Improve model card: Add library, links, detailed sections, and usage example (#1)
Browse files- Improve model card: Add library, links, detailed sections, and usage example (11632290af4931c0b2a86d2633a2f5a49aa28d29)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
@@ -1,8 +1,109 @@
|
|
1 |
---
|
2 |
-
license: cc-by-nc-nd-4.0
|
3 |
base_model:
|
4 |
- liuhaotian/llava-v1.5-7b
|
|
|
5 |
pipeline_tag: image-text-to-text
|
|
|
|
|
|
|
|
|
6 |
---
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
2 |
base_model:
|
3 |
- liuhaotian/llava-v1.5-7b
|
4 |
+
license: cc-by-nc-nd-4.0
|
5 |
pipeline_tag: image-text-to-text
|
6 |
+
library_name: transformers
|
7 |
+
tags:
|
8 |
+
- multimodal
|
9 |
+
- chain-of-thought
|
10 |
---
|
11 |
|
12 |
+
# UV-CoT: Unsupervised Visual Chain-of-Thought Reasoning via Preference Optimization
|
13 |
+
|
14 |
+
This repository hosts the **UV-CoT** model, presented in the paper [Unsupervised Visual Chain-of-Thought Reasoning via Preference Optimization](https://huggingface.co/papers/2504.18397).
|
15 |
+
|
16 |
+
* **Project page:** [https://kesenzhao.github.io/my_project/projects/UV-CoT.html](https://kesenzhao.github.io/my_project/projects/UV-CoT.html)
|
17 |
+
* **Code:** [https://github.com/UV-CoT](https://github.com/UV-CoT)
|
18 |
+
|
19 |
+
## Overview
|
20 |
+
|
21 |
+
Chain-of-thought (CoT) reasoning greatly improves the interpretability and problem-solving abilities of multimodal large language models (MLLMs). Existing approaches primarily focus on text CoT, limiting their ability to leverage visual cues. Unsupervised Visual CoT (UV-CoT) introduces a novel framework for image-level CoT reasoning via preference optimization, eliminating the need for extensive labeled bounding-box data.
|
22 |
+
|
23 |
+
UV-CoT achieves this by performing preference comparisons between model-generated bounding boxes. It generates preference data automatically, then uses an evaluator MLLM (e.g., OmniLLM-12B) to rank responses, which serves as supervision to train the target MLLM (e.g., LLaVA-1.5-7B). This approach emulates human perception—identifying key regions and reasoning based on them—thereby improving visual comprehension, particularly in spatial reasoning tasks.
|
24 |
+
|
25 |
+

|
26 |
+
|
27 |
+
## Visualizations
|
28 |
+
|
29 |
+
Qualitative examples demonstrating UV-CoT's visual reasoning:
|
30 |
+
|
31 |
+

|
32 |
+

|
33 |
+
|
34 |
+
## Installation
|
35 |
+
|
36 |
+
To set up the environment and install necessary packages, follow these steps:
|
37 |
+
|
38 |
+
1. Clone this repository and navigate to the `UV-CoT` folder:
|
39 |
+
```bash
|
40 |
+
git clone https://github.com/UV-CoT
|
41 |
+
cd UV-CoT
|
42 |
+
```
|
43 |
+
|
44 |
+
2. Create a conda environment and install the package:
|
45 |
+
```bash
|
46 |
+
conda create -n uv-cot python=3.10 -y
|
47 |
+
conda activate uv-cot
|
48 |
+
pip install -e .
|
49 |
+
```
|
50 |
+
3. Install the required spaCy model:
|
51 |
+
```bash
|
52 |
+
wget https://github.com/explosion/spacy-models/releases/download/en_core_web_trf-3.7.3/en_core_web_trf-3.7.3.tar.gz
|
53 |
+
pip install en_core_web_trf-3.7.3.tar.gz
|
54 |
+
```
|
55 |
+
|
56 |
+
## Usage
|
57 |
+
|
58 |
+
You can load and use the UV-CoT model with the `transformers` library. For detailed information on preference data curation, training, and evaluation, please refer to the [official GitHub repository](https://github.com/UV-CoT).
|
59 |
+
|
60 |
+
Here's a basic example of how to use the model for inference:
|
61 |
+
|
62 |
+
```python
|
63 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
64 |
+
from PIL import Image
|
65 |
+
import requests
|
66 |
+
import torch
|
67 |
+
|
68 |
+
# Load model and processor
|
69 |
+
model_id = "kesenZhaoNTU/UV-CoT" # Use this model_id to load UV-CoT
|
70 |
+
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype="auto", device_map="auto")
|
71 |
+
processor = AutoProcessor.from_pretrained(model_id)
|
72 |
+
|
73 |
+
# Load an example image
|
74 |
+
image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/transformers/tasks/bird.jpg"
|
75 |
+
image = Image.open(requests.get(image_url, stream=True).raw).convert("RGB")
|
76 |
+
|
77 |
+
# Define the conversation prompt
|
78 |
+
prompt = "Describe the image in detail."
|
79 |
+
messages = [
|
80 |
+
{"role": "user", "content": f"<image>
|
81 |
+
{prompt}"}
|
82 |
+
]
|
83 |
+
|
84 |
+
# Apply the chat template to format the prompt for the model
|
85 |
+
text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
86 |
+
|
87 |
+
# Prepare inputs for the model
|
88 |
+
inputs = processor(text=text, images=image, return_tensors="pt").to(model.device)
|
89 |
+
|
90 |
+
# Generate response
|
91 |
+
output = model.generate(**inputs, max_new_tokens=200)
|
92 |
+
print(processor.decode(output[0], skip_special_tokens=True))
|
93 |
+
```
|
94 |
+
|
95 |
+
## Citation
|
96 |
+
|
97 |
+
If our work assists your research, feel free to give us a star ⭐ or cite us using:
|
98 |
+
|
99 |
+
```bibtex
|
100 |
+
@misc{zhao2025unsupervisedvisualchainofthoughtreasoning,
|
101 |
+
title={Unsupervised Visual Chain-of-Thought Reasoning via Preference Optimization},
|
102 |
+
author={Kesen Zhao and Beier Zhu and Qianru Sun and Hanwang Zhang},
|
103 |
+
year={2025},
|
104 |
+
eprint={2504.18397},
|
105 |
+
archivePrefix={arXiv},
|
106 |
+
primaryClass={cs.CV},
|
107 |
+
url={https://arxiv.org/abs/2504.18397},
|
108 |
+
}
|
109 |
+
```
|