# /// script # dependencies = [ # "numpy", # "torch", # "kernels" # ] # /// import torch from kernels import get_kernel # Setup torch.manual_seed(42) flash_attn = get_kernel("kernels-community/flash-attn") device = torch.device("cuda") # Create test tensors B, S, H, D = 2, 5, 4, 8 # batch, seq_len, heads, head_dim q = k = v = torch.randn(B, S, H, D, device=device, dtype=torch.float16) # Reference implementation using PyTorch SDPA def reference_attention(query, key, value, causal=False): query, key, value = (x.transpose(1, 2).contiguous() for x in (query, key, value)) with torch.nn.attention.sdpa_kernel(torch.nn.attention.SDPBackend.MATH): out = torch.nn.functional.scaled_dot_product_attention(query, key, value, is_causal=causal) return out.transpose(1, 2).contiguous() # 1. Standard attention print("\n1. Standard attention:") out_ref = reference_attention(q, k, v) out_flash = flash_attn.fwd( q=q, k=k, v=v, is_causal=False, )[0] print(f"Reference output: {out_ref.shape}") print(f"Flash output: {out_flash.shape}") print(f"Outputs close: {torch.allclose(out_flash, out_ref, atol=1e-2, rtol=1e-3)}") # 2. Causal attention (for autoregressive models) print("\n2. Causal attention:") out_ref_causal = reference_attention(q, k, v, causal=True) out_causal = flash_attn.fwd( q=q, k=k, v=v, is_causal=True, )[0] print(f"Reference causal output: {out_ref_causal.shape}") print(f"Flash causal output: {out_causal.shape}") print(f"Outputs close: {torch.allclose(out_causal, out_ref_causal, atol=1e-2, rtol=1e-3)}") def var_reference_attention(q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, causal=False): batch_size = cu_seqlens_q.shape[0] - 1 # Return output in packed format (same as flash attention) total_tokens_q = q.shape[0] out = torch.zeros((total_tokens_q, q.shape[1], q.shape[2]), device=q.device, dtype=q.dtype) for b in range(batch_size): start_q, end_q = cu_seqlens_q[b], cu_seqlens_q[b + 1] start_k, end_k = cu_seqlens_k[b], cu_seqlens_k[b + 1] # Extract slices for this batch q_slice = q[start_q:end_q] # Shape: (seq_len_q, H, D) k_slice = k[start_k:end_k] # Shape: (seq_len_k, H, D) v_slice = v[start_k:end_k] # Shape: (seq_len_k, H, D) # Add batch dimension for reference_attention q_slice = q_slice.unsqueeze(0) # Shape: (1, seq_len_q, H, D) k_slice = k_slice.unsqueeze(0) # Shape: (1, seq_len_k, H, D) v_slice = v_slice.unsqueeze(0) # Shape: (1, seq_len_k, H, D) # Compute attention and remove batch dimension attn_out = reference_attention(q_slice, k_slice, v_slice, causal=causal) attn_out = attn_out.squeeze(0) # Shape: (seq_len_q, H, D) # Place result in output tensor (packed format) out[start_q:end_q] = attn_out return out # 3. Variable length sequences (packed format) print("\n3. Variable length sequences:") # Pack sequences of lengths [3,4,3] for q and [4,5,3] for k into single tensors q_var = torch.randn(10, H, D, device=device, dtype=torch.float16) # total_q=10 k_var = v_var = torch.randn(12, H, D, device=device, dtype=torch.float16) # total_k=12 cu_q = torch.tensor([0, 3, 7, 10], device=device, dtype=torch.int32) # cumulative sequence lengths cu_k = torch.tensor([0, 4, 9, 12], device=device, dtype=torch.int32) out_var_ref = var_reference_attention(q_var, k_var, v_var, cu_q, cu_k, max_seqlen_q=4, max_seqlen_k=5, causal=False) # Custom function to handle variable out_var = flash_attn.varlen_fwd( q=q_var, k=k_var, v=v_var, cu_seqlens_q=cu_q, cu_seqlens_k=cu_k, max_seqlen_q=4, max_seqlen_k=5, )[0] print(f"Variable length output: {out_var.shape}") print(f"Reference variable length output: {out_var_ref.shape}") print(f"Outputs close: {torch.allclose(out_var, out_var_ref, atol=1e-2, rtol=1e-3)}")