--- license: mit --- # triton-kernels triton-kernels is a set of kernels that enable fast moe on different architectures. These kernels are compatible with different precision (e.g bf16, mxfp4) Original code here https://github.com/triton-lang/triton/tree/main/python/triton_kernels The current version is the following commit 7d0efaa7231661299284a603512fce4fa255e62c ## Quickstart ```bash uv run https://huggingface.co/kernels-community/triton_kernels/raw/main/readme_example.py ``` ```python # /// script # requires-python = ">=3.10" # dependencies = [ # "torch", # "triton", # "numpy", # "kernels", # ] # /// import torch import sys from kernels import get_kernel torch.manual_seed(42) torch.cuda.manual_seed(42) # Load triton_kernels module via kernels library triton_kernels = get_kernel("kernels-community/triton_kernels") # Access modules directly from the loaded kernel swiglu = triton_kernels.swiglu routing = triton_kernels.routing # Setup device = "cuda" if torch.cuda.is_available() else "cpu" # SwiGLU example x = torch.randn(512, 1024, device=device, dtype=torch.bfloat16) y = swiglu.swiglu_torch(x, 0.5, swiglu.PrecisionConfig(limit=1.0)) print(f"SwiGLU: {x.shape} -> {y.shape}") # Routing example logits = torch.randn(128, 8, device=device, dtype=torch.float16) routing_data, gather_idx, scatter_idx = routing.routing_torch(logits, n_expts_act=2) print(f"Routing: {routing_data.expt_hist.sum()} tokens routed") # MoE integrated n_tokens = routing_data.expt_hist.sum().item() x_moe = torch.randn(n_tokens, 512, device=device, dtype=torch.bfloat16) y_moe = swiglu.swiglu_torch(x_moe, 0.5, swiglu.PrecisionConfig(limit=1.0)) print(f"MoE SwiGLU: {x_moe.shape} -> {y_moe.shape}") ```