose:
|
444 |
+
# print(query_to_print, response)
|
445 |
+
# return response, visualization_frames
|
446 |
+
############################################################################################################
|
447 |
+
else:
|
448 |
+
generation_output = self.generate(
|
449 |
+
pixel_values=pixel_values,
|
450 |
+
input_ids=input_ids,
|
451 |
+
attention_mask=attention_mask,
|
452 |
+
attention_visualize=attention_visualize,
|
453 |
+
**generation_config
|
454 |
+
)
|
455 |
+
|
456 |
+
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
|
457 |
+
response = response.split(template.sep.strip())[0].strip()
|
458 |
+
history.append((question, response))
|
459 |
+
if return_history:
|
460 |
+
return response, history
|
461 |
+
else:
|
462 |
+
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
|
463 |
+
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
|
464 |
+
if verbose:
|
465 |
+
print(query_to_print, response)
|
466 |
+
return response
|
467 |
+
|
468 |
+
def visualize_attention(self, attention_tensor,layer=0, head=None, start_img_token_index=0, end_img_token_index=0, target_aspect_ratio=(0,0)):
|
469 |
+
"""Vẽ heatmap của attention scores từ layer được chọn và có thể chọn head cụ thể hoặc trung bình."""
|
470 |
+
selected_layer = attention_tensor[layer] # Chọn layer cụ thể
|
471 |
+
if head is None:
|
472 |
+
averaged_attention = selected_layer.mean(axis=1).squeeze() # Trung bình qua 14 head
|
473 |
+
else:
|
474 |
+
averaged_attention = selected_layer[:, head, :, :].squeeze() # Chọn head cụ thể
|
475 |
+
averaged_attention = np.power(averaged_attention, 0.9)
|
476 |
+
heat_maps = []
|
477 |
+
for i in range(len(averaged_attention)): # Duyệt qua 3 beam
|
478 |
+
h_target_aspect_ratio = target_aspect_ratio[1]
|
479 |
+
if h_target_aspect_ratio == 0 :
|
480 |
+
h_target_aspect_ratio = 1
|
481 |
+
w_target_aspect_ratio = target_aspect_ratio[0]
|
482 |
+
if w_target_aspect_ratio == 0 :
|
483 |
+
w_target_aspect_ratio = 1
|
484 |
+
img_atten_score = averaged_attention[i].reshape(-1)[start_img_token_index:end_img_token_index]
|
485 |
+
img_atten_score = img_atten_score.reshape(h_target_aspect_ratio,w_target_aspect_ratio,16,16)
|
486 |
+
img_atten_score = np.transpose(img_atten_score, (0, 2, 1, 3)).reshape(h_target_aspect_ratio*16,w_target_aspect_ratio*16)
|
487 |
+
heat_maps.append(img_atten_score)
|
488 |
+
return heat_maps
|
489 |
+
|
490 |
+
|
491 |
+
|
492 |
+
|
493 |
+
@torch.no_grad()
|
494 |
+
def generate(
|
495 |
+
self,
|
496 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
497 |
+
input_ids: Optional[torch.FloatTensor] = None,
|
498 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
499 |
+
visual_features: Optional[torch.FloatTensor] = None,
|
500 |
+
generation_config: Optional[GenerationConfig] = None,
|
501 |
+
output_hidden_states: Optional[bool] = None,
|
502 |
+
attention_visualize: Optional[bool] = False,
|
503 |
+
**generate_kwargs,
|
504 |
+
) -> torch.LongTensor:
|
505 |
+
|
506 |
+
assert self.img_context_token_id is not None
|
507 |
+
if pixel_values is not None:
|
508 |
+
if visual_features is not None:
|
509 |
+
vit_embeds = visual_features
|
510 |
+
else:
|
511 |
+
vit_embeds = self.extract_feature(pixel_values)
|
512 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
513 |
+
B, N, C = input_embeds.shape
|
514 |
+
input_embeds = input_embeds.reshape(B * N, C)
|
515 |
+
|
516 |
+
input_ids = input_ids.reshape(B * N)
|
517 |
+
selected = (input_ids == self.img_context_token_id)
|
518 |
+
assert selected.sum() != 0
|
519 |
+
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)
|
520 |
+
|
521 |
+
input_embeds = input_embeds.reshape(B, N, C)
|
522 |
+
else:
|
523 |
+
input_embeds = self.language_model.get_input_embeddings()(input_ids)
|
524 |
+
if attention_visualize:
|
525 |
+
output_attentions = True
|
526 |
+
return_dict_in_generate = True
|
527 |
+
else:
|
528 |
+
output_attentions = False
|
529 |
+
return_dict_in_generate = False
|
530 |
+
|
531 |
+
outputs = self.language_model.generate(
|
532 |
+
inputs_embeds=input_embeds,
|
533 |
+
attention_mask=attention_mask,
|
534 |
+
generation_config=generation_config,
|
535 |
+
output_hidden_states=output_hidden_states,
|
536 |
+
use_cache=True,
|
537 |
+
output_attentions=output_attentions,
|
538 |
+
return_dict_in_generate=return_dict_in_generate,
|
539 |
+
**generate_kwargs,
|
540 |
+
)
|
541 |
+
|
542 |
+
return outputs
|
543 |
+
|