kernel
drbh commited on
Commit
876ac68
·
1 Parent(s): 3b8334d

fix: refactor bindings and update py library for correctness

Browse files
build.toml CHANGED
@@ -31,7 +31,7 @@ src = [
31
  "flash_attn/src/softmax.h",
32
  "flash_attn/src/utils.h",
33
 
34
- # bwd kernels
35
  "flash_attn/src/flash_bwd_hdim128_bf16_causal_sm80.cu",
36
  "flash_attn/src/flash_bwd_hdim128_bf16_sm80.cu",
37
  "flash_attn/src/flash_bwd_hdim128_fp16_causal_sm80.cu",
@@ -60,7 +60,7 @@ src = [
60
  "flash_attn/src/flash_bwd_launch_template.h",
61
  "flash_attn/src/flash_bwd_preprocess_kernel.h",
62
 
63
- ## fwd kernels
64
  "flash_attn/src/flash_fwd_hdim128_bf16_causal_sm80.cu",
65
  "flash_attn/src/flash_fwd_hdim128_bf16_sm80.cu",
66
  "flash_attn/src/flash_fwd_hdim128_fp16_causal_sm80.cu",
@@ -88,7 +88,7 @@ src = [
88
  "flash_attn/src/flash_fwd_kernel.h",
89
  "flash_attn/src/flash_fwd_launch_template.h",
90
 
91
- # split kernels
92
  "flash_attn/src/flash_fwd_split_hdim128_bf16_causal_sm80.cu",
93
  "flash_attn/src/flash_fwd_split_hdim128_bf16_sm80.cu",
94
  "flash_attn/src/flash_fwd_split_hdim128_fp16_causal_sm80.cu",
 
31
  "flash_attn/src/softmax.h",
32
  "flash_attn/src/utils.h",
33
 
34
+ # bwd kernels - commented out since mha_bwd functions are disabled
35
  "flash_attn/src/flash_bwd_hdim128_bf16_causal_sm80.cu",
36
  "flash_attn/src/flash_bwd_hdim128_bf16_sm80.cu",
37
  "flash_attn/src/flash_bwd_hdim128_fp16_causal_sm80.cu",
 
60
  "flash_attn/src/flash_bwd_launch_template.h",
61
  "flash_attn/src/flash_bwd_preprocess_kernel.h",
62
 
63
+ ## fwd kernels - keeping only FP16 kernels for hdim 64 and 128 (both causal and non-causal)
64
  "flash_attn/src/flash_fwd_hdim128_bf16_causal_sm80.cu",
65
  "flash_attn/src/flash_fwd_hdim128_bf16_sm80.cu",
66
  "flash_attn/src/flash_fwd_hdim128_fp16_causal_sm80.cu",
 
88
  "flash_attn/src/flash_fwd_kernel.h",
89
  "flash_attn/src/flash_fwd_launch_template.h",
90
 
91
+ # split kernels - keeping only FP16 kernels for hdim 64 and 128 (both causal and non-causal)
92
  "flash_attn/src/flash_fwd_split_hdim128_bf16_causal_sm80.cu",
93
  "flash_attn/src/flash_fwd_split_hdim128_bf16_sm80.cu",
94
  "flash_attn/src/flash_fwd_split_hdim128_fp16_causal_sm80.cu",
flake.lock CHANGED
@@ -98,11 +98,11 @@
98
  ]
99
  },
100
  "locked": {
101
- "lastModified": 1750695026,
102
- "narHash": "sha256-bpeVC/U8neDhBJGFDwIltCYO/+IKIXvm6rgUR+NffMM=",
103
  "owner": "huggingface",
104
  "repo": "kernel-builder",
105
- "rev": "55a8181d393b1d6230e1c33c97989e7e2499334d",
106
  "type": "github"
107
  },
108
  "original": {
 
98
  ]
99
  },
100
  "locked": {
101
+ "lastModified": 1751910742,
102
+ "narHash": "sha256-VJrRLH9hsq0SCSsgNLBm9/L7ZCNEjVBKg4y3yT1k6Q4=",
103
  "owner": "huggingface",
104
  "repo": "kernel-builder",
105
+ "rev": "f1099723e3df41950b073051839bc2c5b088c380",
106
  "type": "github"
107
  },
108
  "original": {
flake.nix CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- description = "Flake for ReLU kernel";
3
 
4
  inputs = {
5
  kernel-builder.url = "github:huggingface/kernel-builder";
@@ -13,5 +13,9 @@
13
  kernel-builder.lib.genFlakeOutputs {
14
  path = ./.;
15
  rev = self.shortRev or self.dirtyShortRev or self.lastModifiedDate;
 
 
 
 
16
  };
17
- }
 
1
  {
2
+ description = "Flake for flash-attn kernel";
3
 
4
  inputs = {
5
  kernel-builder.url = "github:huggingface/kernel-builder";
 
13
  kernel-builder.lib.genFlakeOutputs {
14
  path = ./.;
15
  rev = self.shortRev or self.dirtyShortRev or self.lastModifiedDate;
16
+
17
+ pythonCheckInputs = pkgs: with pkgs; [
18
+ einops
19
+ ];
20
  };
21
+ }
flash_attn/flash_api.cpp CHANGED
@@ -1475,78 +1475,85 @@ mha_fwd_kvcache(at::Tensor &q, // batch_size x seqlen_q x num_he
1475
  }
1476
  } // namespace FLASH_NAMESPACE
1477
 
1478
- // Prefer the most minimal wrapper possible to avoid unnecessary copies or conversions.
1479
  std::vector<torch::Tensor>
1480
- mha_fwd(torch::Tensor &q, const torch::Tensor &k, const torch::Tensor &v,
1481
- c10::optional<torch::Tensor> out_,
1482
- c10::optional<torch::Tensor> alibi_slopes_,
1483
- const double p_dropout, const double softmax_scale, bool is_causal,
1484
- const int64_t window_size_left, const int64_t window_size_right,
1485
- const double softcap, const bool return_softmax,
1486
- c10::optional<at::Generator> gen_) {
1487
-
1488
- printf("Confirm this path is taken\n");
1489
- auto result = FLASH_NAMESPACE::mha_fwd(
1490
- q, k, v, out_, alibi_slopes_, static_cast<float>(p_dropout),
1491
- static_cast<float>(softmax_scale), is_causal,
1492
- static_cast<int>(window_size_left), static_cast<int>(window_size_right),
1493
- static_cast<float>(softcap), return_softmax, gen_);
1494
-
1495
- return result;
 
 
 
 
 
 
 
 
 
 
 
 
 
1496
  }
1497
 
1498
  std::vector<torch::Tensor>
1499
- mha_varlen_fwd(const torch::Tensor &q, // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
1500
- const torch::Tensor &k, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_>
1501
- const torch::Tensor &v, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_>
1502
- const c10::optional<torch::Tensor> &out_, // total_q x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
1503
- const torch::Tensor &cu_seqlens_q, // b+1
1504
- const torch::Tensor &cu_seqlens_k, // b+1
1505
- const c10::optional<torch::Tensor> &seqused_k_, // b. If given, only this many elements of each batch element's keys are used.
1506
- const c10::optional<torch::Tensor> &leftpad_k_, // batch_size
1507
- const c10::optional<torch::Tensor> &block_table_, // batch_size x max_num_blocks_per_seq
1508
- const c10::optional<torch::Tensor> &alibi_slopes_, // num_heads or b x num_heads
1509
- const int64_t max_seqlen_q,
1510
- const int64_t max_seqlen_k,
1511
- const double p_dropout,
1512
- const double softmax_scale,
1513
- const bool zero_tensors,
1514
- const bool is_causal,
1515
- const int64_t window_size_left,
1516
- const int64_t window_size_right,
1517
- const double softcap,
1518
- const bool return_softmax,
1519
- const c10::optional<at::Generator> gen_) {
1520
-
1521
- auto gen = gen_.value_or(at::cuda::detail::getDefaultCUDAGenerator());
1522
- // Prepare the optional arguments as non-const references.
1523
- std::optional<at::Tensor> out = out_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(out_.value())) : std::nullopt;
1524
- std::optional<at::Tensor> seqused_k = seqused_k_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(seqused_k_.value())) : std::nullopt;
1525
- std::optional<const at::Tensor> leftpad_k = leftpad_k_.has_value() ? std::optional<const at::Tensor>(leftpad_k_.value()) : std::nullopt;
1526
- std::optional<at::Tensor> block_table = block_table_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(block_table_.value())) : std::nullopt;
1527
- std::optional<at::Tensor> alibi_slopes = alibi_slopes_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(alibi_slopes_.value())) : std::nullopt;
1528
-
1529
- if (!out.has_value()){
1530
- out = torch::empty_like(q);
1531
- }
1532
- // Convert double to float and int64_t to int.
1533
- float p_dropout_float = static_cast<float>(p_dropout);
1534
- float softmax_scale_float = static_cast<float>(softmax_scale);
1535
- float softcap_float = static_cast<float>(softcap);
1536
- int max_seqlen_q_int = static_cast<int>(max_seqlen_q);
1537
- int max_seqlen_k_int = static_cast<int>(max_seqlen_k);
1538
- int window_size_left_int = static_cast<int>(window_size_left);
1539
- int window_size_right_int = static_cast<int>(window_size_right);
1540
-
1541
  return FLASH_NAMESPACE::mha_varlen_fwd(
1542
- const_cast<at::Tensor &>(q), k, v, out,
1543
- cu_seqlens_q, cu_seqlens_k,
1544
- seqused_k, leftpad_k, block_table, alibi_slopes,
1545
- max_seqlen_q_int, max_seqlen_k_int,
1546
- p_dropout_float, softmax_scale_float,
1547
- zero_tensors, is_causal,
1548
- window_size_left_int, window_size_right_int,
1549
- softcap_float, return_softmax, gen);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1550
  }
1551
 
1552
  std::vector<torch::Tensor>
 
1475
  }
1476
  } // namespace FLASH_NAMESPACE
1477
 
1478
+ // std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>
1479
  std::vector<torch::Tensor>
1480
+ mha_fwd(
1481
+ torch::Tensor &q,
1482
+ const torch::Tensor &k,
1483
+ const torch::Tensor &v,
1484
+ c10::optional<torch::Tensor> out_,
1485
+ c10::optional<torch::Tensor> alibi_slopes_,
1486
+ const double p_dropout,
1487
+ const double softmax_scale,
1488
+ bool is_causal,
1489
+ const int64_t window_size_left,
1490
+ const int64_t window_size_right,
1491
+ const double softcap,
1492
+ const bool return_softmax,
1493
+ c10::optional<at::Generator> gen_) {
1494
+ return FLASH_NAMESPACE::mha_fwd(
1495
+ q,
1496
+ k,
1497
+ v,
1498
+ out_,
1499
+ alibi_slopes_,
1500
+ static_cast<float>(p_dropout),
1501
+ static_cast<float>(softmax_scale),
1502
+ is_causal,
1503
+ static_cast<int>(window_size_left),
1504
+ static_cast<int>(window_size_right),
1505
+ static_cast<float>(softcap),
1506
+ return_softmax,
1507
+ gen_
1508
+ );
1509
  }
1510
 
1511
  std::vector<torch::Tensor>
1512
+ mha_varlen_fwd(
1513
+ torch::Tensor &q, // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
1514
+ const torch::Tensor &k, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
1515
+ const torch::Tensor &v, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
1516
+ std::optional<torch::Tensor> out_, // total_q x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
1517
+ const torch::Tensor &cu_seqlens_q, // b+1
1518
+ const torch::Tensor &cu_seqlens_k, // b+1
1519
+ std::optional<torch::Tensor> seqused_k, // b. If given, only this many elements of each batch element's keys are used.
1520
+ std::optional<torch::Tensor> leftpad_k_, // batch_size
1521
+ std::optional<torch::Tensor> block_table_, // batch_size x max_num_blocks_per_seq
1522
+ std::optional<torch::Tensor> alibi_slopes_, // num_heads or b x num_heads
1523
+ int64_t max_seqlen_q,
1524
+ const int64_t max_seqlen_k,
1525
+ const double p_dropout,
1526
+ const double softmax_scale,
1527
+ const bool zero_tensors,
1528
+ bool is_causal,
1529
+ int64_t window_size_left,
1530
+ int64_t window_size_right,
1531
+ const double softcap,
1532
+ const bool return_softmax,
1533
+ std::optional<at::Generator> gen_) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1534
  return FLASH_NAMESPACE::mha_varlen_fwd(
1535
+ const_cast<at::Tensor &>(q),
1536
+ k,
1537
+ v,
1538
+ out_,
1539
+ cu_seqlens_q,
1540
+ cu_seqlens_k,
1541
+ seqused_k,
1542
+ reinterpret_cast<std::optional<const at::Tensor>&>(leftpad_k_),
1543
+ block_table_,
1544
+ alibi_slopes_,
1545
+ static_cast<int>(max_seqlen_q),
1546
+ static_cast<int>(max_seqlen_k),
1547
+ static_cast<float>(p_dropout),
1548
+ static_cast<float>(softmax_scale),
1549
+ zero_tensors,
1550
+ is_causal,
1551
+ static_cast<int>(window_size_left),
1552
+ static_cast<int>(window_size_right),
1553
+ static_cast<float>(softcap),
1554
+ return_softmax,
1555
+ gen_
1556
+ );
1557
  }
1558
 
1559
  std::vector<torch::Tensor>
tests/test_flash_attn.py CHANGED
The diff for this file is too large to render. See raw diff
 
tests/test_flash_attn_raw.py ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import flash_attn
3
+
4
+ # make reproducible
5
+ torch.manual_seed(0)
6
+
7
+
8
+ def _attention_torch(query, key, value, *, backend):
9
+ query, key, value = (x.transpose(1, 2).contiguous() for x in (query, key, value))
10
+ with torch.nn.attention.sdpa_kernel(backend):
11
+ out = torch.nn.functional.scaled_dot_product_attention(query, key, value)
12
+ out = out.transpose(1, 2).contiguous()
13
+ return out
14
+
15
+
16
+ def test_flash_attn():
17
+ """Test standard flash attention with mha_fwd"""
18
+ print("===== Testing mha_fwd =====")
19
+
20
+ batch_size = 1
21
+ seq_len = 4224
22
+ num_attention_heads = 24
23
+ attention_head_dim = 128
24
+
25
+ shape = (batch_size, seq_len, num_attention_heads, attention_head_dim)
26
+
27
+ print(f"Testing shape: {shape}")
28
+ print(f"Batch size: {batch_size}, Seq len: {seq_len}")
29
+ print(f"Num heads: {num_attention_heads}, Head dim: {attention_head_dim}")
30
+
31
+ query = torch.randn(shape, device="cuda", dtype=torch.float16)
32
+ key = torch.randn(shape, device="cuda", dtype=torch.float16)
33
+ value = torch.randn(shape, device="cuda", dtype=torch.float16)
34
+
35
+ # Get reference implementation using PyTorch SDPA
36
+ golden_truth = _attention_torch(
37
+ query, key, value, backend=torch.nn.attention.SDPBackend.MATH
38
+ )
39
+
40
+ print(f"Golden truth shape: {golden_truth.shape}")
41
+ print(f"Query sum: {query.sum().item()}")
42
+
43
+ # Test non-causal flash attention
44
+ out, softmax_lse, p, rng_state = flash_attn.fwd(
45
+ q=query,
46
+ k=key,
47
+ v=value,
48
+ is_causal=False,
49
+ )
50
+
51
+ print(f"Flash attention output shape: {out.shape}")
52
+ print(f"Query sum after attention: {query.sum().item()}")
53
+
54
+ # Compare outputs
55
+ diff = (out - golden_truth).abs().max()
56
+ print(f"Max absolute difference (non-causal): {diff.item()}")
57
+
58
+ assert out.shape == shape
59
+ assert diff < 1e-2, f"Difference too large: {diff.item()}"
60
+
61
+ # Test causal attention
62
+ print("\n--- Testing with causal=True ---")
63
+ out_causal, _, _, _ = flash_attn.fwd(
64
+ q=query,
65
+ k=key,
66
+ v=value,
67
+ is_causal=True,
68
+ )
69
+
70
+ print(f"Causal attention output shape: {out_causal.shape}")
71
+ assert out_causal.shape == shape
72
+
73
+ # Compare causal vs non-causal (should be different)
74
+ diff_causal = (out - out_causal).abs().max()
75
+ print(f"Difference between causal and non-causal: {diff_causal.item()}")
76
+ assert diff_causal > 1e-3, "Causal and non-causal should produce different results"
77
+
78
+ print("✓ mha_fwd test passed!")
79
+
80
+
81
+ def test_mha_varlen_fwd():
82
+ """Test variable-length sequences with mha_varlen_fwd"""
83
+ print("\n===== Testing mha_varlen_fwd =====")
84
+
85
+ # Create variable length sequences
86
+ # Batch with 3 sequences of lengths: 512, 1024, 256
87
+ seq_lens = [512, 1024, 256]
88
+ total_seq_len = sum(seq_lens)
89
+ num_attention_heads = 16
90
+ attention_head_dim = 64
91
+
92
+ # Create cumulative sequence lengths (required for varlen)
93
+ cu_seqlens = torch.tensor(
94
+ [0] + [sum(seq_lens[: i + 1]) for i in range(len(seq_lens))],
95
+ device="cuda",
96
+ dtype=torch.int32,
97
+ )
98
+
99
+ print(f"Sequence lengths: {seq_lens}")
100
+ print(f"Cumulative sequence lengths: {cu_seqlens}")
101
+ print(f"Total sequence length: {total_seq_len}")
102
+
103
+ # Create packed tensors (all sequences concatenated)
104
+ query = torch.randn(
105
+ total_seq_len,
106
+ num_attention_heads,
107
+ attention_head_dim,
108
+ device="cuda",
109
+ dtype=torch.float16,
110
+ )
111
+ key = torch.randn(
112
+ total_seq_len,
113
+ num_attention_heads,
114
+ attention_head_dim,
115
+ device="cuda",
116
+ dtype=torch.float16,
117
+ )
118
+ value = torch.randn(
119
+ total_seq_len,
120
+ num_attention_heads,
121
+ attention_head_dim,
122
+ device="cuda",
123
+ dtype=torch.float16,
124
+ )
125
+
126
+ print(f"Query shape: {query.shape}")
127
+ print(f"Key shape: {key.shape}")
128
+ print(f"Value shape: {value.shape}")
129
+
130
+ # Create reference truth by running attention on individual sequences
131
+ # and concatenating the results
132
+ golden_truth_parts = []
133
+ for i, seq_len in enumerate(seq_lens):
134
+ start_idx = cu_seqlens[i]
135
+ end_idx = cu_seqlens[i + 1]
136
+
137
+ # Extract individual sequence
138
+ q_seq = query[start_idx:end_idx].unsqueeze(0) # Add batch dimension
139
+ k_seq = key[start_idx:end_idx].unsqueeze(0)
140
+ v_seq = value[start_idx:end_idx].unsqueeze(0)
141
+
142
+ # Run reference attention on this sequence
143
+ golden_seq = _attention_torch(
144
+ q_seq, k_seq, v_seq, backend=torch.nn.attention.SDPBackend.MATH
145
+ )
146
+ golden_truth_parts.append(golden_seq.squeeze(0)) # Remove batch dimension
147
+
148
+ # Concatenate all sequences back together
149
+ golden_truth = torch.cat(golden_truth_parts, dim=0)
150
+ print(f"Golden truth shape: {golden_truth.shape}")
151
+
152
+ # Run flash attention varlen
153
+ out, softmax_lse, p, rng_state = flash_attn.varlen_fwd(
154
+ q=query,
155
+ k=key,
156
+ v=value,
157
+ cu_seqlens_q=cu_seqlens,
158
+ cu_seqlens_k=cu_seqlens,
159
+ max_seqlen_q=max(seq_lens),
160
+ max_seqlen_k=max(seq_lens),
161
+ is_causal=False,
162
+ )
163
+
164
+ print(f"Flash attention varlen output shape: {out.shape}")
165
+ print(f"Output should match input: {out.shape == query.shape}")
166
+
167
+ # Compare with reference truth
168
+ diff = (out - golden_truth).abs().max()
169
+ print(f"Max absolute difference (non-causal): {diff.item()}")
170
+
171
+ # Verify output shape
172
+ assert out.shape == (total_seq_len, num_attention_heads, attention_head_dim)
173
+ assert diff < 1e-2, f"Difference too large: {diff.item()}"
174
+
175
+ # Test with causal attention
176
+ print("\n--- Testing with causal=True ---")
177
+ out_causal, _, _, _ = flash_attn.varlen_fwd(
178
+ q=query,
179
+ k=key,
180
+ v=value,
181
+ cu_seqlens_q=cu_seqlens,
182
+ cu_seqlens_k=cu_seqlens,
183
+ max_seqlen_q=max(seq_lens),
184
+ max_seqlen_k=max(seq_lens),
185
+ is_causal=True,
186
+ )
187
+
188
+ print(f"Causal attention output shape: {out_causal.shape}")
189
+ assert out_causal.shape == (total_seq_len, num_attention_heads, attention_head_dim)
190
+
191
+ # The causal and non-causal outputs should be different
192
+ diff_causal = (out - out_causal).abs().max()
193
+ print(f"Difference between causal and non-causal: {diff_causal.item()}")
194
+ assert diff_causal > 1e-3, "Causal and non-causal should produce different results"
195
+
196
+ print("✓ mha_varlen_fwd test passed!")
197
+
198
+
199
+ if __name__ == "__main__":
200
+ test_flash_attn()
201
+ test_mha_varlen_fwd()
tests/test_util.py ADDED
@@ -0,0 +1,274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import torch
4
+ from einops import rearrange, repeat
5
+ from flash_attn.bert_padding import pad_input, unpad_input
6
+
7
+
8
+ def generate_random_padding_mask(max_seqlen, batch_size, device, mode="random", zero_lengths=False):
9
+ assert mode in ["full", "random", "third"]
10
+ if mode == "full":
11
+ lengths = torch.full((batch_size, 1), max_seqlen, device=device, dtype=torch.int32)
12
+ elif mode == "random":
13
+ lengths = torch.randint(
14
+ max(0 if zero_lengths else 1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device
15
+ )
16
+ elif mode == "third":
17
+ lengths = torch.randint(max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device)
18
+
19
+ if zero_lengths:
20
+ # Generate zero-lengths every 5 batches and the last batch.
21
+ for i in range(batch_size):
22
+ if i % 5 == 0:
23
+ lengths[i] = 0
24
+ lengths[-1] = 0
25
+ padding_mask = (
26
+ repeat(torch.arange(max_seqlen, device=device), "s -> b s", b=batch_size) < lengths
27
+ )
28
+ return padding_mask
29
+
30
+
31
+ def generate_qkv(
32
+ q, k, v, query_padding_mask=None, key_padding_mask=None,
33
+ kvpacked=False, qkvpacked=False, add_unused_qkv=False,
34
+ query_unused_mask=None, key_unused_mask=None,
35
+ ):
36
+ """
37
+ Arguments:
38
+ q: (batch_size, seqlen_q, nheads, d)
39
+ k: (batch_size, seqlen_k, nheads_k, d)
40
+ v: (batch_size, seqlen_k, nheads_k, d)
41
+ query_padding_mask: (batch_size, seqlen), bool
42
+ key_padding_mask: (batch_size, seqlen), bool
43
+ """
44
+ assert not (kvpacked and qkvpacked)
45
+ batch_size, seqlen_q, nheads, d = q.shape
46
+ _, seqlen_k, nheads_k, _ = k.shape
47
+ assert k.shape == (batch_size, seqlen_k, nheads_k, d)
48
+ assert v.shape == (batch_size, seqlen_k, nheads_k, d)
49
+ if query_unused_mask is not None or key_unused_mask is not None:
50
+ assert not kvpacked
51
+ assert not qkvpacked
52
+
53
+ if query_padding_mask is not None:
54
+ q_unpad, indices_q, cu_seqlens_q, max_seqlen_q, seqused_q = unpad_input(
55
+ q, query_padding_mask, query_unused_mask,
56
+ )
57
+ output_pad_fn = lambda output_unpad: pad_input(
58
+ output_unpad, indices_q, batch_size, seqlen_q
59
+ )
60
+ else:
61
+ q_unpad = rearrange(q, "b s h d -> (b s) h d")
62
+ cu_seqlens_q = torch.arange(
63
+ 0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q_unpad.device
64
+ )
65
+ seqused_q = None
66
+ max_seqlen_q = seqlen_q
67
+ output_pad_fn = lambda output_unpad: rearrange(
68
+ output_unpad, "(b s) h d -> b s h d", b=batch_size
69
+ )
70
+
71
+ if key_padding_mask is not None:
72
+ k_unpad, indices_k, cu_seqlens_k, max_seqlen_k, seqused_k = unpad_input(k, key_padding_mask, key_unused_mask)
73
+ v_unpad, _, _, _, _ = unpad_input(v, key_padding_mask, key_unused_mask)
74
+ else:
75
+ k_unpad = rearrange(k, "b s h d -> (b s) h d")
76
+ v_unpad = rearrange(v, "b s h d -> (b s) h d")
77
+ cu_seqlens_k = torch.arange(
78
+ 0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=k_unpad.device
79
+ )
80
+ seqused_k = None
81
+ max_seqlen_k = seqlen_k
82
+
83
+ if qkvpacked:
84
+ assert (query_padding_mask == key_padding_mask).all()
85
+ assert nheads == nheads_k
86
+ qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
87
+ qkv = torch.stack([q, k, v], dim=2)
88
+ if query_padding_mask is not None:
89
+ dqkv_pad_fn = lambda dqkv_unpad: pad_input(dqkv_unpad, indices_q, batch_size, seqlen_q)
90
+ else:
91
+ dqkv_pad_fn = lambda dqkv_unpad: rearrange(
92
+ dqkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
93
+ )
94
+ return (
95
+ qkv_unpad.detach().requires_grad_(),
96
+ cu_seqlens_q,
97
+ max_seqlen_q,
98
+ qkv.detach().requires_grad_(),
99
+ output_pad_fn,
100
+ dqkv_pad_fn,
101
+ )
102
+ elif kvpacked:
103
+ kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
104
+ kv = torch.stack([k, v], dim=2)
105
+ dq_pad_fn = output_pad_fn
106
+ if key_padding_mask is not None:
107
+ dkv_pad_fn = lambda dkv_unpad: pad_input(dkv_unpad, indices_k, batch_size, seqlen_k)
108
+ else:
109
+ dkv_pad_fn = lambda dkv_unpad: rearrange(
110
+ dkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
111
+ )
112
+ return (
113
+ q_unpad.detach().requires_grad_(),
114
+ kv_unpad.detach().requires_grad_(),
115
+ cu_seqlens_q,
116
+ cu_seqlens_k,
117
+ max_seqlen_q,
118
+ max_seqlen_k,
119
+ q.detach().requires_grad_(),
120
+ kv.detach().requires_grad_(),
121
+ output_pad_fn,
122
+ dq_pad_fn,
123
+ dkv_pad_fn,
124
+ )
125
+ else:
126
+ dq_pad_fn = output_pad_fn
127
+ if key_padding_mask is not None:
128
+ dk_pad_fn = lambda dk_unpad: pad_input(dk_unpad, indices_k, batch_size, seqlen_k)
129
+ else:
130
+ dk_pad_fn = lambda dk_unpad: rearrange(dk_unpad, "(b s) h d -> b s h d", b=batch_size)
131
+ return (
132
+ q_unpad.detach().requires_grad_(),
133
+ k_unpad.detach().requires_grad_(),
134
+ v_unpad.detach().requires_grad_(),
135
+ cu_seqlens_q,
136
+ cu_seqlens_k,
137
+ seqused_q,
138
+ seqused_k,
139
+ max_seqlen_q,
140
+ max_seqlen_k,
141
+ q.detach().requires_grad_(),
142
+ k.detach().requires_grad_(),
143
+ v.detach().requires_grad_(),
144
+ output_pad_fn,
145
+ dq_pad_fn,
146
+ dk_pad_fn,
147
+ )
148
+
149
+
150
+ def construct_local_mask(
151
+ seqlen_q,
152
+ seqlen_k,
153
+ window_size=(-1, -1), # -1 means infinite window size
154
+ query_padding_mask=None,
155
+ key_padding_mask=None,
156
+ device=None,
157
+ key_leftpad=None,
158
+ ):
159
+ row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
160
+ col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
161
+ if key_leftpad is not None:
162
+ key_leftpad = rearrange(key_leftpad, "b -> b 1 1 1")
163
+ col_idx = repeat(col_idx, "s -> b 1 1 s", b=key_leftpad.shape[0])
164
+ col_idx = torch.where(col_idx >= key_leftpad, col_idx - key_leftpad, 2**32)
165
+ sk = (
166
+ seqlen_k
167
+ if key_padding_mask is None
168
+ else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
169
+ )
170
+ sq = (
171
+ seqlen_q
172
+ if query_padding_mask is None
173
+ else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
174
+ )
175
+ if window_size[0] < 0:
176
+ return col_idx > row_idx + sk - sq + window_size[1]
177
+ else:
178
+ sk = torch.full_like(col_idx, seqlen_k) if key_padding_mask is None else sk
179
+ return torch.logical_or(
180
+ col_idx > torch.minimum(row_idx + sk - sq + window_size[1], sk),
181
+ col_idx < row_idx + sk - sq - window_size[0],
182
+ )
183
+
184
+
185
+ def attention_ref(
186
+ q,
187
+ k,
188
+ v,
189
+ query_padding_mask=None,
190
+ key_padding_mask=None,
191
+ attn_bias=None,
192
+ dropout_p=0.0,
193
+ dropout_mask=None,
194
+ causal=False,
195
+ window_size=(-1, -1), # -1 means infinite window size
196
+ softcap=0.0,
197
+ upcast=True,
198
+ reorder_ops=False,
199
+ key_leftpad=None,
200
+ ):
201
+ """
202
+ Arguments:
203
+ q: (batch_size, seqlen_q, nheads, head_dim)
204
+ k: (batch_size, seqlen_k, nheads_k, head_dim)
205
+ v: (batch_size, seqlen_k, nheads_k, head_dim)
206
+ query_padding_mask: (batch_size, seqlen_q)
207
+ key_padding_mask: (batch_size, seqlen_k)
208
+ attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k)
209
+ dropout_p: float
210
+ dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
211
+ causal: whether to apply causal masking
212
+ window_size: (int, int), left and right window size
213
+ upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
214
+ output back to fp16/bf16.
215
+ reorder_ops: whether to change the order of operations (scaling k instead of scaling q, etc.)
216
+ without changing the math. This is to estimate the numerical error from operation
217
+ reordering.
218
+ Output:
219
+ output: (batch_size, seqlen_q, nheads, head_dim)
220
+ attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout
221
+ """
222
+ if causal:
223
+ window_size = (window_size[0], 0)
224
+ dtype_og = q.dtype
225
+ if upcast:
226
+ q, k, v = q.float(), k.float(), v.float()
227
+ seqlen_q, seqlen_k = q.shape[1], k.shape[1]
228
+ k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
229
+ v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
230
+ d = q.shape[-1]
231
+ if not reorder_ops:
232
+ scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
233
+ else:
234
+ scores = torch.einsum("bthd,bshd->bhts", q, k / math.sqrt(d))
235
+ if softcap > 0:
236
+ scores /= softcap
237
+ scores = scores.tanh()
238
+ scores *= softcap
239
+ if key_padding_mask is not None:
240
+ scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
241
+ if window_size[0] >= 0 or window_size[1] >= 0:
242
+ local_mask = construct_local_mask(
243
+ seqlen_q,
244
+ seqlen_k,
245
+ window_size,
246
+ query_padding_mask,
247
+ key_padding_mask,
248
+ q.device,
249
+ key_leftpad=key_leftpad,
250
+ )
251
+ scores.masked_fill_(local_mask, float("-inf"))
252
+ if attn_bias is not None:
253
+ scores = scores + attn_bias
254
+ attention = torch.softmax(scores, dim=-1).to(v.dtype)
255
+ # Some rows might be completely masked out so we fill them with zero instead of NaN
256
+ if window_size[0] >= 0 or window_size[1] >= 0:
257
+ attention = attention.masked_fill(torch.all(local_mask, dim=-1, keepdim=True), 0.0)
258
+ # We want to mask here so that the attention matrix doesn't have any NaNs
259
+ # Otherwise we'll get NaN in dV
260
+ if query_padding_mask is not None:
261
+ attention = attention.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
262
+ dropout_scaling = 1.0 / (1 - dropout_p)
263
+ # attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling
264
+ # output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
265
+ if dropout_mask is not None:
266
+ attention_drop = attention.masked_fill(~dropout_mask, 0.0)
267
+ else:
268
+ attention_drop = attention
269
+ output = torch.einsum("bhts,bshd->bthd", attention_drop, v * dropout_scaling)
270
+ if query_padding_mask is not None:
271
+ output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)
272
+ if key_padding_mask is not None:
273
+ output.masked_fill_(rearrange(torch.logical_not(torch.any(key_padding_mask, 1)), "b -> b 1 1 1"), 0.0)
274
+ return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)
torch-ext/flash_attn/__init__.py CHANGED
@@ -1,16 +1,25 @@
1
  from typing import Optional, List
2
  import torch
3
- from ._ops import ops
 
 
 
 
 
 
 
 
 
4
 
5
 
6
- def mha_fwd(
7
  q: torch.Tensor,
8
  k: torch.Tensor,
9
  v: torch.Tensor,
10
  out: Optional[torch.Tensor] = None,
11
  alibi_slopes: Optional[torch.Tensor] = None,
12
  p_dropout: float = 0.0,
13
- softmax_scale: float = 1.0,
14
  is_causal: bool = False,
15
  window_size_left: int = -1,
16
  window_size_right: int = -1,
@@ -39,7 +48,11 @@ def mha_fwd(
39
  Returns:
40
  List of tensors: [output, softmax_lse, (softmax if return_softmax)]
41
  """
42
- return ops.mha_fwd(
 
 
 
 
43
  q,
44
  k,
45
  v,
@@ -56,7 +69,7 @@ def mha_fwd(
56
  )
57
 
58
 
59
- def mha_varlen_fwd(
60
  q: torch.Tensor,
61
  k: torch.Tensor,
62
  v: torch.Tensor,
@@ -70,7 +83,7 @@ def mha_varlen_fwd(
70
  max_seqlen_q: int = 0,
71
  max_seqlen_k: int = 0,
72
  p_dropout: float = 0.0,
73
- softmax_scale: float = 1.0,
74
  zero_tensors: bool = False,
75
  is_causal: bool = False,
76
  window_size_left: int = -1,
@@ -108,7 +121,11 @@ def mha_varlen_fwd(
108
  Returns:
109
  List of tensors: [output, softmax_lse, (softmax if return_softmax)]
110
  """
111
- return ops.mha_varlen_fwd(
 
 
 
 
112
  q,
113
  k,
114
  v,
@@ -133,7 +150,7 @@ def mha_varlen_fwd(
133
  )
134
 
135
 
136
- def mha_bwd(
137
  dout: torch.Tensor,
138
  q: torch.Tensor,
139
  k: torch.Tensor,
@@ -145,7 +162,7 @@ def mha_bwd(
145
  dv: Optional[torch.Tensor] = None,
146
  alibi_slopes: Optional[torch.Tensor] = None,
147
  p_dropout: float = 0.0,
148
- softmax_scale: float = 1.0,
149
  is_causal: bool = False,
150
  window_size_left: int = -1,
151
  window_size_right: int = -1,
@@ -181,7 +198,11 @@ def mha_bwd(
181
  Returns:
182
  List of tensors: [dq, dk, dv]
183
  """
184
- return ops.mha_bwd(
 
 
 
 
185
  dout,
186
  q,
187
  k,
@@ -204,7 +225,7 @@ def mha_bwd(
204
  )
205
 
206
 
207
- def mha_varlen_bwd(
208
  dout: torch.Tensor,
209
  q: torch.Tensor,
210
  k: torch.Tensor,
@@ -220,7 +241,7 @@ def mha_varlen_bwd(
220
  max_seqlen_q: int = 0,
221
  max_seqlen_k: int = 0,
222
  p_dropout: float = 0.0,
223
- softmax_scale: float = 1.0,
224
  zero_tensors: bool = False,
225
  is_causal: bool = False,
226
  window_size_left: int = -1,
@@ -262,7 +283,11 @@ def mha_varlen_bwd(
262
  Returns:
263
  List of tensors: [dq, dk, dv]
264
  """
265
- return ops.mha_varlen_bwd(
 
 
 
 
266
  dout,
267
  q,
268
  k,
@@ -290,7 +315,7 @@ def mha_varlen_bwd(
290
  )
291
 
292
 
293
- def mha_fwd_kvcache(
294
  q: torch.Tensor,
295
  kcache: torch.Tensor,
296
  vcache: torch.Tensor,
@@ -304,7 +329,7 @@ def mha_fwd_kvcache(
304
  block_table: Optional[torch.Tensor] = None,
305
  alibi_slopes: Optional[torch.Tensor] = None,
306
  out: Optional[torch.Tensor] = None,
307
- softmax_scale: float = 1.0,
308
  is_causal: bool = False,
309
  window_size_left: int = -1,
310
  window_size_right: int = -1,
@@ -340,7 +365,11 @@ def mha_fwd_kvcache(
340
  Returns:
341
  List of tensors: [output, softmax_lse]
342
  """
343
- return ops.mha_fwd_kvcache(
 
 
 
 
344
  q,
345
  kcache,
346
  vcache,
 
1
  from typing import Optional, List
2
  import torch
3
+ from ._ops import ops as flash_attn_ops
4
+ from .flash_attn_interface import (
5
+ flash_attn_func,
6
+ flash_attn_kvpacked_func,
7
+ flash_attn_qkvpacked_func,
8
+ flash_attn_varlen_func,
9
+ flash_attn_varlen_kvpacked_func,
10
+ flash_attn_varlen_qkvpacked_func,
11
+ flash_attn_with_kvcache,
12
+ )
13
 
14
 
15
+ def fwd(
16
  q: torch.Tensor,
17
  k: torch.Tensor,
18
  v: torch.Tensor,
19
  out: Optional[torch.Tensor] = None,
20
  alibi_slopes: Optional[torch.Tensor] = None,
21
  p_dropout: float = 0.0,
22
+ softmax_scale: Optional[float] = None,
23
  is_causal: bool = False,
24
  window_size_left: int = -1,
25
  window_size_right: int = -1,
 
48
  Returns:
49
  List of tensors: [output, softmax_lse, (softmax if return_softmax)]
50
  """
51
+ if softmax_scale is None:
52
+ attention_head_dim = q.shape[-1]
53
+ softmax_scale = 1.0 / (attention_head_dim**0.5)
54
+
55
+ return flash_attn_ops.fwd(
56
  q,
57
  k,
58
  v,
 
69
  )
70
 
71
 
72
+ def varlen_fwd(
73
  q: torch.Tensor,
74
  k: torch.Tensor,
75
  v: torch.Tensor,
 
83
  max_seqlen_q: int = 0,
84
  max_seqlen_k: int = 0,
85
  p_dropout: float = 0.0,
86
+ softmax_scale: Optional[float] = None,
87
  zero_tensors: bool = False,
88
  is_causal: bool = False,
89
  window_size_left: int = -1,
 
121
  Returns:
122
  List of tensors: [output, softmax_lse, (softmax if return_softmax)]
123
  """
124
+ if softmax_scale is None:
125
+ attention_head_dim = q.shape[-1]
126
+ softmax_scale = 1.0 / (attention_head_dim**0.5)
127
+
128
+ return flash_attn_ops.varlen_fwd(
129
  q,
130
  k,
131
  v,
 
150
  )
151
 
152
 
153
+ def bwd(
154
  dout: torch.Tensor,
155
  q: torch.Tensor,
156
  k: torch.Tensor,
 
162
  dv: Optional[torch.Tensor] = None,
163
  alibi_slopes: Optional[torch.Tensor] = None,
164
  p_dropout: float = 0.0,
165
+ softmax_scale: Optional[float] = None,
166
  is_causal: bool = False,
167
  window_size_left: int = -1,
168
  window_size_right: int = -1,
 
198
  Returns:
199
  List of tensors: [dq, dk, dv]
200
  """
201
+ if softmax_scale is None:
202
+ attention_head_dim = q.shape[-1]
203
+ softmax_scale = 1.0 / (attention_head_dim**0.5)
204
+
205
+ return flash_attn_ops.bwd(
206
  dout,
207
  q,
208
  k,
 
225
  )
226
 
227
 
228
+ def varlen_bwd(
229
  dout: torch.Tensor,
230
  q: torch.Tensor,
231
  k: torch.Tensor,
 
241
  max_seqlen_q: int = 0,
242
  max_seqlen_k: int = 0,
243
  p_dropout: float = 0.0,
244
+ softmax_scale: Optional[float] = None,
245
  zero_tensors: bool = False,
246
  is_causal: bool = False,
247
  window_size_left: int = -1,
 
283
  Returns:
284
  List of tensors: [dq, dk, dv]
285
  """
286
+ if softmax_scale is None:
287
+ attention_head_dim = q.shape[-1]
288
+ softmax_scale = 1.0 / (attention_head_dim**0.5)
289
+
290
+ return flash_attn_ops.varlen_bwd(
291
  dout,
292
  q,
293
  k,
 
315
  )
316
 
317
 
318
+ def fwd_kvcache(
319
  q: torch.Tensor,
320
  kcache: torch.Tensor,
321
  vcache: torch.Tensor,
 
329
  block_table: Optional[torch.Tensor] = None,
330
  alibi_slopes: Optional[torch.Tensor] = None,
331
  out: Optional[torch.Tensor] = None,
332
+ softmax_scale: Optional[float] = None,
333
  is_causal: bool = False,
334
  window_size_left: int = -1,
335
  window_size_right: int = -1,
 
365
  Returns:
366
  List of tensors: [output, softmax_lse]
367
  """
368
+ if softmax_scale is None:
369
+ attention_head_dim = q.shape[-1]
370
+ softmax_scale = 1.0 / (attention_head_dim**0.5)
371
+
372
+ return flash_attn_ops.fwd_kvcache(
373
  q,
374
  kcache,
375
  vcache,
torch-ext/flash_attn/bert_padding.py ADDED
@@ -0,0 +1,218 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py
2
+
3
+ import torch
4
+ import torch.nn.functional as F
5
+ from einops import rearrange, repeat
6
+
7
+
8
+ class IndexFirstAxis(torch.autograd.Function):
9
+ @staticmethod
10
+ def forward(ctx, input, indices):
11
+ ctx.save_for_backward(indices)
12
+ assert input.ndim >= 2
13
+ ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
14
+ second_dim = other_shape.numel()
15
+ # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
16
+ # return input[indices]
17
+ return torch.gather(
18
+ rearrange(input, "b ... -> b (...)"), 0, repeat(indices, "z -> z d", d=second_dim)
19
+ ).reshape(-1, *other_shape)
20
+
21
+ @staticmethod
22
+ def backward(ctx, grad_output):
23
+ (indices,) = ctx.saved_tensors
24
+ assert grad_output.ndim >= 2
25
+ other_shape = grad_output.shape[1:]
26
+ grad_output = rearrange(grad_output, "b ... -> b (...)")
27
+ grad_input = torch.zeros(
28
+ [ctx.first_axis_dim, grad_output.shape[1]],
29
+ device=grad_output.device,
30
+ dtype=grad_output.dtype,
31
+ )
32
+ # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
33
+ # grad_input[indices] = grad_output
34
+ grad_input.scatter_(0, repeat(indices, "z -> z d", d=grad_output.shape[1]), grad_output)
35
+ return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
36
+
37
+
38
+ index_first_axis = IndexFirstAxis.apply
39
+
40
+
41
+ class IndexPutFirstAxis(torch.autograd.Function):
42
+ @staticmethod
43
+ def forward(ctx, values, indices, first_axis_dim):
44
+ ctx.save_for_backward(indices)
45
+ assert indices.ndim == 1
46
+ assert values.ndim >= 2
47
+ output = torch.zeros(
48
+ first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype
49
+ )
50
+ # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
51
+ output[indices] = values
52
+ # output.scatter_(0, repeat(indices, 'z -> z d', d=values.shape[1]), values)
53
+ return output
54
+
55
+ @staticmethod
56
+ def backward(ctx, grad_output):
57
+ (indices,) = ctx.saved_tensors
58
+ # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
59
+ grad_values = grad_output[indices]
60
+ # grad_values = torch.gather(grad_output, 0, repeat(indices, 'z -> z d', d=grad_output.shape[1]))
61
+ return grad_values, None, None
62
+
63
+
64
+ index_put_first_axis = IndexPutFirstAxis.apply
65
+
66
+
67
+ class IndexFirstAxisResidual(torch.autograd.Function):
68
+ @staticmethod
69
+ def forward(ctx, input, indices):
70
+ ctx.save_for_backward(indices)
71
+ assert input.ndim >= 2
72
+ ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
73
+ second_dim = other_shape.numel()
74
+ # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
75
+ output = input[indices]
76
+ # We don't want to reshape input (b ... -> b (...)) since it could change the channel_last
77
+ # memory format to channel_first. In other words, input might not be contiguous.
78
+ # If we don't detach, Pytorch complains about output being a view and is being modified inplace
79
+ return output, input.detach()
80
+
81
+ @staticmethod
82
+ def backward(ctx, grad_output, grad_residual):
83
+ (indices,) = ctx.saved_tensors
84
+ assert grad_output.ndim >= 2
85
+ other_shape = grad_output.shape[1:]
86
+ assert grad_residual.shape[1:] == other_shape
87
+ grad_input = grad_residual
88
+ # grad_input[indices] += grad_output
89
+ indices = indices.reshape(indices.shape[0], *((1,) * (grad_output.ndim - 1)))
90
+ indices = indices.expand_as(grad_output)
91
+ grad_input.scatter_add_(0, indices, grad_output)
92
+ return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
93
+
94
+
95
+ index_first_axis_residual = IndexFirstAxisResidual.apply
96
+
97
+
98
+ def unpad_input(hidden_states, attention_mask, unused_mask=None):
99
+ """
100
+ Arguments:
101
+ hidden_states: (batch, seqlen, ...)
102
+ attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
103
+ unused_mask: (batch, seqlen), bool / int, 1 means the element is allocated but unused.
104
+ Return:
105
+ hidden_states: (total_nnz, ...), where total_nnz = number of tokens selected in attention_mask + unused_mask.
106
+ indices: (total_nnz), the indices of masked tokens from the flattened input sequence.
107
+ cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
108
+ max_seqlen_in_batch: int
109
+ seqused: (batch), returns the number of tokens selected in attention_mask + unused_mask.
110
+ """
111
+ all_masks = (attention_mask + unused_mask) if unused_mask is not None else attention_mask
112
+ seqlens_in_batch = all_masks.sum(dim=-1, dtype=torch.int32)
113
+ used_seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
114
+ indices = torch.nonzero(all_masks.flatten(), as_tuple=False).flatten()
115
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
116
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
117
+ # TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
118
+ # bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
119
+ # times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
120
+ # index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
121
+ # so we write custom forward and backward to make it a bit faster.
122
+ return (
123
+ index_first_axis(rearrange(hidden_states, "b s ... -> (b s) ..."), indices),
124
+ indices,
125
+ cu_seqlens,
126
+ max_seqlen_in_batch,
127
+ used_seqlens_in_batch,
128
+ )
129
+
130
+
131
+ def unpad_input_for_concatenated_sequences(hidden_states, attention_mask_in_length):
132
+ """
133
+ Supports concatenating short samples in one sequence. The attention_mask_in_length is utilized to mask other short samples. It helps efficient training of variant lengths-based samples (e.g., the supervised fine-tuning task in large language model).
134
+ The motivation for this function is explained [here](https://github.com/Dao-AILab/flash-attention/issues/432#issuecomment-1668822286).
135
+
136
+ For example, if batch = 3 and seqlen = 6, the attention_mask_in_length is:
137
+ ```
138
+ [
139
+ [2, 3, 0, 0, 0, 0],
140
+ [3, 2, 0, 0, 0, 0],
141
+ [6, 0, 0, 0, 0, 0]
142
+ ]
143
+ ```
144
+ , which refers to the 3D-attention mask:
145
+ ```
146
+ [
147
+ [
148
+ [1, 0, 0, 0, 0, 0],
149
+ [1, 1, 0, 0, 0, 0],
150
+ [0, 0, 1, 0, 0, 0],
151
+ [0, 0, 1, 1, 0, 0],
152
+ [0, 0, 1, 1, 1, 0],
153
+ [0, 0, 0, 0, 0, 1]
154
+ ],
155
+ [
156
+ [1, 0, 0, 0, 0, 0],
157
+ [1, 1, 0, 0, 0, 0],
158
+ [1, 1, 1, 0, 0, 0],
159
+ [0, 0, 0, 1, 0, 0],
160
+ [0, 0, 0, 1, 1, 0],
161
+ [0, 0, 0, 0, 0, 1]
162
+ ],
163
+ [
164
+ [1, 0, 0, 0, 0, 0],
165
+ [1, 1, 0, 0, 0, 0],
166
+ [1, 1, 1, 0, 0, 0],
167
+ [1, 1, 1, 1, 0, 0],
168
+ [1, 1, 1, 1, 1, 0],
169
+ [1, 1, 1, 1, 1, 1]
170
+ ]
171
+ ]
172
+ ```.
173
+
174
+ Arguments:
175
+ hidden_states: (batch, seqlen, ...)
176
+ attention_mask_in_length: (batch, seqlen), int, a nonzero number (e.g., 1, 2, 3, etc.) means length of concatenated sequence in b-th batch, and 0 means none.
177
+ Return:
178
+ hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
179
+ indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence.
180
+ cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
181
+ max_seqlen_in_batch: int
182
+ """
183
+ length = attention_mask_in_length.sum(dim=-1)
184
+ seqlen = attention_mask_in_length.size(-1)
185
+ attention_mask_2d = torch.arange(seqlen, device=length.device, dtype=length.dtype).expand(len(length), seqlen) < length.unsqueeze(1)
186
+ real_indices_idx = torch.nonzero(attention_mask_in_length.flatten(), as_tuple=False).flatten()
187
+ seqlens_in_batch = attention_mask_in_length.flatten()[real_indices_idx]
188
+ indices = torch.nonzero(attention_mask_2d.flatten(), as_tuple=False).flatten()
189
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
190
+ cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
191
+ # TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
192
+ # bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
193
+ # times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
194
+ # index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
195
+ # so we write custom forward and backward to make it a bit faster.
196
+ return (
197
+ index_first_axis(rearrange(hidden_states, "b s ... -> (b s) ..."), indices),
198
+ indices,
199
+ cu_seqlens,
200
+ max_seqlen_in_batch,
201
+ )
202
+
203
+
204
+ def pad_input(hidden_states, indices, batch, seqlen):
205
+ """
206
+ Arguments:
207
+ hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
208
+ indices: (total_nnz), the indices that represent the non-masked tokens of the original padded input sequence.
209
+ batch: int, batch size for the padded sequence.
210
+ seqlen: int, maximum sequence length for the padded sequence.
211
+ Return:
212
+ hidden_states: (batch, seqlen, ...)
213
+ """
214
+ dim = hidden_states.shape[-1]
215
+ # output = torch.zeros((batch * seqlen), dim, device=hidden_states.device, dtype=hidden_states.dtype)
216
+ # output[indices] = hidden_states
217
+ output = index_put_first_axis(hidden_states, indices, batch * seqlen)
218
+ return rearrange(output, "(b s) ... -> b s ...", b=batch)
torch-ext/flash_attn/flash_attn_interface.py ADDED
@@ -0,0 +1,1609 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023, Tri Dao.
2
+
3
+ from typing import Optional, Sequence, Tuple, Union
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ import os
8
+
9
+ # # isort: off
10
+ # # We need to import the CUDA kernels after importing torch
11
+ # USE_TRITON_ROCM = os.getenv("FLASH_ATTENTION_TRITON_AMD_ENABLE", "FALSE") == "TRUE"
12
+ # if USE_TRITON_ROCM:
13
+ # from .flash_attn_triton_amd import interface_fa as flash_attn_gpu
14
+ # else:
15
+ # import flash_attn_2_cuda as flash_attn_gpu
16
+
17
+
18
+ from ._ops import ops as flash_attn_gpu
19
+
20
+ # # isort: on
21
+
22
+ def maybe_contiguous(x):
23
+ return x.contiguous() if x is not None and x.stride(-1) != 1 else x
24
+
25
+
26
+ def _get_block_size_n(device, head_dim, is_dropout, is_causal):
27
+ # This should match the block sizes in the CUDA kernel
28
+ assert head_dim <= 256
29
+ major, minor = torch.cuda.get_device_capability(device)
30
+ is_sm8x = major == 8 and minor > 0 # Only include sm86 and sm89, exclude sm80 (A100)
31
+ is_sm80 = major == 8 and minor == 0
32
+ is_sm90 = major == 9 and minor == 0
33
+ if head_dim <= 32:
34
+ return 128
35
+ if head_dim <= 64:
36
+ return 128 if not is_dropout else 64
37
+ elif head_dim <= 96:
38
+ return 64
39
+ elif head_dim <= 128:
40
+ if is_sm8x:
41
+ return 64 if (not is_dropout and is_causal) else 32
42
+ else:
43
+ return 64 if not is_dropout else 32
44
+ elif head_dim <= 192:
45
+ return 64
46
+ elif head_dim <= 224:
47
+ return 64
48
+ elif head_dim <= 256:
49
+ return 64
50
+
51
+
52
+ def round_multiple(x, m):
53
+ return (x + m - 1) // m * m
54
+
55
+
56
+ # torch.compile() support is only enabled for pytorch >= 2.4
57
+ # The reason for this is that we are using the new custom_op and register_fake
58
+ # APIs, which support inplace modification of inputs in the function itself
59
+ if torch.__version__ >= "2.4.0":
60
+ _torch_custom_op_wrapper = torch.library.custom_op
61
+ _torch_register_fake_wrapper = torch.library.register_fake
62
+ else:
63
+ def noop_custom_op_wrapper(name, fn=None, /, *, mutates_args, device_types=None, schema=None):
64
+ def wrap(func):
65
+ return func
66
+ if fn is None:
67
+ return wrap
68
+ return fn
69
+ def noop_register_fake_wrapper(op, fn=None, /, *, lib=None, _stacklevel=1):
70
+ def wrap(func):
71
+ return func
72
+ if fn is None:
73
+ return wrap
74
+ return fn
75
+ _torch_custom_op_wrapper = noop_custom_op_wrapper
76
+ _torch_register_fake_wrapper = noop_register_fake_wrapper
77
+
78
+
79
+ @_torch_custom_op_wrapper("flash_attn::_flash_attn_forward", mutates_args=(), device_types="cuda")
80
+ def _flash_attn_forward(
81
+ q: torch.Tensor,
82
+ k: torch.Tensor,
83
+ v: torch.Tensor,
84
+ dropout_p: float,
85
+ softmax_scale: float,
86
+ causal: bool,
87
+ window_size_left: int,
88
+ window_size_right: int,
89
+ softcap: float,
90
+ alibi_slopes: Optional[torch.Tensor],
91
+ return_softmax: bool
92
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
93
+ q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
94
+ out, softmax_lse, S_dmask, rng_state = flash_attn_gpu.fwd(
95
+ q,
96
+ k,
97
+ v,
98
+ None,
99
+ alibi_slopes,
100
+ dropout_p,
101
+ softmax_scale,
102
+ causal,
103
+ window_size_left,
104
+ window_size_right,
105
+ softcap,
106
+ return_softmax,
107
+ None,
108
+ )
109
+ return out, softmax_lse, S_dmask, rng_state
110
+
111
+
112
+ @_torch_register_fake_wrapper("flash_attn::_flash_attn_forward")
113
+ def _flash_attn_forward_fake(
114
+ q: torch.Tensor,
115
+ k: torch.Tensor,
116
+ v: torch.Tensor,
117
+ dropout_p: float,
118
+ softmax_scale: float,
119
+ causal: bool,
120
+ window_size_left: int,
121
+ window_size_right: int,
122
+ softcap: float,
123
+ alibi_slopes: Optional[torch.Tensor],
124
+ return_softmax: bool
125
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
126
+ q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
127
+ batch_size, seqlen_q, num_heads, head_size = q.shape
128
+ seqlen_k = k.shape[1]
129
+ out = torch.empty_like(q)
130
+ softmax_lse = torch.empty((batch_size, num_heads, seqlen_q), dtype=torch.float32, device=q.device, layout=q.layout)
131
+ p = torch.empty((0,), dtype=q.dtype, device=q.device, layout=q.layout)
132
+ if return_softmax:
133
+ p = torch.empty((batch_size, num_heads, round_multiple(seqlen_q, 128), round_multiple(seqlen_k, 128)), dtype=q.dtype, device=q.device, layout=q.layout)
134
+ rng_state = torch.empty((2,), dtype=torch.int64, device=q.device)
135
+
136
+ return out, softmax_lse, p, rng_state
137
+
138
+
139
+ if torch.__version__ >= "2.4.0":
140
+ _wrapped_flash_attn_forward = torch.ops.flash_attn._flash_attn_forward
141
+ else:
142
+ _wrapped_flash_attn_forward = _flash_attn_forward
143
+
144
+
145
+ @_torch_custom_op_wrapper("flash_attn::_flash_attn_varlen_forward", mutates_args=(), device_types="cuda")
146
+ def _flash_attn_varlen_forward(
147
+ q: torch.Tensor,
148
+ k: torch.Tensor,
149
+ v: torch.Tensor,
150
+ cu_seqlens_q: torch.Tensor,
151
+ cu_seqlens_k: torch.Tensor,
152
+ max_seqlen_q: int,
153
+ max_seqlen_k: int,
154
+ dropout_p: float,
155
+ softmax_scale: float,
156
+ causal: bool,
157
+ window_size_left: int = -1,
158
+ window_size_right: int = -1,
159
+ softcap: float = 0.0,
160
+ alibi_slopes: Optional[torch.Tensor] = None,
161
+ return_softmax: bool = False,
162
+ block_table: Optional[torch.Tensor] = None,
163
+ leftpad_k: Optional[torch.Tensor] = None,
164
+ seqused_k: Optional[torch.Tensor] = None,
165
+ zero_tensors: bool = False,
166
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
167
+ q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
168
+ out, softmax_lse, S_dmask, rng_state = flash_attn_gpu.varlen_fwd(
169
+ q,
170
+ k,
171
+ v,
172
+ None,
173
+ cu_seqlens_q,
174
+ cu_seqlens_k,
175
+ seqused_k,
176
+ leftpad_k,
177
+ block_table,
178
+ alibi_slopes,
179
+ max_seqlen_q,
180
+ max_seqlen_k,
181
+ dropout_p,
182
+ softmax_scale,
183
+ zero_tensors,
184
+ causal,
185
+ window_size_left,
186
+ window_size_right,
187
+ softcap,
188
+ return_softmax,
189
+ None,
190
+ )
191
+ # if out.isnan().any() or softmax_lse.isnan().any():
192
+ # breakpoint()
193
+ return out, softmax_lse, S_dmask, rng_state
194
+
195
+
196
+ @_torch_register_fake_wrapper("flash_attn::_flash_attn_varlen_forward")
197
+ def _flash_attn_varlen_forward_fake(
198
+ q: torch.Tensor,
199
+ k: torch.Tensor,
200
+ v: torch.Tensor,
201
+ cu_seqlens_q: torch.Tensor,
202
+ cu_seqlens_k: torch.Tensor,
203
+ max_seqlen_q: int,
204
+ max_seqlen_k: int,
205
+ dropout_p: float,
206
+ softmax_scale: float,
207
+ causal: bool,
208
+ window_size_left: int = -1,
209
+ window_size_right: int = -1,
210
+ softcap: float = 0.0,
211
+ alibi_slopes: Optional[torch.Tensor] = None,
212
+ return_softmax: bool = False,
213
+ block_table: Optional[torch.Tensor] = None,
214
+ leftpad_k: Optional[torch.Tensor] = None,
215
+ seqused_k: Optional[torch.Tensor] = None,
216
+ zero_tensors: bool = False,
217
+ ) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
218
+ q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
219
+ paged_kv = block_table is not None
220
+ batch_size = cu_seqlens_q.numel() - 1
221
+ total_q, num_heads, _ = q.shape
222
+
223
+ out = torch.empty_like(q)
224
+ softmax_lse = torch.empty((num_heads, total_q), dtype=torch.float32, device=q.device, layout=q.layout)
225
+ p = torch.empty((0,), dtype=q.dtype, device=q.device, layout=q.layout)
226
+ seqlen_q_rounded = round_multiple(max_seqlen_q, 128)
227
+ seqlen_k_rounded = round_multiple(max_seqlen_k, 128)
228
+ if return_softmax:
229
+ p = torch.empty((batch_size, num_heads, seqlen_q_rounded, seqlen_k_rounded), dtype=q.dtype, device=q.device, layout=q.layout)
230
+ rng_state = torch.empty((2,), dtype=torch.int64, device=q.device)
231
+ return out, softmax_lse, p, rng_state
232
+
233
+
234
+ if torch.__version__ >= "2.4.0":
235
+ _wrapped_flash_attn_varlen_forward = torch.ops.flash_attn._flash_attn_varlen_forward
236
+ else:
237
+ _wrapped_flash_attn_varlen_forward = _flash_attn_varlen_forward
238
+
239
+
240
+ @_torch_custom_op_wrapper("flash_attn::_flash_attn_backward", mutates_args=("dq", "dk", "dv"), device_types="cuda")
241
+ def _flash_attn_backward(
242
+ dout: torch.Tensor,
243
+ q: torch.Tensor,
244
+ k: torch.Tensor,
245
+ v: torch.Tensor,
246
+ out: torch.Tensor,
247
+ softmax_lse: torch.Tensor,
248
+ dq: Optional[torch.Tensor],
249
+ dk: Optional[torch.Tensor],
250
+ dv: Optional[torch.Tensor],
251
+ dropout_p: float,
252
+ softmax_scale: float,
253
+ causal: bool,
254
+ window_size_left: int,
255
+ window_size_right: int,
256
+ softcap: float,
257
+ alibi_slopes: Optional[torch.Tensor],
258
+ deterministic: bool,
259
+ rng_state: Optional[torch.Tensor] = None,
260
+ ) -> torch.Tensor:
261
+ # dq, dk, dv are allocated by us so they should already be contiguous
262
+ dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
263
+ (
264
+ dq,
265
+ dk,
266
+ dv,
267
+ softmax_d,
268
+ ) = flash_attn_gpu.bwd(
269
+ dout,
270
+ q,
271
+ k,
272
+ v,
273
+ out,
274
+ softmax_lse,
275
+ dq,
276
+ dk,
277
+ dv,
278
+ alibi_slopes,
279
+ dropout_p,
280
+ softmax_scale,
281
+ causal,
282
+ window_size_left,
283
+ window_size_right,
284
+ softcap,
285
+ deterministic,
286
+ None,
287
+ rng_state,
288
+ )
289
+ return softmax_d
290
+
291
+
292
+ @_torch_register_fake_wrapper("flash_attn::_flash_attn_backward")
293
+ def _flash_attn_backward_fake(
294
+ dout: torch.Tensor,
295
+ q: torch.Tensor,
296
+ k: torch.Tensor,
297
+ v: torch.Tensor,
298
+ out: torch.Tensor,
299
+ softmax_lse: torch.Tensor,
300
+ dq: Optional[torch.Tensor],
301
+ dk: Optional[torch.Tensor],
302
+ dv: Optional[torch.Tensor],
303
+ dropout_p: float,
304
+ softmax_scale: float,
305
+ causal: bool,
306
+ window_size_left: int,
307
+ window_size_right: int,
308
+ softcap: float,
309
+ alibi_slopes: Optional[torch.Tensor],
310
+ deterministic: bool,
311
+ rng_state: Optional[torch.Tensor] = None,
312
+ ) -> torch.Tensor:
313
+ dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
314
+ if dq is None:
315
+ dq = torch.empty_like(q)
316
+ if dk is None:
317
+ dk = torch.empty_like(k)
318
+ if dv is None:
319
+ dv = torch.empty_like(v)
320
+ batch_size, seqlen_q, num_heads, _ = q.shape
321
+ softmax_d = torch.empty((batch_size, num_heads, round_multiple(seqlen_q, 128)), device=q.device, dtype=torch.float32)
322
+
323
+ return softmax_d
324
+
325
+
326
+ if torch.__version__ >= "2.4.0":
327
+ _wrapped_flash_attn_backward = torch.ops.flash_attn._flash_attn_backward
328
+ else:
329
+ _wrapped_flash_attn_backward = _flash_attn_backward
330
+
331
+
332
+ @_torch_custom_op_wrapper("flash_attn::_flash_attn_varlen_backward", mutates_args=("dq", "dk", "dv"), device_types="cuda")
333
+ def _flash_attn_varlen_backward(
334
+ dout: torch.Tensor,
335
+ q: torch.Tensor,
336
+ k: torch.Tensor,
337
+ v: torch.Tensor,
338
+ out: torch.Tensor,
339
+ softmax_lse: torch.Tensor,
340
+ dq: Optional[torch.Tensor],
341
+ dk: Optional[torch.Tensor],
342
+ dv: Optional[torch.Tensor],
343
+ cu_seqlens_q: torch.Tensor,
344
+ cu_seqlens_k: torch.Tensor,
345
+ max_seqlen_q: int,
346
+ max_seqlen_k: int,
347
+ dropout_p: float,
348
+ softmax_scale: float,
349
+ causal: bool,
350
+ window_size_left: int,
351
+ window_size_right: int,
352
+ softcap: float,
353
+ alibi_slopes: Optional[torch.Tensor],
354
+ deterministic: bool,
355
+ rng_state: Optional[torch.Tensor] = None,
356
+ zero_tensors: bool = False,
357
+ ) -> torch.Tensor:
358
+ # dq, dk, dv are allocated by us so they should already be contiguous
359
+ dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
360
+ (
361
+ dq,
362
+ dk,
363
+ dv,
364
+ softmax_d,
365
+ ) = flash_attn_gpu.varlen_bwd(
366
+ dout,
367
+ q,
368
+ k,
369
+ v,
370
+ out,
371
+ softmax_lse,
372
+ dq,
373
+ dk,
374
+ dv,
375
+ cu_seqlens_q,
376
+ cu_seqlens_k,
377
+ alibi_slopes,
378
+ max_seqlen_q,
379
+ max_seqlen_k,
380
+ dropout_p,
381
+ softmax_scale,
382
+ zero_tensors,
383
+ causal,
384
+ window_size_left,
385
+ window_size_right,
386
+ softcap,
387
+ deterministic,
388
+ None,
389
+ rng_state,
390
+ )
391
+ # if dk.isnan().any() or dk.isnan().any() or dv.isnan().any() or softmax_d.isnan().any():
392
+ # breakpoint()
393
+ return softmax_d
394
+
395
+
396
+ @_torch_register_fake_wrapper("flash_attn::_flash_attn_varlen_backward")
397
+ def _flash_attn_varlen_backward_fake(
398
+ dout: torch.Tensor,
399
+ q: torch.Tensor,
400
+ k: torch.Tensor,
401
+ v: torch.Tensor,
402
+ out: torch.Tensor,
403
+ softmax_lse: torch.Tensor,
404
+ dq: Optional[torch.Tensor],
405
+ dk: Optional[torch.Tensor],
406
+ dv: Optional[torch.Tensor],
407
+ cu_seqlens_q: torch.Tensor,
408
+ cu_seqlens_k: torch.Tensor,
409
+ max_seqlen_q: int,
410
+ max_seqlen_k: int,
411
+ dropout_p: float,
412
+ softmax_scale: float,
413
+ causal: bool,
414
+ window_size_left: int,
415
+ window_size_right: int,
416
+ softcap: float,
417
+ alibi_slopes: Optional[torch.Tensor],
418
+ deterministic: bool,
419
+ rng_state: Optional[torch.Tensor] = None,
420
+ zero_tensors: bool = False,
421
+ ) -> torch.Tensor:
422
+ dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
423
+ batch_size = cu_seqlens_q.numel() - 1
424
+ total_q, num_heads, _ = q.shape
425
+
426
+ if dq is None:
427
+ dq = torch.empty_like(q)
428
+ if dk is None:
429
+ dk = torch.empty_like(k)
430
+ if dv is None:
431
+ dv = torch.empty_like(v)
432
+ softmax_d = torch.empty((num_heads, total_q + 128 * batch_size), device=q.device, dtype=torch.float32)
433
+
434
+ return softmax_d
435
+
436
+
437
+ if torch.__version__ >= "2.4.0":
438
+ _wrapped_flash_attn_varlen_backward = torch.ops.flash_attn._flash_attn_varlen_backward
439
+ else:
440
+ _wrapped_flash_attn_varlen_backward = _flash_attn_varlen_backward
441
+
442
+
443
+ class FlashAttnQKVPackedFunc(torch.autograd.Function):
444
+ @staticmethod
445
+ def forward(
446
+ ctx,
447
+ qkv,
448
+ dropout_p,
449
+ softmax_scale,
450
+ causal,
451
+ window_size,
452
+ softcap,
453
+ alibi_slopes,
454
+ deterministic,
455
+ return_softmax,
456
+ is_grad_enabled,
457
+ ):
458
+ is_grad = is_grad_enabled and qkv.requires_grad
459
+ if softmax_scale is None:
460
+ softmax_scale = qkv.shape[-1] ** (-0.5)
461
+ q, k, v = qkv[:, :, 0].detach(), qkv[:, :, 1].detach(), qkv[:, :, 2].detach()
462
+ head_size_og = q.size(3)
463
+ if head_size_og % 8 != 0:
464
+ q = torch.nn.functional.pad(q, [0, 8 - head_size_og % 8])
465
+ k = torch.nn.functional.pad(k, [0, 8 - head_size_og % 8])
466
+ v = torch.nn.functional.pad(v, [0, 8 - head_size_og % 8])
467
+ out_padded, softmax_lse, S_dmask, rng_state = _wrapped_flash_attn_forward(
468
+ q,
469
+ k,
470
+ v,
471
+ dropout_p,
472
+ softmax_scale,
473
+ causal=causal,
474
+ window_size_left=window_size[0],
475
+ window_size_right=window_size[1],
476
+ softcap=softcap,
477
+ alibi_slopes=alibi_slopes,
478
+ return_softmax=return_softmax and dropout_p > 0,
479
+ )
480
+ if is_grad:
481
+ ctx.save_for_backward(q, k, v, out_padded, softmax_lse, rng_state)
482
+ ctx.dropout_p = dropout_p
483
+ ctx.softmax_scale = softmax_scale
484
+ ctx.causal = causal
485
+ ctx.window_size = window_size
486
+ ctx.softcap = softcap
487
+ ctx.alibi_slopes = alibi_slopes
488
+ ctx.deterministic = deterministic
489
+ out = out_padded[..., :head_size_og]
490
+ return out if not return_softmax else (out, softmax_lse, S_dmask)
491
+
492
+ @staticmethod
493
+ def backward(ctx, dout, *args):
494
+ q, k, v, out, softmax_lse, rng_state = ctx.saved_tensors
495
+ qkv_shape = q.shape[:-2] + (3, *q.shape[-2:])
496
+ dqkv = torch.empty(qkv_shape, dtype=q.dtype, device=q.device)
497
+ head_size_og = dout.size(3)
498
+ dout_padded = dout
499
+ if head_size_og % 8 != 0:
500
+ dout_padded = torch.nn.functional.pad(dout, [0, 8 - head_size_og % 8])
501
+ _wrapped_flash_attn_backward(
502
+ dout_padded,
503
+ q,
504
+ k,
505
+ v,
506
+ out,
507
+ softmax_lse,
508
+ dqkv[:, :, 0],
509
+ dqkv[:, :, 1],
510
+ dqkv[:, :, 2],
511
+ ctx.dropout_p,
512
+ ctx.softmax_scale,
513
+ ctx.causal,
514
+ ctx.window_size[0],
515
+ ctx.window_size[1],
516
+ ctx.softcap,
517
+ ctx.alibi_slopes,
518
+ ctx.deterministic,
519
+ rng_state=rng_state,
520
+ )
521
+ dqkv = dqkv[..., : dout.shape[-1]] # We could have padded the head dimension
522
+ return dqkv, None, None, None, None, None, None, None, None, None
523
+
524
+
525
+ class FlashAttnVarlenQKVPackedFunc(torch.autograd.Function):
526
+ @staticmethod
527
+ def forward(
528
+ ctx,
529
+ qkv,
530
+ cu_seqlens,
531
+ max_seqlen,
532
+ dropout_p,
533
+ softmax_scale,
534
+ causal,
535
+ window_size,
536
+ softcap,
537
+ alibi_slopes,
538
+ deterministic,
539
+ return_softmax,
540
+ is_grad_enabled,
541
+ ):
542
+ is_grad = is_grad_enabled and qkv.requires_grad
543
+ if softmax_scale is None:
544
+ softmax_scale = qkv.shape[-1] ** (-0.5)
545
+ q, k, v = qkv[:, 0].detach(), qkv[:, 1].detach(), qkv[:, 2].detach()
546
+ head_size_og = q.size(2)
547
+ if head_size_og % 8 != 0:
548
+ q = torch.nn.functional.pad(q, [0, 8 - head_size_og % 8])
549
+ k = torch.nn.functional.pad(k, [0, 8 - head_size_og % 8])
550
+ v = torch.nn.functional.pad(v, [0, 8 - head_size_og % 8])
551
+ out_padded, softmax_lse, S_dmask, rng_state = _wrapped_flash_attn_varlen_forward(
552
+ q,
553
+ k,
554
+ v,
555
+ cu_seqlens,
556
+ cu_seqlens,
557
+ max_seqlen,
558
+ max_seqlen,
559
+ dropout_p,
560
+ softmax_scale,
561
+ causal=causal,
562
+ window_size_left=window_size[0],
563
+ window_size_right=window_size[1],
564
+ softcap=softcap,
565
+ alibi_slopes=alibi_slopes,
566
+ return_softmax=return_softmax and dropout_p > 0,
567
+ block_table=None,
568
+ )
569
+ if is_grad:
570
+ ctx.save_for_backward(q, k, v, out_padded, softmax_lse, cu_seqlens, rng_state)
571
+ ctx.dropout_p = dropout_p
572
+ ctx.max_seqlen = max_seqlen
573
+ ctx.softmax_scale = softmax_scale
574
+ ctx.causal = causal
575
+ ctx.window_size = window_size
576
+ ctx.softcap = softcap
577
+ ctx.alibi_slopes = alibi_slopes
578
+ ctx.deterministic = deterministic
579
+ out = out_padded[..., :head_size_og]
580
+ return out if not return_softmax else (out, softmax_lse, S_dmask)
581
+
582
+ @staticmethod
583
+ def backward(ctx, dout, *args):
584
+ q, k, v, out, softmax_lse, cu_seqlens, rng_state = ctx.saved_tensors
585
+ qkv_shape = q.shape[:-2] + (3, *q.shape[-2:])
586
+ dqkv = torch.empty(qkv_shape, dtype=q.dtype, device=q.device)
587
+ head_size_og = dout.size(2)
588
+ dout_padded = dout
589
+ if head_size_og % 8 != 0:
590
+ dout_padded = torch.nn.functional.pad(dout, [0, 8 - head_size_og % 8])
591
+ _wrapped_flash_attn_varlen_backward(
592
+ dout_padded,
593
+ q,
594
+ k,
595
+ v,
596
+ out,
597
+ softmax_lse,
598
+ dqkv[:, 0],
599
+ dqkv[:, 1],
600
+ dqkv[:, 2],
601
+ cu_seqlens,
602
+ cu_seqlens,
603
+ ctx.max_seqlen,
604
+ ctx.max_seqlen,
605
+ ctx.dropout_p,
606
+ ctx.softmax_scale,
607
+ ctx.causal,
608
+ ctx.window_size[0],
609
+ ctx.window_size[1],
610
+ ctx.softcap,
611
+ ctx.alibi_slopes,
612
+ ctx.deterministic,
613
+ rng_state=rng_state,
614
+ )
615
+ dqkv = dqkv[..., : dout.shape[-1]] # We could have padded the head dimension
616
+ return dqkv, None, None, None, None, None, None, None, None, None, None, None
617
+
618
+
619
+ class FlashAttnKVPackedFunc(torch.autograd.Function):
620
+ @staticmethod
621
+ def forward(
622
+ ctx,
623
+ q,
624
+ kv,
625
+ dropout_p,
626
+ softmax_scale,
627
+ causal,
628
+ window_size,
629
+ softcap,
630
+ alibi_slopes,
631
+ deterministic,
632
+ return_softmax,
633
+ is_grad_enabled,
634
+ ):
635
+ is_grad = is_grad_enabled and any(
636
+ x.requires_grad for x in [q, kv]
637
+ )
638
+ if softmax_scale is None:
639
+ softmax_scale = q.shape[-1] ** (-0.5)
640
+ k, v = kv[:, :, 0].detach(), kv[:, :, 1].detach()
641
+ head_size_og = q.size(3)
642
+ if head_size_og % 8 != 0:
643
+ q = torch.nn.functional.pad(q, [0, 8 - head_size_og % 8])
644
+ k = torch.nn.functional.pad(k, [0, 8 - head_size_og % 8])
645
+ v = torch.nn.functional.pad(v, [0, 8 - head_size_og % 8])
646
+ out_padded, softmax_lse, S_dmask, rng_state = _wrapped_flash_attn_forward(
647
+ q,
648
+ k,
649
+ v,
650
+ dropout_p,
651
+ softmax_scale,
652
+ causal=causal,
653
+ window_size_left=window_size[0],
654
+ window_size_right=window_size[1],
655
+ softcap=softcap,
656
+ alibi_slopes=alibi_slopes,
657
+ return_softmax=return_softmax and dropout_p > 0,
658
+ )
659
+ if is_grad:
660
+ ctx.save_for_backward(q, k, v, out_padded, softmax_lse, rng_state)
661
+ ctx.dropout_p = dropout_p
662
+ ctx.softmax_scale = softmax_scale
663
+ ctx.causal = causal
664
+ ctx.window_size = window_size
665
+ ctx.softcap = softcap
666
+ ctx.alibi_slopes = alibi_slopes
667
+ ctx.deterministic = deterministic
668
+ out = out_padded[..., :head_size_og]
669
+ return out if not return_softmax else (out, softmax_lse, S_dmask)
670
+
671
+ @staticmethod
672
+ def backward(ctx, dout, *args):
673
+ q, k, v, out, softmax_lse, rng_state = ctx.saved_tensors
674
+ dq = torch.empty_like(q)
675
+ kv_shape = k.shape[:-2] + (2, *k.shape[-2:])
676
+ dkv = torch.empty(kv_shape, dtype=k.dtype, device=k.device)
677
+ head_size_og = dout.size(3)
678
+ dout_padded = dout
679
+ if head_size_og % 8 != 0:
680
+ dout_padded = torch.nn.functional.pad(dout, [0, 8 - head_size_og % 8])
681
+ _wrapped_flash_attn_backward(
682
+ dout_padded,
683
+ q,
684
+ k,
685
+ v,
686
+ out,
687
+ softmax_lse,
688
+ dq,
689
+ dkv[:, :, 0],
690
+ dkv[:, :, 1],
691
+ ctx.dropout_p,
692
+ ctx.softmax_scale,
693
+ ctx.causal,
694
+ ctx.window_size[0],
695
+ ctx.window_size[1],
696
+ ctx.softcap,
697
+ ctx.alibi_slopes,
698
+ ctx.deterministic,
699
+ rng_state=rng_state,
700
+ )
701
+ dq = dq[..., : dout.shape[-1]] # We could have padded the head dimension
702
+ dkv = dkv[..., : dout.shape[-1]]
703
+ return dq, dkv, None, None, None, None, None, None, None, None, None
704
+
705
+
706
+ class FlashAttnVarlenKVPackedFunc(torch.autograd.Function):
707
+ @staticmethod
708
+ def forward(
709
+ ctx,
710
+ q,
711
+ kv,
712
+ cu_seqlens_q,
713
+ cu_seqlens_k,
714
+ max_seqlen_q,
715
+ max_seqlen_k,
716
+ dropout_p,
717
+ softmax_scale,
718
+ causal,
719
+ window_size,
720
+ softcap,
721
+ alibi_slopes,
722
+ deterministic,
723
+ return_softmax,
724
+ is_grad_enabled,
725
+ ):
726
+ is_grad = is_grad_enabled and any(
727
+ x.requires_grad for x in [q, kv]
728
+ )
729
+ if softmax_scale is None:
730
+ softmax_scale = q.shape[-1] ** (-0.5)
731
+ k, v = kv[:, 0].detach(), kv[:, 1].detach()
732
+ head_size_og = q.size(2)
733
+ if head_size_og % 8 != 0:
734
+ q = torch.nn.functional.pad(q, [0, 8 - head_size_og % 8])
735
+ k = torch.nn.functional.pad(k, [0, 8 - head_size_og % 8])
736
+ v = torch.nn.functional.pad(v, [0, 8 - head_size_og % 8])
737
+ out_padded, softmax_lse, S_dmask, rng_state = _wrapped_flash_attn_varlen_forward(
738
+ q,
739
+ k,
740
+ v,
741
+ cu_seqlens_q,
742
+ cu_seqlens_k,
743
+ max_seqlen_q,
744
+ max_seqlen_k,
745
+ dropout_p,
746
+ softmax_scale,
747
+ causal=causal,
748
+ window_size_left=window_size[0],
749
+ window_size_right=window_size[1],
750
+ softcap=softcap,
751
+ alibi_slopes=alibi_slopes,
752
+ return_softmax=return_softmax and dropout_p > 0,
753
+ block_table=None,
754
+ )
755
+ if is_grad:
756
+ ctx.save_for_backward(
757
+ q, k, v, out_padded, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state
758
+ )
759
+ ctx.dropout_p = dropout_p
760
+ ctx.max_seqlen_q = max_seqlen_q
761
+ ctx.max_seqlen_k = max_seqlen_k
762
+ ctx.softmax_scale = softmax_scale
763
+ ctx.causal = causal
764
+ ctx.window_size = window_size
765
+ ctx.softcap = softcap
766
+ ctx.alibi_slopes = alibi_slopes
767
+ ctx.deterministic = deterministic
768
+ out = out_padded[..., :head_size_og]
769
+ return out if not return_softmax else (out, softmax_lse, S_dmask)
770
+
771
+ @staticmethod
772
+ def backward(ctx, dout, *args):
773
+ q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state = ctx.saved_tensors
774
+ dq = torch.empty_like(q)
775
+ kv_shape = k.shape[:-2] + (2, *k.shape[-2:])
776
+ dkv = torch.empty(kv_shape, dtype=k.dtype, device=k.device)
777
+ head_size_og = dout.size(2)
778
+ dout_padded = dout
779
+ if head_size_og % 8 != 0:
780
+ dout_padded = torch.nn.functional.pad(dout, [0, 8 - head_size_og % 8])
781
+ _wrapped_flash_attn_varlen_backward(
782
+ dout_padded,
783
+ q,
784
+ k,
785
+ v,
786
+ out,
787
+ softmax_lse,
788
+ dq,
789
+ dkv[:, 0],
790
+ dkv[:, 1],
791
+ cu_seqlens_q,
792
+ cu_seqlens_k,
793
+ ctx.max_seqlen_q,
794
+ ctx.max_seqlen_k,
795
+ ctx.dropout_p,
796
+ ctx.softmax_scale,
797
+ ctx.causal,
798
+ ctx.window_size[0],
799
+ ctx.window_size[1],
800
+ ctx.softcap,
801
+ ctx.alibi_slopes,
802
+ ctx.deterministic,
803
+ rng_state=rng_state,
804
+ )
805
+ dq = dq[..., : dout.shape[-1]] # We could have padded the head dimension
806
+ dkv = dkv[..., : dout.shape[-1]]
807
+ return dq, dkv, None, None, None, None, None, None, None, None, None, None, None, None, None
808
+
809
+
810
+ class FlashAttnFunc(torch.autograd.Function):
811
+ @staticmethod
812
+ def forward(
813
+ ctx,
814
+ q,
815
+ k,
816
+ v,
817
+ dropout_p,
818
+ softmax_scale,
819
+ causal,
820
+ window_size,
821
+ softcap,
822
+ alibi_slopes,
823
+ deterministic,
824
+ return_softmax,
825
+ is_grad_enabled,
826
+ ):
827
+ is_grad = is_grad_enabled and any(
828
+ x.requires_grad for x in [q, k, v]
829
+ )
830
+ if softmax_scale is None:
831
+ softmax_scale = q.shape[-1] ** (-0.5)
832
+ head_size_og = q.size(3)
833
+ if head_size_og % 8 != 0:
834
+ q = torch.nn.functional.pad(q, [0, 8 - head_size_og % 8])
835
+ k = torch.nn.functional.pad(k, [0, 8 - head_size_og % 8])
836
+ v = torch.nn.functional.pad(v, [0, 8 - head_size_og % 8])
837
+ out_padded, softmax_lse, S_dmask, rng_state = _wrapped_flash_attn_forward(
838
+ q,
839
+ k,
840
+ v,
841
+ dropout_p,
842
+ softmax_scale,
843
+ causal=causal,
844
+ window_size_left=window_size[0],
845
+ window_size_right=window_size[1],
846
+ softcap=softcap,
847
+ alibi_slopes=alibi_slopes,
848
+ return_softmax=return_softmax and dropout_p > 0,
849
+ )
850
+ if is_grad:
851
+ ctx.save_for_backward(q, k, v, out_padded, softmax_lse, rng_state)
852
+ ctx.dropout_p = dropout_p
853
+ ctx.softmax_scale = softmax_scale
854
+ ctx.causal = causal
855
+ ctx.window_size = window_size
856
+ ctx.softcap = softcap
857
+ ctx.alibi_slopes = alibi_slopes
858
+ ctx.deterministic = deterministic
859
+ out = out_padded[..., :head_size_og]
860
+ return out if not return_softmax else (out, softmax_lse, S_dmask)
861
+
862
+ @staticmethod
863
+ def backward(ctx, dout, *args):
864
+ q, k, v, out, softmax_lse, rng_state = ctx.saved_tensors
865
+ dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
866
+ head_size_og = dout.size(3)
867
+ dout_padded = dout
868
+ if head_size_og % 8 != 0:
869
+ dout_padded = torch.nn.functional.pad(dout, [0, 8 - head_size_og % 8])
870
+ _wrapped_flash_attn_backward(
871
+ dout_padded,
872
+ q,
873
+ k,
874
+ v,
875
+ out,
876
+ softmax_lse,
877
+ dq,
878
+ dk,
879
+ dv,
880
+ ctx.dropout_p,
881
+ ctx.softmax_scale,
882
+ ctx.causal,
883
+ ctx.window_size[0],
884
+ ctx.window_size[1],
885
+ ctx.softcap,
886
+ ctx.alibi_slopes,
887
+ ctx.deterministic,
888
+ rng_state=rng_state,
889
+ )
890
+ dq = dq[..., : dout.shape[-1]] # We could have padded the head dimension
891
+ dk = dk[..., : dout.shape[-1]]
892
+ dv = dv[..., : dout.shape[-1]]
893
+ return dq, dk, dv, None, None, None, None, None, None, None, None, None
894
+
895
+
896
+ class FlashAttnVarlenFunc(torch.autograd.Function):
897
+ @staticmethod
898
+ def forward(
899
+ ctx,
900
+ q,
901
+ k,
902
+ v,
903
+ cu_seqlens_q,
904
+ cu_seqlens_k,
905
+ max_seqlen_q,
906
+ max_seqlen_k,
907
+ dropout_p,
908
+ softmax_scale,
909
+ causal,
910
+ window_size,
911
+ softcap,
912
+ alibi_slopes,
913
+ deterministic,
914
+ return_softmax,
915
+ block_table,
916
+ is_grad_enabled,
917
+ ):
918
+ is_grad = is_grad_enabled and any(
919
+ x.requires_grad for x in [q, k, v]
920
+ )
921
+ if softmax_scale is None:
922
+ softmax_scale = q.shape[-1] ** (-0.5)
923
+ head_size_og = q.size(2)
924
+ if head_size_og % 8 != 0:
925
+ q = torch.nn.functional.pad(q, [0, 8 - head_size_og % 8])
926
+ k = torch.nn.functional.pad(k, [0, 8 - head_size_og % 8])
927
+ v = torch.nn.functional.pad(v, [0, 8 - head_size_og % 8])
928
+ out_padded, softmax_lse, S_dmask, rng_state = _wrapped_flash_attn_varlen_forward(
929
+ q,
930
+ k,
931
+ v,
932
+ cu_seqlens_q,
933
+ cu_seqlens_k,
934
+ max_seqlen_q,
935
+ max_seqlen_k,
936
+ dropout_p,
937
+ softmax_scale,
938
+ causal=causal,
939
+ window_size_left=window_size[0],
940
+ window_size_right=window_size[1],
941
+ softcap=softcap,
942
+ alibi_slopes=alibi_slopes,
943
+ return_softmax=return_softmax and dropout_p > 0,
944
+ block_table=block_table,
945
+ )
946
+ if is_grad:
947
+ ctx.save_for_backward(
948
+ q, k, v, out_padded, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state
949
+ )
950
+ ctx.dropout_p = dropout_p
951
+ ctx.max_seqlen_q = max_seqlen_q
952
+ ctx.max_seqlen_k = max_seqlen_k
953
+ ctx.softmax_scale = softmax_scale
954
+ ctx.causal = causal
955
+ ctx.window_size = window_size
956
+ ctx.softcap = softcap
957
+ ctx.alibi_slopes = alibi_slopes
958
+ ctx.deterministic = deterministic
959
+
960
+ out = out_padded[..., :head_size_og]
961
+ return out if not return_softmax else (out, softmax_lse, S_dmask)
962
+
963
+ @staticmethod
964
+ def backward(ctx, dout, *args):
965
+ q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state = ctx.saved_tensors
966
+ dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
967
+ head_size_og = dout.size(2)
968
+ dout_padded = dout
969
+ if head_size_og % 8 != 0:
970
+ dout_padded = torch.nn.functional.pad(dout, [0, 8 - head_size_og % 8])
971
+ _wrapped_flash_attn_varlen_backward(
972
+ dout_padded,
973
+ q,
974
+ k,
975
+ v,
976
+ out,
977
+ softmax_lse,
978
+ dq,
979
+ dk,
980
+ dv,
981
+ cu_seqlens_q,
982
+ cu_seqlens_k,
983
+ ctx.max_seqlen_q,
984
+ ctx.max_seqlen_k,
985
+ ctx.dropout_p,
986
+ ctx.softmax_scale,
987
+ ctx.causal,
988
+ ctx.window_size[0],
989
+ ctx.window_size[1],
990
+ ctx.softcap,
991
+ ctx.alibi_slopes,
992
+ ctx.deterministic,
993
+ rng_state=rng_state,
994
+ )
995
+ dq = dq[..., : dout.shape[-1]] # We could have padded the head dimension
996
+ dk = dk[..., : dout.shape[-1]]
997
+ dv = dv[..., : dout.shape[-1]]
998
+ return dq, dk, dv, None, None, None, None, None, None, None, None, None, None, None, None, None, None
999
+
1000
+
1001
+ def flash_attn_qkvpacked_func(
1002
+ qkv,
1003
+ dropout_p=0.0,
1004
+ softmax_scale=None,
1005
+ causal=False,
1006
+ window_size=(-1, -1), # -1 means infinite context window
1007
+ softcap=0.0, # <=0.0 means deactivate
1008
+ alibi_slopes=None,
1009
+ deterministic=False,
1010
+ return_attn_probs=False,
1011
+ ):
1012
+ """dropout_p should be set to 0.0 during evaluation
1013
+ If Q, K, V are already stacked into 1 tensor, this function will be faster than
1014
+ calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation
1015
+ of the gradients of Q, K, V.
1016
+ For multi-query and grouped-query attention (MQA/GQA), please see
1017
+ flash_attn_kvpacked_func and flash_attn_func.
1018
+
1019
+ If window_size != (-1, -1), implements sliding window local attention. Query at position i
1020
+ will only attend to keys between [i - window_size[0], i + window_size[1]] inclusive.
1021
+
1022
+ Arguments:
1023
+ qkv: (batch_size, seqlen, 3, nheads, headdim)
1024
+ dropout_p: float. Dropout probability.
1025
+ softmax_scale: float. The scaling of QK^T before applying softmax.
1026
+ Default to 1 / sqrt(headdim).
1027
+ causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
1028
+ window_size: (left, right). If not (-1, -1), implements sliding window local attention.
1029
+ softcap: float. Anything > 0 activates softcapping attention.
1030
+ alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of (-alibi_slope * |i - j|) is added to
1031
+ the attention score of query i and key j.
1032
+ deterministic: bool. Whether to use the deterministic implementation of the backward pass,
1033
+ which is slightly slower and uses more memory. The forward pass is always deterministic.
1034
+ return_attn_probs: bool. Whether to return the attention probabilities. This option is for
1035
+ testing only. The returned probabilities are not guaranteed to be correct
1036
+ (they might not have the right scaling).
1037
+ Return:
1038
+ out: (batch_size, seqlen, nheads, headdim).
1039
+ softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
1040
+ logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
1041
+ normalization factor).
1042
+ S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
1043
+ The output of softmax (possibly with different scaling). It also encodes the dropout
1044
+ pattern (negative means that location was dropped, nonnegative means it was kept).
1045
+ """
1046
+ return FlashAttnQKVPackedFunc.apply(
1047
+ qkv,
1048
+ dropout_p,
1049
+ softmax_scale,
1050
+ causal,
1051
+ window_size,
1052
+ softcap,
1053
+ alibi_slopes,
1054
+ deterministic,
1055
+ return_attn_probs,
1056
+ torch.is_grad_enabled(),
1057
+ )
1058
+
1059
+
1060
+ def flash_attn_kvpacked_func(
1061
+ q,
1062
+ kv,
1063
+ dropout_p=0.0,
1064
+ softmax_scale=None,
1065
+ causal=False,
1066
+ window_size=(-1, -1), # -1 means infinite context window
1067
+ softcap=0.0, # 0.0 means deactivated
1068
+ alibi_slopes=None,
1069
+ deterministic=False,
1070
+ return_attn_probs=False,
1071
+ ):
1072
+ """dropout_p should be set to 0.0 during evaluation
1073
+ If K, V are already stacked into 1 tensor, this function will be faster than
1074
+ calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation
1075
+ of the gradients of K, V.
1076
+ Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
1077
+ than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
1078
+ For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
1079
+ 0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
1080
+
1081
+ If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
1082
+ For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
1083
+ 1 1 1 1 0
1084
+ 1 1 1 1 1
1085
+ If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
1086
+ 0 0
1087
+ 0 0
1088
+ 0 0
1089
+ 1 0
1090
+ 1 1
1091
+ If the row of the mask is all zero, the output will be zero.
1092
+
1093
+ If window_size != (-1, -1), implements sliding window local attention. Query at position i
1094
+ will only attend to keys between
1095
+ [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
1096
+
1097
+ Arguments:
1098
+ q: (batch_size, seqlen, nheads, headdim)
1099
+ kv: (batch_size, seqlen, 2, nheads_k, headdim)
1100
+ dropout_p: float. Dropout probability.
1101
+ softmax_scale: float. The scaling of QK^T before applying softmax.
1102
+ Default to 1 / sqrt(headdim).
1103
+ causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
1104
+ window_size: (left, right). If not (-1, -1), implements sliding window local attention.
1105
+ softcap: float. Anything > 0 activates softcapping attention.
1106
+ alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
1107
+ (-alibi_slope * |i + seqlen_k - seqlen_q - j|)
1108
+ is added to the attention score of query i and key j.
1109
+ deterministic: bool. Whether to use the deterministic implementation of the backward pass,
1110
+ which is slightly slower and uses more memory. The forward pass is always deterministic.
1111
+ return_attn_probs: bool. Whether to return the attention probabilities. This option is for
1112
+ testing only. The returned probabilities are not guaranteed to be correct
1113
+ (they might not have the right scaling).
1114
+ Return:
1115
+ out: (batch_size, seqlen, nheads, headdim).
1116
+ softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
1117
+ logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
1118
+ normalization factor).
1119
+ S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
1120
+ The output of softmax (possibly with different scaling). It also encodes the dropout
1121
+ pattern (negative means that location was dropped, nonnegative means it was kept).
1122
+ """
1123
+ return FlashAttnKVPackedFunc.apply(
1124
+ q,
1125
+ kv,
1126
+ dropout_p,
1127
+ softmax_scale,
1128
+ causal,
1129
+ window_size,
1130
+ softcap,
1131
+ alibi_slopes,
1132
+ deterministic,
1133
+ return_attn_probs,
1134
+ torch.is_grad_enabled(),
1135
+ )
1136
+
1137
+
1138
+ def flash_attn_func(
1139
+ q,
1140
+ k,
1141
+ v,
1142
+ dropout_p=0.0,
1143
+ softmax_scale=None,
1144
+ causal=False,
1145
+ window_size=(-1, -1), # -1 means infinite context window
1146
+ softcap=0.0, # 0.0 means deactivated
1147
+ alibi_slopes=None,
1148
+ deterministic=False,
1149
+ return_attn_probs=False,
1150
+ ):
1151
+ """dropout_p should be set to 0.0 during evaluation
1152
+ Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
1153
+ than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
1154
+ For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
1155
+ 0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
1156
+
1157
+ If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
1158
+ For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
1159
+ 1 1 1 1 0
1160
+ 1 1 1 1 1
1161
+ If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
1162
+ 0 0
1163
+ 0 0
1164
+ 0 0
1165
+ 1 0
1166
+ 1 1
1167
+ If the row of the mask is all zero, the output will be zero.
1168
+
1169
+ If window_size != (-1, -1), implements sliding window local attention. Query at position i
1170
+ will only attend to keys between
1171
+ [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
1172
+
1173
+ Arguments:
1174
+ q: (batch_size, seqlen, nheads, headdim)
1175
+ k: (batch_size, seqlen, nheads_k, headdim)
1176
+ v: (batch_size, seqlen, nheads_k, headdim)
1177
+ dropout_p: float. Dropout probability.
1178
+ softmax_scale: float. The scaling of QK^T before applying softmax.
1179
+ Default to 1 / sqrt(headdim).
1180
+ causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
1181
+ window_size: (left, right). If not (-1, -1), implements sliding window local attention.
1182
+ alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
1183
+ (-alibi_slope * |i + seqlen_k - seqlen_q - j|)
1184
+ is added to the attention score of query i and key j.
1185
+ deterministic: bool. Whether to use the deterministic implementation of the backward pass,
1186
+ which is slightly slower and uses more memory. The forward pass is always deterministic.
1187
+ return_attn_probs: bool. Whether to return the attention probabilities. This option is for
1188
+ testing only. The returned probabilities are not guaranteed to be correct
1189
+ (they might not have the right scaling).
1190
+ Return:
1191
+ out: (batch_size, seqlen, nheads, headdim).
1192
+ softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
1193
+ logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
1194
+ normalization factor).
1195
+ S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
1196
+ The output of softmax (possibly with different scaling). It also encodes the dropout
1197
+ pattern (negative means that location was dropped, nonnegative means it was kept).
1198
+ """
1199
+ return FlashAttnFunc.apply(
1200
+ q,
1201
+ k,
1202
+ v,
1203
+ dropout_p,
1204
+ softmax_scale,
1205
+ causal,
1206
+ window_size,
1207
+ softcap,
1208
+ alibi_slopes,
1209
+ deterministic,
1210
+ return_attn_probs,
1211
+ torch.is_grad_enabled(),
1212
+ )
1213
+
1214
+
1215
+ def flash_attn_varlen_qkvpacked_func(
1216
+ qkv,
1217
+ cu_seqlens,
1218
+ max_seqlen,
1219
+ dropout_p=0.0,
1220
+ softmax_scale=None,
1221
+ causal=False,
1222
+ window_size=(-1, -1), # -1 means infinite context window
1223
+ softcap=0.0, # 0.0 means deactivated
1224
+ alibi_slopes=None,
1225
+ deterministic=False,
1226
+ return_attn_probs=False,
1227
+ ):
1228
+ """dropout_p should be set to 0.0 during evaluation
1229
+ If Q, K, V are already stacked into 1 tensor, this function will be faster than
1230
+ calling flash_attn_varlen_func on Q, K, V since the backward pass avoids explicit concatenation
1231
+ of the gradients of Q, K, V.
1232
+ For multi-query and grouped-query attention (MQA/GQA), please see
1233
+ flash_attn_varlen_kvpacked_func and flash_attn_varlen_func.
1234
+
1235
+ If window_size != (-1, -1), implements sliding window local attention. Query at position i
1236
+ will only attend to keys between [i - window_size[0], i + window_size[1]] inclusive.
1237
+
1238
+ Arguments:
1239
+ qkv: (total, 3, nheads, headdim), where total = total number of tokens in the batch.
1240
+ cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
1241
+ of the sequences in the batch, used to index into qkv.
1242
+ max_seqlen: int. Maximum sequence length in the batch.
1243
+ dropout_p: float. Dropout probability.
1244
+ softmax_scale: float. The scaling of QK^T before applying softmax.
1245
+ Default to 1 / sqrt(headdim).
1246
+ causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
1247
+ window_size: (left, right). If not (-1, -1), implements sliding window local attention.
1248
+ softcap: float. Anything > 0 activates softcapping attention.
1249
+ alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of (-alibi_slope * |i - j|)
1250
+ is added to the attention score of query i and key j.
1251
+ deterministic: bool. Whether to use the deterministic implementation of the backward pass,
1252
+ which is slightly slower and uses more memory. The forward pass is always deterministic.
1253
+ return_attn_probs: bool. Whether to return the attention probabilities. This option is for
1254
+ testing only. The returned probabilities are not guaranteed to be correct
1255
+ (they might not have the right scaling).
1256
+ Return:
1257
+ out: (total, nheads, headdim).
1258
+ softmax_lse [optional, if return_attn_probs=True]: (nheads, total_q_seqlen). The
1259
+ logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
1260
+ normalization factor).
1261
+ S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
1262
+ The output of softmax (possibly with different scaling). It also encodes the dropout
1263
+ pattern (negative means that location was dropped, nonnegative means it was kept).
1264
+ """
1265
+ return FlashAttnVarlenQKVPackedFunc.apply(
1266
+ qkv,
1267
+ cu_seqlens,
1268
+ max_seqlen,
1269
+ dropout_p,
1270
+ softmax_scale,
1271
+ causal,
1272
+ window_size,
1273
+ softcap,
1274
+ alibi_slopes,
1275
+ deterministic,
1276
+ return_attn_probs,
1277
+ torch.is_grad_enabled(),
1278
+ )
1279
+
1280
+
1281
+ def flash_attn_varlen_kvpacked_func(
1282
+ q,
1283
+ kv,
1284
+ cu_seqlens_q,
1285
+ cu_seqlens_k,
1286
+ max_seqlen_q,
1287
+ max_seqlen_k,
1288
+ dropout_p=0.0,
1289
+ softmax_scale=None,
1290
+ causal=False,
1291
+ window_size=(-1, -1), # -1 means infinite context window
1292
+ softcap=0.0, # 0.0 means deactivated
1293
+ alibi_slopes=None,
1294
+ deterministic=False,
1295
+ return_attn_probs=False,
1296
+ ):
1297
+ """dropout_p should be set to 0.0 during evaluation
1298
+ If K, V are already stacked into 1 tensor, this function will be faster than
1299
+ calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation
1300
+ of the gradients of K, V.
1301
+ Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
1302
+ than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
1303
+ For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
1304
+ 0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
1305
+
1306
+ If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
1307
+ For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
1308
+ 1 1 1 1 0
1309
+ 1 1 1 1 1
1310
+ If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
1311
+ 0 0
1312
+ 0 0
1313
+ 0 0
1314
+ 1 0
1315
+ 1 1
1316
+ If the row of the mask is all zero, the output will be zero.
1317
+
1318
+ If window_size != (-1, -1), implements sliding window local attention. Query at position i
1319
+ will only attend to keys between
1320
+ [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
1321
+
1322
+ Arguments:
1323
+ q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch.
1324
+ kv: (total_k, 2, nheads_k, headdim), where total_k = total number of key tokens in the batch.
1325
+ cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
1326
+ of the sequences in the batch, used to index into q.
1327
+ cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
1328
+ of the sequences in the batch, used to index into kv.
1329
+ max_seqlen_q: int. Maximum query sequence length in the batch.
1330
+ max_seqlen_k: int. Maximum key sequence length in the batch.
1331
+ dropout_p: float. Dropout probability.
1332
+ softmax_scale: float. The scaling of QK^T before applying softmax.
1333
+ Default to 1 / sqrt(headdim).
1334
+ causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
1335
+ window_size: (left, right). If not (-1, -1), implements sliding window local attention.
1336
+ softcap: float. Anything > 0 activates softcapping attention.
1337
+ alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
1338
+ (-alibi_slope * |i + seqlen_k - seqlen_q - j|)
1339
+ is added to the attention score of query i and key j.
1340
+ deterministic: bool. Whether to use the deterministic implementation of the backward pass,
1341
+ which is slightly slower and uses more memory. The forward pass is always deterministic.
1342
+ return_attn_probs: bool. Whether to return the attention probabilities. This option is for
1343
+ testing only. The returned probabilities are not guaranteed to be correct
1344
+ (they might not have the right scaling).
1345
+ Return:
1346
+ out: (total, nheads, headdim).
1347
+ softmax_lse [optional, if return_attn_probs=True]: (nheads, total_q_seqlen). The
1348
+ logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
1349
+ normalization factor).
1350
+ S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
1351
+ The output of softmax (possibly with different scaling). It also encodes the dropout
1352
+ pattern (negative means that location was dropped, nonnegative means it was kept).
1353
+ """
1354
+ return FlashAttnVarlenKVPackedFunc.apply(
1355
+ q,
1356
+ kv,
1357
+ cu_seqlens_q,
1358
+ cu_seqlens_k,
1359
+ max_seqlen_q,
1360
+ max_seqlen_k,
1361
+ dropout_p,
1362
+ softmax_scale,
1363
+ causal,
1364
+ window_size,
1365
+ softcap,
1366
+ alibi_slopes,
1367
+ deterministic,
1368
+ return_attn_probs,
1369
+ torch.is_grad_enabled(),
1370
+ )
1371
+
1372
+
1373
+ def flash_attn_varlen_func(
1374
+ q,
1375
+ k,
1376
+ v,
1377
+ cu_seqlens_q,
1378
+ cu_seqlens_k,
1379
+ max_seqlen_q,
1380
+ max_seqlen_k,
1381
+ dropout_p=0.0,
1382
+ softmax_scale=None,
1383
+ causal=False,
1384
+ window_size=(-1, -1), # -1 means infinite context window
1385
+ softcap=0.0, # 0.0 means deactivated
1386
+ alibi_slopes=None,
1387
+ deterministic=False,
1388
+ return_attn_probs=False,
1389
+ block_table=None,
1390
+ ):
1391
+ """dropout_p should be set to 0.0 during evaluation
1392
+ Supports multi-query and grouped-query attention (MQA/GQA) by passing in K, V with fewer heads
1393
+ than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
1394
+ For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
1395
+ 0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
1396
+
1397
+ If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
1398
+ For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
1399
+ 1 1 1 1 0
1400
+ 1 1 1 1 1
1401
+ If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
1402
+ 0 0
1403
+ 0 0
1404
+ 0 0
1405
+ 1 0
1406
+ 1 1
1407
+ If the row of the mask is all zero, the output will be zero.
1408
+
1409
+ If window_size != (-1, -1), implements sliding window local attention. Query at position i
1410
+ will only attend to keys between
1411
+ [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
1412
+
1413
+ Arguments:
1414
+ q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch.
1415
+ k: (total_k, nheads_k, headdim), where total_k = total number of key tokens in the batch.
1416
+ v: (total_k, nheads_k, headdim), where total_k = total number of key tokens in the batch.
1417
+ cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
1418
+ of the sequences in the batch, used to index into q.
1419
+ cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
1420
+ of the sequences in the batch, used to index into kv.
1421
+ max_seqlen_q: int. Maximum query sequence length in the batch.
1422
+ max_seqlen_k: int. Maximum key sequence length in the batch.
1423
+ dropout_p: float. Dropout probability.
1424
+ softmax_scale: float. The scaling of QK^T before applying softmax.
1425
+ Default to 1 / sqrt(headdim).
1426
+ causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
1427
+ window_size: (left, right). If not (-1, -1), implements sliding window local attention.
1428
+ softcap: float. Anything > 0 activates softcapping attention.
1429
+ alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
1430
+ (-alibi_slope * |i + seqlen_k - seqlen_q - j|)
1431
+ is added to the attention score of query i and key j.
1432
+ deterministic: bool. Whether to use the deterministic implementation of the backward pass,
1433
+ which is slightly slower and uses more memory. The forward pass is always deterministic.
1434
+ return_attn_probs: bool. Whether to return the attention probabilities. This option is for
1435
+ testing only. The returned probabilities are not guaranteed to be correct
1436
+ (they might not have the right scaling).
1437
+ Return:
1438
+ out: (total, nheads, headdim).
1439
+ softmax_lse [optional, if return_attn_probs=True]: (nheads, total_q_seqlen). The
1440
+ logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
1441
+ normalization factor).
1442
+ S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
1443
+ The output of softmax (possibly with different scaling). It also encodes the dropout
1444
+ pattern (negative means that location was dropped, nonnegative means it was kept).
1445
+ """
1446
+ return FlashAttnVarlenFunc.apply(
1447
+ q,
1448
+ k,
1449
+ v,
1450
+ cu_seqlens_q,
1451
+ cu_seqlens_k,
1452
+ max_seqlen_q,
1453
+ max_seqlen_k,
1454
+ dropout_p,
1455
+ softmax_scale,
1456
+ causal,
1457
+ window_size,
1458
+ softcap,
1459
+ alibi_slopes,
1460
+ deterministic,
1461
+ return_attn_probs,
1462
+ block_table,
1463
+ torch.is_grad_enabled(),
1464
+ )
1465
+
1466
+
1467
+ def flash_attn_with_kvcache(
1468
+ q,
1469
+ k_cache,
1470
+ v_cache,
1471
+ k=None,
1472
+ v=None,
1473
+ rotary_cos=None,
1474
+ rotary_sin=None,
1475
+ cache_seqlens: Optional[Union[(int, torch.Tensor)]] = None,
1476
+ cache_batch_idx: Optional[torch.Tensor] = None,
1477
+ cache_leftpad: Optional[torch.Tensor] = None,
1478
+ block_table: Optional[torch.Tensor] = None,
1479
+ softmax_scale=None,
1480
+ causal=False,
1481
+ window_size=(-1, -1), # -1 means infinite context window
1482
+ softcap=0.0, # 0.0 means deactivated
1483
+ rotary_interleaved=True,
1484
+ alibi_slopes=None,
1485
+ num_splits=0,
1486
+ return_softmax_lse=False,
1487
+ ):
1488
+ """
1489
+ If k and v are not None, k_cache and v_cache will be updated *inplace* with the new values from
1490
+ k and v. This is useful for incremental decoding: you can pass in the cached keys/values from
1491
+ the previous step, and update them with the new keys/values from the current step, and do
1492
+ attention with the updated cache, all in 1 kernel.
1493
+
1494
+ If you pass in k / v, you must make sure that the cache is large enough to hold the new values.
1495
+ For example, the KV cache could be pre-allocated with the max sequence length, and you can use
1496
+ cache_seqlens to keep track of the current sequence lengths of each sequence in the batch.
1497
+
1498
+ Also apply rotary embedding if rotary_cos and rotary_sin are passed in. The key @k will be
1499
+ rotated by rotary_cos and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc.
1500
+ If causal or local (i.e., window_size != (-1, -1)), the query @q will be rotated by rotary_cos
1501
+ and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc.
1502
+ If not causal and not local, the query @q will be rotated by rotary_cos and rotary_sin at
1503
+ indices cache_seqlens only (i.e. we consider all tokens in @q to be at position cache_seqlens).
1504
+
1505
+ See tests/test_flash_attn.py::test_flash_attn_kvcache for examples of how to use this function.
1506
+
1507
+ Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
1508
+ than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
1509
+ For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
1510
+ 0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
1511
+
1512
+ If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
1513
+ For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
1514
+ 1 1 1 1 0
1515
+ 1 1 1 1 1
1516
+ If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
1517
+ 0 0
1518
+ 0 0
1519
+ 0 0
1520
+ 1 0
1521
+ 1 1
1522
+ If the row of the mask is all zero, the output will be zero.
1523
+
1524
+ If window_size != (-1, -1), implements sliding window local attention. Query at position i
1525
+ will only attend to keys between
1526
+ [i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
1527
+
1528
+ Note: Does not support backward pass.
1529
+
1530
+ Arguments:
1531
+ q: (batch_size, seqlen, nheads, headdim)
1532
+ k_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim) if there's no block_table,
1533
+ or (num_blocks, page_block_size, nheads_k, headdim) if there's a block_table (i.e. paged KV cache)
1534
+ page_block_size must be a multiple of 256.
1535
+ v_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim) if there's no block_table,
1536
+ or (num_blocks, page_block_size, nheads_k, headdim) if there's a block_table (i.e. paged KV cache)
1537
+ k [optional]: (batch_size, seqlen_new, nheads_k, headdim). If not None, we concatenate
1538
+ k with k_cache, starting at the indices specified by cache_seqlens.
1539
+ v [optional]: (batch_size, seqlen_new, nheads_k, headdim). Similar to k.
1540
+ rotary_cos [optional]: (seqlen_ro, rotary_dim / 2). If not None, we apply rotary embedding
1541
+ to k and q. Only applicable if k and v are passed in. rotary_dim must be divisible by 16.
1542
+ rotary_sin [optional]: (seqlen_ro, rotary_dim / 2). Similar to rotary_cos.
1543
+ cache_seqlens: int, or (batch_size,), dtype torch.int32. The sequence lengths of the
1544
+ KV cache.
1545
+ cache_batch_idx: (batch_size,), dtype torch.int32. The indices used to index into the KV cache.
1546
+ If None, we assume that the batch indices are [0, 1, 2, ..., batch_size - 1].
1547
+ If the indices are not distinct, and k and v are provided, the values updated in the cache
1548
+ might come from any of the duplicate indices.
1549
+ cache_leftpad: (batch_size,), dtype torch.int32. The index that the KV cache starts. If None, assume 0.
1550
+ block_table [optional]: (batch_size, max_num_blocks_per_seq), dtype torch.int32.
1551
+ softmax_scale: float. The scaling of QK^T before applying softmax.
1552
+ Default to 1 / sqrt(headdim).
1553
+ causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
1554
+ window_size: (left, right). If not (-1, -1), implements sliding window local attention.
1555
+ softcap: float. Anything > 0 activates softcapping attention.
1556
+ rotary_interleaved: bool. Only applicable if rotary_cos and rotary_sin are passed in.
1557
+ If True, rotary embedding will combine dimensions 0 & 1, 2 & 3, etc. If False,
1558
+ rotary embedding will combine dimensions 0 & rotary_dim / 2, 1 & rotary_dim / 2 + 1
1559
+ (i.e. GPT-NeoX style).
1560
+ alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
1561
+ (-alibi_slope * |i + seqlen_k - seqlen_q - j|)
1562
+ is added to the attention score of query i and key j.
1563
+ num_splits: int. If > 1, split the key/value into this many chunks along the sequence.
1564
+ If num_splits == 1, we don't split the key/value. If num_splits == 0, we use a heuristic
1565
+ to automatically determine the number of splits.
1566
+ Don't change this unless you know what you are doing.
1567
+ return_softmax_lse: bool. Whether to return the logsumexp of the attention scores.
1568
+
1569
+ Return:
1570
+ out: (batch_size, seqlen, nheads, headdim).
1571
+ softmax_lse [optional, if return_softmax_lse=True]: (batch_size, nheads, seqlen). The
1572
+ logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
1573
+ normalization factor).
1574
+ """
1575
+ assert k_cache.stride(-1) == 1, "k_cache must have contiguous last dimension"
1576
+ assert v_cache.stride(-1) == 1, "v_cache must have contiguous last dimension"
1577
+ q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
1578
+ if softmax_scale is None:
1579
+ softmax_scale = q.shape[-1] ** (-0.5)
1580
+ if cache_seqlens is not None and isinstance(cache_seqlens, int):
1581
+ cache_seqlens = torch.full(
1582
+ (k_cache.shape[0],), cache_seqlens, dtype=torch.int32, device=k_cache.device
1583
+ )
1584
+ cache_seqlens = maybe_contiguous(cache_seqlens)
1585
+ cache_batch_idx = maybe_contiguous(cache_batch_idx)
1586
+ block_table = maybe_contiguous(block_table)
1587
+ out, softmax_lse = flash_attn_gpu.fwd_kvcache(
1588
+ q,
1589
+ k_cache,
1590
+ v_cache,
1591
+ k,
1592
+ v,
1593
+ cache_seqlens,
1594
+ rotary_cos,
1595
+ rotary_sin,
1596
+ cache_batch_idx,
1597
+ cache_leftpad,
1598
+ block_table,
1599
+ alibi_slopes,
1600
+ None,
1601
+ softmax_scale,
1602
+ causal,
1603
+ window_size[0],
1604
+ window_size[1],
1605
+ softcap,
1606
+ rotary_interleaved,
1607
+ num_splits,
1608
+ )
1609
+ return (out, softmax_lse) if return_softmax_lse else out
torch-ext/flash_attn/layers/__init__.py ADDED
File without changes
torch-ext/flash_attn/layers/patch_embed.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # We use the same API as https://github.com/rwightman/pytorch-image-models/blob/v0.6.11/timm/models/layers/patch_embed.py
2
+ # But we use nn.Linear instead of Conv2d and it's about 8x faster.
3
+
4
+ from functools import partial
5
+
6
+ import torch.nn as nn
7
+ from einops import rearrange
8
+ from torch import _assert
9
+ from torch.nn.modules.utils import _pair
10
+
11
+ try:
12
+ from flash_attn.ops.fused_dense import FusedDense
13
+ except ImportError:
14
+ FusedDense = None
15
+
16
+
17
+ class PatchEmbed(nn.Module):
18
+ """2D Image to Patch Embedding"""
19
+
20
+ def __init__(
21
+ self,
22
+ img_size=224,
23
+ patch_size=16,
24
+ in_chans=3,
25
+ embed_dim=768,
26
+ norm_layer=None,
27
+ flatten=True,
28
+ bias=True,
29
+ fused_bias_fc=False,
30
+ ):
31
+ super().__init__()
32
+ img_size = _pair(img_size)
33
+ patch_size = _pair(patch_size)
34
+ self.img_size = img_size
35
+ self.patch_size = patch_size
36
+ self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
37
+ self.num_patches = self.grid_size[0] * self.grid_size[1]
38
+ self.flatten = flatten
39
+ if fused_bias_fc and FusedDense is None:
40
+ raise ImportError("fused_dense is not installed")
41
+
42
+ linear_cls = nn.Linear if not fused_bias_fc or not bias else FusedDense
43
+ self.proj = linear_cls(in_chans * patch_size[0] * patch_size[1], embed_dim, bias=bias)
44
+ self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
45
+
46
+ def forward(self, x):
47
+ _, _, H, W = x.shape
48
+ _assert(
49
+ H == self.img_size[0],
50
+ f"Input image height ({H}) doesn't match model ({self.img_size[0]}).",
51
+ )
52
+ _assert(
53
+ W == self.img_size[1],
54
+ f"Input image width ({W}) doesn't match model ({self.img_size[1]}).",
55
+ )
56
+ x = self.proj(
57
+ rearrange(
58
+ x,
59
+ "b c (h p1) (w p2) -> b h w (c p1 p2)",
60
+ p1=self.patch_size[0],
61
+ p2=self.patch_size[1],
62
+ )
63
+ )
64
+ if self.flatten:
65
+ x = rearrange(x, "b h w c -> b (h w) c")
66
+ x = self.norm(x)
67
+ return x
torch-ext/flash_attn/layers/rotary.py ADDED
@@ -0,0 +1,483 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2025, Tri Dao
2
+
3
+ import math
4
+ from functools import partial
5
+ from typing import Optional, Tuple, Union
6
+
7
+ import torch
8
+ from torch import Tensor
9
+
10
+ from einops import rearrange, repeat
11
+ # from flash_attn.ops.triton.rotary import apply_rotary
12
+ from ..ops.triton.rotary import apply_rotary
13
+
14
+
15
+ def rotate_half(x, interleaved=False):
16
+ if not interleaved:
17
+ x1, x2 = x.chunk(2, dim=-1)
18
+ return torch.cat((-x2, x1), dim=-1)
19
+ else:
20
+ x1, x2 = x[..., ::2], x[..., 1::2]
21
+ return rearrange(torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2)
22
+
23
+
24
+ def apply_rotary_emb_torch(x, cos, sin, interleaved=False):
25
+ """
26
+ x: (batch_size, seqlen, nheads, headdim)
27
+ cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
28
+ """
29
+ ro_dim = cos.shape[-1] * 2
30
+ assert ro_dim <= x.shape[-1]
31
+ cos = repeat(cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
32
+ sin = repeat(sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
33
+ return torch.cat(
34
+ [x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]],
35
+ dim=-1,
36
+ )
37
+
38
+
39
+ class ApplyRotaryEmb(torch.autograd.Function):
40
+ @staticmethod
41
+ def forward(
42
+ ctx,
43
+ x,
44
+ cos,
45
+ sin,
46
+ interleaved=False,
47
+ inplace=False,
48
+ seqlen_offsets: Union[int, Tensor] = 0,
49
+ cu_seqlens: Optional[Tensor] = None,
50
+ max_seqlen: Optional[int] = None,
51
+ ):
52
+ out = apply_rotary(
53
+ x,
54
+ cos,
55
+ sin,
56
+ seqlen_offsets=seqlen_offsets,
57
+ cu_seqlens=cu_seqlens,
58
+ max_seqlen=max_seqlen,
59
+ interleaved=interleaved,
60
+ inplace=inplace,
61
+ )
62
+ if isinstance(seqlen_offsets, int):
63
+ ctx.save_for_backward(cos, sin, cu_seqlens) # Can't save int with save_for_backward
64
+ ctx.seqlen_offsets = seqlen_offsets
65
+ else:
66
+ ctx.save_for_backward(cos, sin, cu_seqlens, seqlen_offsets)
67
+ ctx.seqlen_offsets = None
68
+ ctx.interleaved = interleaved
69
+ ctx.inplace = inplace
70
+ ctx.max_seqlen = max_seqlen
71
+ return out if not inplace else x
72
+
73
+ @staticmethod
74
+ def backward(ctx, do):
75
+ seqlen_offsets = ctx.seqlen_offsets
76
+ if seqlen_offsets is None:
77
+ cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors
78
+ else:
79
+ cos, sin, cu_seqlens = ctx.saved_tensors
80
+ dx = apply_rotary(
81
+ do,
82
+ cos,
83
+ sin,
84
+ seqlen_offsets=seqlen_offsets,
85
+ cu_seqlens=cu_seqlens,
86
+ max_seqlen=ctx.max_seqlen,
87
+ interleaved=ctx.interleaved,
88
+ inplace=ctx.inplace,
89
+ conjugate=True,
90
+ )
91
+ return dx, None, None, None, None, None, None, None
92
+
93
+
94
+ def apply_rotary_emb(
95
+ x,
96
+ cos,
97
+ sin,
98
+ interleaved=False,
99
+ inplace=False,
100
+ seqlen_offsets: Union[int, Tensor] = 0,
101
+ cu_seqlens: Optional[Tensor] = None,
102
+ max_seqlen: Optional[int] = None,
103
+ ):
104
+ """
105
+ Arguments:
106
+ x: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None
107
+ else (total_seqlen, nheads, headdim)
108
+ cos, sin: (seqlen_rotary, rotary_dim / 2)
109
+ interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
110
+ of 1st half and 2nd half (GPT-NeoX style).
111
+ inplace: if True, apply rotary embedding in-place.
112
+ seqlen_offsets: (batch_size,) or int. Each sequence in x is shifted by this amount.
113
+ Most commonly used in inference when we have KV cache.
114
+ cu_seqlens: (batch + 1,) or None
115
+ max_seqlen: int
116
+ Return:
117
+ out: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None
118
+ else (total_seqlen, nheads, headdim)
119
+ rotary_dim must be <= headdim
120
+ Apply rotary embedding to the first rotary_dim of x.
121
+ """
122
+ return ApplyRotaryEmb.apply(
123
+ x, cos, sin, interleaved, inplace, seqlen_offsets, cu_seqlens, max_seqlen
124
+ )
125
+
126
+
127
+ # For backward compatibility
128
+ apply_rotary_emb_func = apply_rotary_emb
129
+
130
+
131
+ def _apply_rotary_emb_qkv(
132
+ qkv,
133
+ cos,
134
+ sin,
135
+ cos_k=None,
136
+ sin_k=None,
137
+ interleaved=False,
138
+ inplace=False,
139
+ conjugate=False,
140
+ seqlen_offsets: Union[int, Tensor] = 0,
141
+ num_heads_q: Optional[int] = None,
142
+ ):
143
+ apply_rotary_fn = partial(
144
+ apply_rotary,
145
+ interleaved=interleaved,
146
+ inplace=inplace,
147
+ conjugate=conjugate,
148
+ seqlen_offsets=seqlen_offsets
149
+ )
150
+ if cos_k is None and sin_k is None and qkv.is_contiguous():
151
+ # Call 1 kernel instead of 2 kernels
152
+ # We need qkv to be contiguous so that when we reshape to combine (3, nheads)
153
+ # dimensions, we get the same tensor
154
+ if qkv.dim() == 5:
155
+ batch, seqlen, three, nheads, headdim = qkv.shape
156
+ assert three == 3
157
+ # qk = rearrange(qkv[:, :, :2], "b s t h d -> b s (t h) d")
158
+ qk = qkv[:, :, :2].reshape(batch, seqlen, -1, headdim)
159
+ qk = apply_rotary_fn(qk, cos, sin)
160
+ else:
161
+ assert qkv.dim() == 4
162
+ assert num_heads_q is not None
163
+ num_heads_k = (qkv.shape[2] - num_heads_q) // 2
164
+ assert qkv.shape[2] == num_heads_q + 2 * num_heads_k
165
+ qk = qkv[:, :, :num_heads_q + num_heads_k]
166
+ qk = apply_rotary_fn(qk, cos, sin)
167
+ if not inplace:
168
+ if qkv.dim() == 5:
169
+ qkv = torch.cat([rearrange(qk, "b s (t h) d -> b s t h d", t=2), qkv[:, :, 2:]], dim=2)
170
+ else:
171
+ qkv = torch.cat([qk, qkv[:, :, num_heads_q + num_heads_k :]], dim=2)
172
+ else:
173
+ cos_k = cos if cos_k is None else cos_k
174
+ sin_k = sin if sin_k is None else sin_k
175
+ if qkv.dim() == 5:
176
+ batch, seqlen, three, nheads, headdim = qkv.shape
177
+ assert three == 3
178
+ q, k = qkv[:, :, 0], qkv[:, :, 1]
179
+ else:
180
+ assert qkv.dim() == 4
181
+ assert num_heads_q is not None
182
+ num_heads_k = (qkv.shape[2] - num_heads_q) // 2
183
+ assert qkv.shape[2] == num_heads_q + 2 * num_heads_k
184
+ q, k = qkv[:, :, :num_heads_q], qkv[:, :, num_heads_q : num_heads_q + num_heads_k]
185
+ q = apply_rotary_fn(q, cos, sin)
186
+ k = apply_rotary_fn(k, cos_k, sin_k)
187
+ if not inplace:
188
+ if qkv.dim() == 5:
189
+ qkv = torch.stack([q, k, qkv[:, :, 2]], dim=2)
190
+ else:
191
+ qkv = torch.cat([q, k, qkv[:, :, num_heads_q + num_heads_k:]], dim=2)
192
+ return qkv
193
+
194
+
195
+ class ApplyRotaryEmbQKV_(torch.autograd.Function):
196
+ @staticmethod
197
+ def forward(
198
+ ctx,
199
+ qkv,
200
+ cos,
201
+ sin,
202
+ cos_k=None,
203
+ sin_k=None,
204
+ interleaved=False,
205
+ seqlen_offsets: Union[int, torch.Tensor] = 0,
206
+ num_heads_q: Optional[int] = None,
207
+ ):
208
+ # apply_rotary_emb_qkv_inplace(
209
+ qkv = _apply_rotary_emb_qkv(
210
+ qkv, cos, sin, cos_k, sin_k, interleaved=interleaved, inplace=True,
211
+ seqlen_offsets=seqlen_offsets, num_heads_q=num_heads_q,
212
+ )
213
+ if isinstance(seqlen_offsets, int):
214
+ ctx.save_for_backward(cos, sin, cos_k, sin_k)
215
+ ctx.seqlen_offsets = seqlen_offsets
216
+ else:
217
+ ctx.save_for_backward(cos, sin, cos_k, sin_k, seqlen_offsets)
218
+ ctx.seqlen_offsets = None
219
+ ctx.interleaved = interleaved
220
+ ctx.num_heads_q = num_heads_q
221
+ return qkv
222
+
223
+ @staticmethod
224
+ def backward(ctx, dqkv):
225
+ seqlen_offsets = ctx.seqlen_offsets
226
+ if seqlen_offsets is None:
227
+ cos, sin, cos_k, sin_k, seqlen_offsets = ctx.saved_tensors
228
+ else:
229
+ cos, sin, cos_k, sin_k = ctx.saved_tensors
230
+ dqkv = _apply_rotary_emb_qkv(
231
+ dqkv, cos, sin, cos_k, sin_k, interleaved=ctx.interleaved, inplace=True,
232
+ seqlen_offsets=seqlen_offsets, num_heads_q=ctx.num_heads_q, conjugate=True,
233
+ )
234
+ return dqkv, None, None, None, None, None, None, None
235
+
236
+
237
+ def apply_rotary_emb_qkv_(
238
+ qkv,
239
+ cos,
240
+ sin,
241
+ cos_k=None,
242
+ sin_k=None,
243
+ interleaved=False,
244
+ seqlen_offsets: Union[int, torch.Tensor] = 0,
245
+ num_heads_q: Optional[int] = None,
246
+ ):
247
+ """
248
+ Arguments:
249
+ qkv: (batch_size, seqlen, 3, nheads, headdim) or (batch_size, seqlen, num_heads_q + 2 * num_heads_k, headdim).
250
+ If qkv has shape (batch_size, seqlen, num_heads_q + 2 * num_heads_k, headdim) (e.g. MQA / GQA),
251
+ then num_heads_q must be provided.
252
+ cos, sin: (seqlen, rotary_dim / 2)
253
+ cos_k, sin_k: (seqlen, rotary_dim / 2), optional
254
+ interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead of
255
+ 1st half and 2nd half (GPT-NeoX style).
256
+ seqlen_offsets: (batch_size,) or int. Each sequence in Q and K is shifted by this amount.
257
+ Most commonly used in inference when we have KV cache.
258
+ Return:
259
+ qkv: (batch_size, seqlen, 3, nheads, headdim) or (batch_size, seqlen, num_heads_q + 2 * num_heads_k, headdim)
260
+ rotary_dim must be <= headdim
261
+ Apply rotary embedding *inplace* to the first rotary_dim of Q and K.
262
+ """
263
+ return ApplyRotaryEmbQKV_.apply(
264
+ qkv, cos, sin, cos_k, sin_k, interleaved, seqlen_offsets, num_heads_q
265
+ )
266
+
267
+
268
+ class ApplyRotaryEmbKV_(torch.autograd.Function):
269
+
270
+ @staticmethod
271
+ def forward(ctx, kv, cos, sin, interleaved=False, seqlen_offsets: Union[int, torch.Tensor] = 0):
272
+ batch, seqlen, two, nheads, headdim = kv.shape
273
+ assert two == 2
274
+ k = kv[:, :, 0]
275
+ apply_rotary(
276
+ k, cos, sin, seqlen_offsets=seqlen_offsets, interleaved=interleaved, inplace=True
277
+ )
278
+ if isinstance(seqlen_offsets, int):
279
+ ctx.save_for_backward(cos, sin) # Can't save int with save_for_backward
280
+ ctx.seqlen_offsets = seqlen_offsets
281
+ else:
282
+ ctx.save_for_backward(cos, sin, seqlen_offsets)
283
+ ctx.seqlen_offsets = None
284
+ ctx.interleaved = interleaved
285
+ return kv
286
+
287
+ @staticmethod
288
+ def backward(ctx, dkv):
289
+ seqlen_offsets = ctx.seqlen_offsets
290
+ if seqlen_offsets is None:
291
+ cos, sin, seqlen_offsets = ctx.saved_tensors
292
+ else:
293
+ cos, sin = ctx.saved_tensors
294
+ apply_rotary(
295
+ dkv[:, :, 0],
296
+ cos,
297
+ sin,
298
+ seqlen_offsets=seqlen_offsets,
299
+ interleaved=ctx.interleaved,
300
+ inplace=True,
301
+ conjugate=True,
302
+ )
303
+ return dkv, None, None, None, None
304
+
305
+
306
+ apply_rotary_emb_kv_ = ApplyRotaryEmbKV_.apply
307
+
308
+
309
+ def apply_rotary_emb_kv_(
310
+ kv,
311
+ cos,
312
+ sin,
313
+ interleaved=False,
314
+ seqlen_offsets: Union[int, torch.Tensor] = 0,
315
+ ):
316
+ """
317
+ Arguments:
318
+ kv: (batch_size, seqlen, 2, nheads, headdim)
319
+ cos, sin: (seqlen, rotary_dim / 2)
320
+ interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead of
321
+ 1st half and 2nd half (GPT-NeoX style).
322
+ seqlen_offsets: (batch_size,) or int. Each sequence in Q and K is shifted by this amount.
323
+ Most commonly used in inference when we have KV cache.
324
+ Return:
325
+ kv: (batch_size, seqlen, 2, nheads, headdim)
326
+ rotary_dim must be <= headdim
327
+ Apply rotary embedding *inplace* to the first rotary_dim of K.
328
+ """
329
+ return ApplyRotaryEmbKV_.apply(kv, cos, sin, interleaved, seqlen_offsets)
330
+
331
+
332
+ class RotaryEmbedding(torch.nn.Module):
333
+ """
334
+ The rotary position embeddings from RoFormer_ (Su et. al).
335
+ A crucial insight from the method is that the query and keys are
336
+ transformed by rotation matrices which depend on the relative positions.
337
+
338
+ Other implementations are available in the Rotary Transformer repo_ and in
339
+ GPT-NeoX_, GPT-NeoX was an inspiration
340
+
341
+ .. _RoFormer: https://arxiv.org/abs/2104.09864
342
+ .. _repo: https://github.com/ZhuiyiTechnology/roformer
343
+ .. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox
344
+
345
+ If scale_base is not None, this implements XPos (Sun et al., https://arxiv.org/abs/2212.10554).
346
+ A recommended value for scale_base is 512: https://github.com/HazyResearch/flash-attention/issues/96
347
+ Reference: https://github.com/sunyt32/torchscale/blob/main/torchscale/component/xpos_relative_position.py
348
+ """
349
+
350
+ def __init__(
351
+ self,
352
+ dim: int,
353
+ base=10000.0,
354
+ interleaved=False,
355
+ scale_base=None,
356
+ device=None,
357
+ ):
358
+ """
359
+ interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
360
+ of 1st half and 2nd half (GPT-NeoX style).
361
+ """
362
+ super().__init__()
363
+ self.dim = dim
364
+ self.base = float(base)
365
+ # Generate and save the inverse frequency buffer (non trainable)
366
+ inv_freq = self._compute_inv_freq(device)
367
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
368
+ self.interleaved = interleaved
369
+ self.scale_base = scale_base
370
+ scale = (
371
+ (torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
372
+ if scale_base is not None
373
+ else None
374
+ )
375
+ self.register_buffer("scale", scale, persistent=False)
376
+
377
+ self._seq_len_cached = 0
378
+ self._cos_cached = None
379
+ self._sin_cached = None
380
+ self._cos_k_cached = None
381
+ self._sin_k_cached = None
382
+
383
+ def _compute_inv_freq(self, device=None):
384
+ return 1.0 / (
385
+ self.base
386
+ ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)
387
+ )
388
+
389
+ def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
390
+ # Reset the tables if the sequence length has changed,
391
+ # if we're on a new device (possibly due to tracing for instance),
392
+ # or if we're switching from inference mode to training
393
+ if (
394
+ seqlen > self._seq_len_cached
395
+ or self._cos_cached is None
396
+ or self._cos_cached.device != device
397
+ or self._cos_cached.dtype != dtype
398
+ or (self.training and self._cos_cached.is_inference())
399
+ ):
400
+ self._seq_len_cached = seqlen
401
+ # We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
402
+ # And the output of arange can be quite large, so bf16 would lose a lot of precision.
403
+ t = torch.arange(seqlen, device=device, dtype=torch.float32)
404
+ # We want fp32 here as well since inv_freq will be multiplied with t, and the output
405
+ # will be large. Having it in bf16 will lose a lot of precision and cause the
406
+ # cos & sin output to change significantly.
407
+ # We want to recompute self.inv_freq if it was not loaded in fp32
408
+ if self.inv_freq.dtype != torch.float32:
409
+ inv_freq = self._compute_inv_freq(device=device)
410
+ else:
411
+ inv_freq = self.inv_freq
412
+ # Don't do einsum, it converts fp32 to bf16 under AMP
413
+ # freqs = torch.einsum("i,j->ij", t, self.inv_freq)
414
+ freqs = torch.outer(t, inv_freq)
415
+ if self.scale is None:
416
+ self._cos_cached = torch.cos(freqs).to(dtype)
417
+ self._sin_cached = torch.sin(freqs).to(dtype)
418
+ else:
419
+ power = (
420
+ torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
421
+ - seqlen // 2
422
+ ) / self.scale_base
423
+ scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
424
+ # We want the multiplication by scale to happen in fp32
425
+ self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
426
+ self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
427
+ self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
428
+ self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
429
+
430
+ def forward(
431
+ self,
432
+ qkv: torch.Tensor,
433
+ kv: Optional[torch.Tensor] = None,
434
+ seqlen_offset: Union[int, torch.Tensor] = 0,
435
+ max_seqlen: Optional[int] = None,
436
+ num_heads_q: Optional[int] = None,
437
+ ) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
438
+ """
439
+ qkv: (batch, seqlen, 3, nheads, headdim) or (batch, seqlen, num_heads_q + 2 * num_heads_k, headdim)
440
+ if kv is none, else it's just q of shape (batch, seqlen, nheads, headdim).
441
+ If qkv has shape (batch, seqlen, num_heads_q + 2 * num_heads_k, headdim) (e.g. MQA / GQA),
442
+ then num_heads_q must be provided.
443
+ kv: (batch, seqlen, 2, nheads, headdim)
444
+ seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount.
445
+ Most commonly used in inference when we have KV cache.
446
+ If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one
447
+ should pass in max_seqlen, which will update the cos / sin cache up to that length.
448
+ Apply rotary embedding *inplace* to qkv and / or kv.
449
+ """
450
+ seqlen = qkv.shape[1]
451
+ if max_seqlen is not None:
452
+ self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
453
+ elif isinstance(seqlen_offset, int):
454
+ self._update_cos_sin_cache(seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype)
455
+ if kv is None:
456
+ return apply_rotary_emb_qkv_(
457
+ qkv,
458
+ self._cos_cached,
459
+ self._sin_cached,
460
+ self._cos_k_cached if self.scale is not None else None,
461
+ self._sin_k_cached if self.scale is not None else None,
462
+ interleaved=self.interleaved,
463
+ seqlen_offsets=seqlen_offset,
464
+ num_heads_q=num_heads_q,
465
+ )
466
+ else:
467
+ q = qkv
468
+ q = apply_rotary_emb_func(
469
+ q,
470
+ self._cos_cached,
471
+ self._sin_cached,
472
+ interleaved=self.interleaved,
473
+ inplace=True,
474
+ seqlen_offsets=seqlen_offset,
475
+ )
476
+ kv = apply_rotary_emb_kv_(
477
+ kv,
478
+ self._cos_cached if self.scale is None else self._cos_k_cached,
479
+ self._sin_cached if self.scale is None else self._sin_k_cached,
480
+ interleaved=self.interleaved,
481
+ seqlen_offsets=seqlen_offset,
482
+ )
483
+ return q, kv
torch-ext/flash_attn/ops/__init__.py ADDED
File without changes
torch-ext/flash_attn/ops/activations.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copied from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/model/layers/activations.py
2
+ import math
3
+
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+
8
+ # 1/sqrt(2*pi)-> 0.3989423
9
+ # 1/sqrt(2) -> 0.70710678
10
+ # sqrt(2/pi) -> 0.79788456
11
+
12
+ # this function is tanh approximation of gelu
13
+ # actual gelu is:
14
+ # x * 0.5 * (1.0 + torch.erf(x * 0.70710678))
15
+ @torch.jit.script
16
+ def bias_gelu(y, bias):
17
+ x = bias + y
18
+ return (x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))).to(dtype=y.dtype)
19
+
20
+
21
+ # gradient of tanh approximation of gelu
22
+ # gradient of actual gelu is:
23
+ # 0.5 * (1. + torch.erf(x * 0.70710678)) + 0.3989423 * x * torch.exp(-0.5 * x * x)
24
+ @torch.jit.script
25
+ def bias_gelu_back(g, y, bias):
26
+ """Assume that y has shape (B, D) and bias has shape (D)"""
27
+ x = bias + y
28
+ tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
29
+ # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
30
+ ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (
31
+ 1 + tanh_out
32
+ )
33
+ grad_y = ff * g
34
+ return grad_y.to(dtype=y.dtype), grad_y.sum(dim=(0), dtype=bias.dtype)
35
+
36
+
37
+ class GeLUFunction(torch.autograd.Function):
38
+ @staticmethod
39
+ # bias is an optional argument
40
+ def forward(ctx, input, bias):
41
+ ctx.save_for_backward(input, bias)
42
+ return bias_gelu(input, bias)
43
+
44
+ @staticmethod
45
+ def backward(ctx, grad_output):
46
+ input, bias = ctx.saved_tensors
47
+ tmp = bias_gelu_back(grad_output, input, bias)
48
+ return tmp, tmp
49
+
50
+
51
+ bias_gelu_impl = GeLUFunction.apply
52
+
53
+ # this function is tanh approximation of gelu
54
+ # actual gelu is:
55
+ # x * 0.5 * (1.0 + torch.erf(x * 0.70710678))
56
+ @torch.jit.script
57
+ def gelu_fwd(x):
58
+ return (x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))).to(dtype=x.dtype)
59
+
60
+
61
+ # gradient of tanh approximation of gelu
62
+ # gradient of actual gelu is:
63
+ # 0.5 * (1. + torch.erf(x * 0.70710678)) + 0.3989423 * x * torch.exp(-0.5 * x * x)
64
+ @torch.jit.script
65
+ def gelu_bwd(g, x):
66
+ tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
67
+ # sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
68
+ ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (
69
+ 1 + tanh_out
70
+ )
71
+ return (ff * g).to(dtype=x.dtype)
72
+
73
+
74
+ class FastGeLUFunction(torch.autograd.Function):
75
+ @staticmethod
76
+ # bias is an optional argument
77
+ def forward(ctx, input):
78
+ ctx.save_for_backward(input)
79
+ return gelu_fwd(input)
80
+
81
+ @staticmethod
82
+ def backward(ctx, grad_output):
83
+ (input,) = ctx.saved_tensors
84
+ tmp = gelu_bwd(grad_output, input)
85
+ return tmp
86
+
87
+
88
+ fast_gelu_impl = FastGeLUFunction.apply
89
+
90
+
91
+ @torch.jit.script
92
+ def relu_bwd(g, x):
93
+ return torch.where(x >= 0, g, 0.0).to(dtype=x.dtype)
94
+
95
+
96
+ @torch.jit.script
97
+ def sqrelu_fwd(x):
98
+ r = F.relu(x)
99
+ return (r * r).to(dtype=x.dtype)
100
+
101
+
102
+ @torch.jit.script
103
+ def sqrelu_bwd(g, x):
104
+ return (2.0 * g * F.relu(x)).to(dtype=x.dtype)
105
+
106
+
107
+ swiglu_fwd_codestring = """
108
+ template <typename T> T swiglu_fwd(T x, T y) {
109
+ return float(x) * float(y) / (1.0f + ::exp(-float(x)));
110
+ }
111
+ """
112
+ swiglu_bwd_codestring = """
113
+ template <typename T> void swiglu_bwd(T x, T y, T g, T& dx, T& dy) {
114
+ float x_sigmoid = 1.0f / (1.0f + ::exp(-float(x)));
115
+ dx = x_sigmoid * (1 + float(x) * (1.0f - x_sigmoid)) * float(g) * float(y);
116
+ dy = float(x) * x_sigmoid * float(g);
117
+ }
118
+ """
119
+ swiglu_fwd = torch.cuda.jiterator._create_jit_fn(swiglu_fwd_codestring)
120
+ swiglu_bwd = torch.cuda.jiterator._create_multi_output_jit_fn(swiglu_bwd_codestring, num_outputs=2)
121
+
122
+
123
+ class SwiGLUFunction(torch.autograd.Function):
124
+
125
+ @staticmethod
126
+ def forward(ctx, x, y):
127
+ ctx.save_for_backward(x, y)
128
+ return swiglu_fwd(x, y)
129
+
130
+ @staticmethod
131
+ def backward(ctx, dout):
132
+ x, y = ctx.saved_tensors
133
+ return swiglu_bwd(x, y, dout)
134
+
135
+ swiglu = SwiGLUFunction.apply
torch-ext/flash_attn/ops/fused_dense.py ADDED
@@ -0,0 +1,688 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023, Tri Dao.
2
+ # Inspired by https://github.com/NVIDIA/apex/blob/master/apex/fused_dense/fused_dense.py
3
+ # We make it work with pytorch amp and with bfloat16.
4
+ # The TensorParallel linear modules are inspired by https://github.com/NVIDIA/apex/blob/master/apex/transformer/tensor_parallel/layers.py
5
+ from functools import partial
6
+ from typing import Optional
7
+
8
+ # import fused_dense_cuda # from apex
9
+ import fused_dense_lib as fused_dense_cuda
10
+ import torch
11
+ import torch.nn as nn
12
+ import torch.nn.functional as F
13
+ from torch import Tensor
14
+ from torch.distributed import ProcessGroup
15
+
16
+ from flash_attn.utils.torch import custom_fwd, custom_bwd
17
+ from flash_attn.ops.activations import gelu_bwd, relu_bwd, sqrelu_bwd, sqrelu_fwd
18
+ from flash_attn.utils.distributed import (
19
+ all_gather_raw,
20
+ all_reduce,
21
+ all_reduce_raw,
22
+ reduce_scatter,
23
+ reduce_scatter_raw,
24
+ )
25
+
26
+
27
+ class FusedDenseFunc(torch.autograd.Function):
28
+ @staticmethod
29
+ @custom_fwd
30
+ def forward(
31
+ ctx, x, weight, bias, return_residual=False, process_group=None, sequence_parallel=True
32
+ ):
33
+ """
34
+ If process_group is not None and sequence_parallel=True, we're doing Tensor Parallel
35
+ with sequence parallelism: we do an all_gather_raw of x before doing the matmul.
36
+ """
37
+ ctx.compute_weight_gradient = weight.requires_grad
38
+ ctx.return_residual = return_residual
39
+ ctx.process_group = process_group
40
+ ctx.sequence_parallel = sequence_parallel
41
+
42
+ if torch.is_autocast_enabled():
43
+ x = x.to(dtype=torch.get_autocast_gpu_dtype())
44
+ x = x.contiguous()
45
+ if process_group is not None and sequence_parallel:
46
+ # We want to kick off the all_gather early, before weight dtype conversion
47
+ total_x, handle_x = all_gather_raw(x, process_group, async_op=True)
48
+ else:
49
+ total_x = x
50
+
51
+ if torch.is_autocast_enabled():
52
+ weight = weight.to(dtype=torch.get_autocast_gpu_dtype())
53
+ bias = bias.to(dtype=torch.get_autocast_gpu_dtype()) if bias is not None else None
54
+ weight = weight.contiguous()
55
+ if process_group is not None and sequence_parallel:
56
+ handle_x.wait()
57
+ batch_shape, n = total_x.shape[:-1], total_x.shape[-1]
58
+ batch_dim = batch_shape.numel()
59
+ # https://github.com/pytorch/pytorch/blob/5b51849b48a7dbccd297286cc0110def4706f9e7/aten/src/ATen/native/cuda/Blas.cpp#L174
60
+ if min(batch_dim, n, *weight.shape) > 65535 * 32:
61
+ raise RuntimeError("fused_dense only supports matrix dims <= 2M")
62
+ output = F.linear(total_x, weight, bias)
63
+ if ctx.compute_weight_gradient:
64
+ ctx.save_for_backward(x, weight)
65
+ else:
66
+ ctx.save_for_backward(weight)
67
+ return output if not return_residual else (output, x)
68
+
69
+ @staticmethod
70
+ @custom_bwd
71
+ def backward(ctx, grad_output, *args):
72
+ grad_output = grad_output.contiguous()
73
+ if ctx.return_residual:
74
+ (grad_input,) = args
75
+ grad_input = grad_input.contiguous()
76
+ process_group = ctx.process_group
77
+ sequence_parallel = ctx.sequence_parallel
78
+ if ctx.compute_weight_gradient:
79
+ x, weight = ctx.saved_tensors
80
+ if process_group is not None and sequence_parallel:
81
+ total_x, handle_x = all_gather_raw(x, process_group, async_op=True)
82
+ else:
83
+ total_x = x
84
+ else:
85
+ (weight,) = ctx.saved_tensors
86
+ total_x = None
87
+ batch_shape = grad_output.shape[:-1]
88
+ batch_dim = batch_shape.numel()
89
+ grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
90
+ if ctx.needs_input_grad[0]:
91
+ if not ctx.return_residual:
92
+ grad_input = F.linear(grad_output, weight.t())
93
+ else:
94
+ grad_input = torch.addmm(
95
+ grad_input.reshape(batch_dim, grad_input.shape[-1]), grad_output, weight
96
+ )
97
+ grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1])
98
+ if process_group is not None:
99
+ reduce_fn = reduce_scatter_raw if sequence_parallel else all_reduce_raw
100
+ grad_input, handle_grad_input = reduce_fn(grad_input, process_group, async_op=True)
101
+ else:
102
+ grad_input = None
103
+ if ctx.needs_input_grad[1]:
104
+ assert ctx.compute_weight_gradient
105
+ if process_group is not None and sequence_parallel:
106
+ handle_x.wait()
107
+ grad_weight, grad_bias = fused_dense_cuda.linear_bias_wgrad(
108
+ total_x.reshape(batch_dim, total_x.shape[-1]), grad_output, ctx.needs_input_grad[2]
109
+ )
110
+ else:
111
+ grad_weight = None
112
+ grad_bias = grad_output if ctx.needs_input_grad[2] else None
113
+ if process_group is not None and ctx.needs_input_grad[0]:
114
+ handle_grad_input.wait()
115
+ return grad_input, grad_weight, grad_bias, None, None, None
116
+
117
+
118
+ def fused_dense_func(
119
+ x: Tensor,
120
+ weight: Tensor,
121
+ bias: Optional[Tensor] = None,
122
+ return_residual: bool = False,
123
+ process_group: Optional[ProcessGroup] = None,
124
+ sequence_parallel: bool = True,
125
+ ):
126
+ dtype_eligible = x.dtype in [torch.float16, torch.bfloat16] or (
127
+ x.dtype == torch.float32 and torch.is_autocast_enabled()
128
+ )
129
+ if x.is_cuda and weight.is_cuda and (bias is None or bias.is_cuda) and dtype_eligible:
130
+ return FusedDenseFunc.apply(
131
+ x, weight, bias, return_residual, process_group, sequence_parallel
132
+ )
133
+ else:
134
+ assert process_group is None
135
+ out = F.linear(x, weight, bias)
136
+ return out if not return_residual else (out, x)
137
+
138
+
139
+ class FusedDense(nn.Linear):
140
+ def __init__(
141
+ self,
142
+ in_features: int,
143
+ out_features: int,
144
+ bias: bool = True,
145
+ return_residual: bool = False,
146
+ device=None,
147
+ dtype=None,
148
+ ) -> None:
149
+ super().__init__(in_features, out_features, bias=bias, device=device, dtype=dtype)
150
+ self.return_residual = return_residual
151
+
152
+ def forward(self, x, process_group=None):
153
+ """
154
+ If process_group is not None, we're doing Tensor Parallel with sequence parallelism:
155
+ we do an all_gather of x before doing the matmul.
156
+ """
157
+ return fused_dense_func(
158
+ x,
159
+ self.weight,
160
+ self.bias,
161
+ return_residual=self.return_residual,
162
+ process_group=process_group,
163
+ )
164
+
165
+
166
+ class ColumnParallelLinear(nn.Linear):
167
+ def __init__(
168
+ self,
169
+ in_features: int,
170
+ out_features: int,
171
+ process_group: ProcessGroup,
172
+ bias: bool = True,
173
+ sequence_parallel=True,
174
+ multiple_of=1,
175
+ device=None,
176
+ dtype=None,
177
+ ) -> None:
178
+ world_size = torch.distributed.get_world_size(process_group)
179
+ if out_features % multiple_of:
180
+ raise ValueError(f"out_features ({out_features}) must be a multiple of {multiple_of}")
181
+ multiple = out_features // multiple_of
182
+ # We want to split @multiple across world_size, but it could be an uneven split
183
+ div = multiple // world_size
184
+ mod = multiple % world_size
185
+ # The first @mod ranks get @div + 1 copies, the rest get @div copies
186
+ local_multiple = div + int(torch.distributed.get_rank(process_group) < mod)
187
+ super().__init__(
188
+ in_features, local_multiple * multiple_of, bias=bias, device=device, dtype=dtype
189
+ )
190
+ self.process_group = process_group
191
+ self.sequence_parallel = sequence_parallel
192
+
193
+ def forward(self, x):
194
+ # If self.sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism:
195
+ # we do an all_gather of x before doing the matmul.
196
+ # If not, then the input is already gathered.
197
+ return fused_dense_func(
198
+ x,
199
+ self.weight,
200
+ self.bias,
201
+ process_group=self.process_group,
202
+ sequence_parallel=self.sequence_parallel,
203
+ )
204
+
205
+
206
+ class RowParallelLinear(nn.Linear):
207
+ def __init__(
208
+ self,
209
+ in_features: int,
210
+ out_features: int,
211
+ process_group: ProcessGroup,
212
+ bias: bool = True,
213
+ sequence_parallel=True,
214
+ multiple_of=1,
215
+ device=None,
216
+ dtype=None,
217
+ ) -> None:
218
+ world_size = torch.distributed.get_world_size(process_group)
219
+ rank = torch.distributed.get_rank(process_group)
220
+ if in_features % multiple_of:
221
+ raise ValueError(f"in_features ({in_features}) must be a multiple of {multiple_of}")
222
+ multiple = in_features // multiple_of
223
+ # We want to split @multiple across world_size, but it could be an uneven split
224
+ div = multiple // world_size
225
+ mod = multiple % world_size
226
+ # The first @mod ranks get @div + 1 copies, the rest get @div copies
227
+ local_multiple = div + int(torch.distributed.get_rank(process_group) < mod)
228
+ # Only rank 0 will have bias
229
+ super().__init__(
230
+ local_multiple * multiple_of,
231
+ out_features,
232
+ bias=bias and rank == 0,
233
+ device=device,
234
+ dtype=dtype,
235
+ )
236
+ self.process_group = process_group
237
+ self.sequence_parallel = sequence_parallel
238
+
239
+ def forward(self, x):
240
+ """
241
+ We're doing Tensor Parallel with sequence parallelism: we do the matmul and then
242
+ a reduce_scatter of the result.
243
+ """
244
+ out = fused_dense_func(x, self.weight, self.bias)
245
+ reduce_fn = reduce_scatter if self.sequence_parallel else all_reduce
246
+ return reduce_fn(out, self.process_group)
247
+
248
+
249
+ class FusedMLPFunc(torch.autograd.Function):
250
+ @staticmethod
251
+ @custom_fwd
252
+ def forward(
253
+ ctx,
254
+ x,
255
+ weight1,
256
+ bias1,
257
+ weight2,
258
+ bias2,
259
+ activation="gelu_approx",
260
+ save_pre_act=True,
261
+ return_residual=False,
262
+ checkpoint_lvl=0,
263
+ heuristic=0,
264
+ process_group=None,
265
+ sequence_parallel=True,
266
+ ):
267
+ """
268
+ If process_group is not None and sequence_parallel=True, we're doing Tensor Parallel
269
+ with sequence parallelism: we do an all_gather of x before doing the matmul.
270
+ If sequence_parallel=False, then the input is already gathered.
271
+
272
+ checkpoint_lvl:
273
+ 0: no recomputation in the bwd
274
+ 1: recompute gelu_out / relu_out in the bwd
275
+ 2: recompute pre_act and gelu_out / relu_out in the bwd
276
+ """
277
+ assert -1 <= heuristic <= 4
278
+ assert activation in ["gelu_approx", "relu", "sqrelu"]
279
+ if activation == "sqrelu":
280
+ assert heuristic == -1
281
+ if not save_pre_act:
282
+ checkpoint_lvl = 2
283
+ assert checkpoint_lvl in [0, 1, 2]
284
+ ctx.return_residual = return_residual
285
+ ctx.process_group = process_group
286
+ ctx.sequence_parallel = sequence_parallel
287
+ ctx.checkpoint_lvl = checkpoint_lvl
288
+ ctx.activation = activation
289
+ ctx.heuristic = heuristic
290
+
291
+ if torch.is_autocast_enabled():
292
+ x = x.to(dtype=torch.get_autocast_gpu_dtype())
293
+ x = x.contiguous()
294
+ if process_group is not None and sequence_parallel:
295
+ # We want to kick off the all_gather early, before weight dtype conversion
296
+ total_x, handle_x = all_gather_raw(x, process_group, async_op=True)
297
+ else:
298
+ total_x = x
299
+
300
+ if torch.is_autocast_enabled():
301
+ dtype = torch.get_autocast_gpu_dtype()
302
+ weight1, weight2 = [a.to(dtype=dtype) for a in [weight1, weight2]]
303
+ bias1 = bias1.to(dtype=dtype) if bias1 is not None else None
304
+ bias2 = bias2.to(dtype=dtype) if bias2 is not None else None
305
+ weight1 = weight1.contiguous()
306
+ bias1 = bias1.contiguous() if bias1 is not None else None
307
+ weight2 = weight2.contiguous()
308
+ bias2 = bias2.contiguous() if bias2 is not None else None
309
+ if process_group is not None and sequence_parallel:
310
+ handle_x.wait()
311
+ batch_shape, n = total_x.shape[:-1], total_x.shape[-1]
312
+ batch_dim = batch_shape.numel()
313
+ # https://github.com/pytorch/pytorch/blob/5b51849b48a7dbccd297286cc0110def4706f9e7/aten/src/ATen/native/cuda/Blas.cpp#L174
314
+ if min(batch_dim, n, *weight1.shape, *weight2.shape) > 65535 * 32:
315
+ raise RuntimeError("fused_dense only supports matrix dims <= 2M")
316
+ if heuristic == -1:
317
+ pre_act = F.linear(total_x, weight1, bias1)
318
+ activation_fn = (
319
+ partial(F.gelu, approximate="tanh")
320
+ if activation == "gelu_approx"
321
+ else (sqrelu_fwd if activation == "sqrelu" else F.relu)
322
+ )
323
+ with torch.jit.fuser("fuser2"):
324
+ output1 = activation_fn(pre_act)
325
+ # This is before adding bias1
326
+ # pre_act = F.linear(total_x.reshape(batch_dim, n), weight1)
327
+ # with torch.jit.fuser('fuser2'):
328
+ # output1 = bias_gelu(pre_act, bias1)
329
+ else:
330
+ is_gelu = activation == "gelu_approx"
331
+ output1, *rest = fused_dense_cuda.linear_act_forward(
332
+ total_x.reshape(batch_dim, n), weight1, bias1, is_gelu, save_pre_act, heuristic
333
+ )
334
+ if save_pre_act:
335
+ pre_act = rest[0]
336
+ output2 = F.linear(output1, weight2, bias2)
337
+ if checkpoint_lvl == 0 or (checkpoint_lvl == 1 and activation == "relu"):
338
+ # For RELU the pre_act is very small (just a bit-mask) so we just save it
339
+ ctx.save_for_backward(x, weight1, weight2, pre_act, output1)
340
+ elif checkpoint_lvl == 1:
341
+ ctx.save_for_backward(x, weight1, weight2, pre_act)
342
+ elif checkpoint_lvl == 2:
343
+ ctx.save_for_backward(x, weight1, weight2, bias1)
344
+ output2 = output2.reshape(*batch_shape, output2.shape[-1])
345
+ return output2 if not return_residual else (output2, x)
346
+
347
+ @staticmethod
348
+ @custom_bwd
349
+ def backward(ctx, grad_output, *args):
350
+ grad_output = grad_output.contiguous()
351
+ checkpoint_lvl = ctx.checkpoint_lvl
352
+ activation = ctx.activation
353
+ activation_fn = (
354
+ partial(F.gelu, approximate="tanh")
355
+ if activation == "gelu_approx"
356
+ else (sqrelu_fwd if activation == "sqrelu" else F.relu)
357
+ )
358
+ if ctx.return_residual:
359
+ (grad_input,) = args
360
+ grad_input = grad_input.contiguous()
361
+ process_group = ctx.process_group
362
+ sequence_parallel = ctx.sequence_parallel
363
+ x, weight1, weight2, *rest = ctx.saved_tensors
364
+ if process_group is None or not sequence_parallel:
365
+ total_x = x
366
+ batch_shape = grad_output.shape[:-1]
367
+ batch_dim = batch_shape.numel()
368
+ if checkpoint_lvl in [0, 1]:
369
+ if process_group is not None and sequence_parallel:
370
+ total_x, handle_x = all_gather_raw(x, process_group, async_op=True)
371
+ if checkpoint_lvl == 0 or (checkpoint_lvl == 1 and activation == "relu"):
372
+ pre_act, output1 = rest
373
+ elif checkpoint_lvl == 1:
374
+ (pre_act,) = rest
375
+ with torch.jit.fuser("fuser2"):
376
+ output1 = activation_fn(pre_act)
377
+ elif checkpoint_lvl == 2:
378
+ (bias1,) = rest
379
+ if process_group is not None and sequence_parallel:
380
+ total_x, _ = all_gather_raw(x, process_group)
381
+ if ctx.heuristic == -1:
382
+ pre_act = F.linear(total_x, weight1, bias1)
383
+ with torch.jit.fuser("fuser2"):
384
+ output1 = activation_fn(pre_act)
385
+ else:
386
+ output1, pre_act = fused_dense_cuda.linear_act_forward(
387
+ total_x.reshape(batch_dim, total_x.shape[-1]),
388
+ weight1,
389
+ bias1,
390
+ activation == "gelu_approx",
391
+ True,
392
+ ctx.heuristic,
393
+ )
394
+
395
+ grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
396
+ output1 = output1.reshape(batch_dim, output1.shape[-1])
397
+ pre_act = pre_act.reshape(batch_dim, pre_act.shape[-1])
398
+ if ctx.needs_input_grad[3]:
399
+ grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(
400
+ output1, grad_output, ctx.needs_input_grad[4]
401
+ )
402
+ else:
403
+ grad_weight2 = None
404
+ grad_bias2 = grad_output if ctx.needs_input_grad[4] else None
405
+ if ctx.heuristic == -1:
406
+ # grad_pre_act = matmul_dgelu(grad_output, weight2, pre_act)
407
+ grad_output1 = F.linear(grad_output, weight2.t())
408
+ activation_grad_fn = (
409
+ gelu_bwd
410
+ if activation == "gelu_approx"
411
+ else (sqrelu_bwd if activation == "sqrelu" else relu_bwd)
412
+ )
413
+ with torch.jit.fuser("fuser2"):
414
+ grad_pre_act = activation_grad_fn(grad_output1, pre_act)
415
+ else:
416
+ # The cublasLt epilogue has to compute both gelu/relu grad and bias grad, we can't
417
+ # just compute gelu/relu grad
418
+ grad_pre_act, grad_bias1 = fused_dense_cuda.bias_act_linear_dgrad_bgrad(
419
+ weight2, grad_output, pre_act, activation == "gelu_approx", ctx.heuristic
420
+ )
421
+ if not ctx.needs_input_grad[2]:
422
+ grad_bias1 = None
423
+ if ctx.needs_input_grad[0]:
424
+ if not ctx.return_residual:
425
+ grad_input = F.linear(grad_pre_act, weight1.t())
426
+ else:
427
+ grad_input = torch.addmm(
428
+ grad_input.reshape(batch_dim, grad_input.shape[-1]), grad_pre_act, weight1
429
+ )
430
+ grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1])
431
+ if process_group is not None:
432
+ reduce_fn = reduce_scatter_raw if sequence_parallel else all_reduce_raw
433
+ grad_input, handle_grad_input = reduce_fn(grad_input, process_group, async_op=True)
434
+ else:
435
+ grad_input = None
436
+ if ctx.heuristic == -1:
437
+ if ctx.needs_input_grad[1]:
438
+ if process_group is not None and sequence_parallel and checkpoint_lvl != 2:
439
+ handle_x.wait()
440
+ grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_wgrad(
441
+ total_x.reshape(batch_dim, total_x.shape[-1]),
442
+ grad_pre_act,
443
+ ctx.needs_input_grad[2],
444
+ )
445
+ else:
446
+ grad_weight1 = None
447
+ grad_bias1 = grad_pre_act if ctx.needs_input_grad[2] else None
448
+ else:
449
+ if ctx.needs_input_grad[1]:
450
+ if process_group is not None and sequence_parallel and checkpoint_lvl != 2:
451
+ handle_x.wait()
452
+ grad_weight1 = F.linear(
453
+ grad_pre_act.t(), total_x.reshape(batch_dim, total_x.shape[-1]).t()
454
+ )
455
+ else:
456
+ grad_weight1 = None
457
+ if process_group is not None and ctx.needs_input_grad[0]:
458
+ handle_grad_input.wait()
459
+ return (
460
+ grad_input,
461
+ grad_weight1,
462
+ grad_bias1,
463
+ grad_weight2,
464
+ grad_bias2,
465
+ None,
466
+ None,
467
+ None,
468
+ None,
469
+ None,
470
+ None,
471
+ None,
472
+ )
473
+
474
+
475
+ def fused_mlp_func(
476
+ x: Tensor,
477
+ weight1: Tensor,
478
+ weight2: Tensor,
479
+ bias1: Optional[Tensor] = None,
480
+ bias2: Optional[Tensor] = None,
481
+ activation: str = "gelu_approx",
482
+ save_pre_act: bool = True,
483
+ return_residual: bool = False,
484
+ checkpoint_lvl: int = 0,
485
+ heuristic: int = 0,
486
+ process_group: Optional[ProcessGroup] = None,
487
+ sequence_parallel: bool = True,
488
+ ):
489
+ assert activation in ["gelu_approx", "relu", "sqrelu"]
490
+ dtype_eligible = x.dtype in [torch.float16, torch.bfloat16] or (
491
+ x.dtype == torch.float32 and torch.is_autocast_enabled()
492
+ )
493
+ # If we save pre-activation, dimension must be divisible by 128 (relu) or 8 (gelu)
494
+ dim_eligible = not save_pre_act or (x.shape[-1] % (128 if activation == "relu" else 8) == 0)
495
+ if (
496
+ x.is_cuda
497
+ and weight1.is_cuda
498
+ and weight2.is_cuda
499
+ and (bias1 is None or bias1.is_cuda)
500
+ and (bias2 is None or bias2.is_cuda)
501
+ and dtype_eligible
502
+ and dim_eligible
503
+ ):
504
+ return FusedMLPFunc.apply(
505
+ x,
506
+ weight1,
507
+ bias1,
508
+ weight2,
509
+ bias2,
510
+ activation,
511
+ save_pre_act,
512
+ return_residual,
513
+ checkpoint_lvl,
514
+ heuristic,
515
+ process_group,
516
+ sequence_parallel,
517
+ )
518
+ else:
519
+ assert process_group is None
520
+ pre_act = F.linear(x, weight1, bias1)
521
+ activation_fn = (
522
+ partial(F.gelu, approximate="tanh")
523
+ if activation == "gelu_approx"
524
+ else partial(F.relu, inplace=True)
525
+ )
526
+ output1 = activation_fn(pre_act)
527
+ output2 = F.linear(output1, weight2, bias2)
528
+ return output2 if not return_residual else (output2, x)
529
+
530
+
531
+ class FusedMLP(nn.Module):
532
+ def __init__(
533
+ self,
534
+ in_features,
535
+ hidden_features=None,
536
+ out_features=None,
537
+ bias1=True,
538
+ bias2=True,
539
+ activation="gelu_approx",
540
+ return_residual=False,
541
+ checkpoint_lvl=0,
542
+ heuristic="auto",
543
+ device=None,
544
+ dtype=None,
545
+ ):
546
+ """
547
+ If process_group is not None, we're doing Tensor Parallel with sequence parallelism:
548
+ we do an all_gather of x before doing the matmul, gelu, then matmul.
549
+ Finally we do a reduce_scatter of the output.
550
+
551
+ checkpoint_lvl (increasing lvl means slower but more memory saving):
552
+ 0: no recomputation in the bwd
553
+ 1: recompute gelu_out in the bwd
554
+ 2: recompute pre_act and gelu_out in the bwd
555
+ heuristic:
556
+ -1: don't fuse gemm + gelu (separate kernel)
557
+ 0..4: use this heuristic for the algo section in the fused gemm + gelu
558
+ 'auto': heuristic will be picked automatically:
559
+ For CUDA >= 11.8, we set heuristic=0 for both fp16 and bf16 for best perf.
560
+ For CUDA <= 11.7, we set heuristic=1 for fp16 and heuristic=-1 for bf16.
561
+ For H100, we set heuristic=-1 for both fp16 and bf16 as the fused cuBlasLt implementation
562
+ is slower than the unfused version.
563
+ return_residual: whether to return the input x along with the output. This is for
564
+ performance reason: for post-norm architecture, returning the input allows us
565
+ to fuse the backward of nn.Linear with the residual connection.
566
+ """
567
+ assert checkpoint_lvl in [0, 1, 2]
568
+ assert activation in ["gelu_approx", "relu", "sqrelu"]
569
+ factory_kwargs = {"device": device, "dtype": dtype}
570
+ super().__init__()
571
+ out_features = out_features or in_features
572
+ hidden_features = hidden_features or in_features * 4
573
+ self.activation = activation
574
+ self.return_residual = return_residual
575
+ self.checkpoint_lvl = checkpoint_lvl
576
+ self.heuristic = heuristic if activation != "sqrelu" else -1
577
+ self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1, **factory_kwargs)
578
+ self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs)
579
+
580
+ def forward(self, x, process_group=None):
581
+ dtype = x.dtype if not torch.is_autocast_enabled() else torch.get_autocast_gpu_dtype()
582
+ if self.heuristic == "auto":
583
+ if self.activation == "gelu_approx":
584
+ if torch.cuda.get_device_capability("cuda") == (9, 0):
585
+ heuristic = -1
586
+ else:
587
+ cuda_ver = tuple(map(int, torch.version.cuda.split(".")))
588
+ heuristic = 0 if cuda_ver >= (11, 8) else (1 if dtype == torch.float16 else -1)
589
+ else:
590
+ heuristic = 0
591
+ else:
592
+ heuristic = self.heuristic
593
+ out = fused_mlp_func(
594
+ x,
595
+ self.fc1.weight,
596
+ self.fc2.weight,
597
+ self.fc1.bias,
598
+ self.fc2.bias,
599
+ activation=self.activation,
600
+ save_pre_act=self.training,
601
+ return_residual=self.return_residual,
602
+ checkpoint_lvl=self.checkpoint_lvl,
603
+ heuristic=heuristic,
604
+ process_group=process_group,
605
+ )
606
+ if self.return_residual:
607
+ out, x = out
608
+ if process_group is not None:
609
+ out = reduce_scatter(out, process_group)
610
+ return out if not self.return_residual else (out, x)
611
+
612
+
613
+ class ParallelFusedMLP(nn.Module):
614
+ def __init__(
615
+ self,
616
+ in_features,
617
+ hidden_features=None,
618
+ out_features=None,
619
+ activation="gelu_approx",
620
+ process_group: ProcessGroup = None,
621
+ bias1=True,
622
+ bias2=True,
623
+ sequence_parallel=True,
624
+ checkpoint_lvl=0,
625
+ heuristic="auto",
626
+ device=None,
627
+ dtype=None,
628
+ ):
629
+ """
630
+ process_group is required. We're doing Tensor Parallel with sequence parallelism:
631
+ we do an all_gather of x before doing the matmul, gelu, then matmul.
632
+ Finally we do a reduce_scatter of the output.
633
+
634
+ checkpoint_lvl (increasing lvl means slower but more memory saving):
635
+ 0: no recomputation in the bwd
636
+ 1: recompute gelu_out in the bwd
637
+ 2: recompute pre_act and gelu_out in the bwd
638
+ heuristic:
639
+ -1: don't fuse gemm + gelu (separate kernel)
640
+ 0..4: use this heuristic for the algo section in the fused gemm + gelu
641
+ 'auto': heuristic will be picked automatically:
642
+ For CUDA >= 11.8, we set heuristic=0 for both fp16 and bf16 for best perf.
643
+ For CUDA <= 11.7, we set heuristic=1 for fp16 and heuristic=-1 for bf16.
644
+ """
645
+ assert checkpoint_lvl in [0, 1, 2]
646
+ assert activation in ["gelu_approx", "relu", "sqrelu"]
647
+ assert process_group is not None
648
+ factory_kwargs = {"device": device, "dtype": dtype}
649
+ super().__init__()
650
+ out_features = out_features or in_features
651
+ hidden_features = hidden_features or in_features * 4
652
+ self.activation = activation
653
+ self.process_group = process_group
654
+ self.sequence_parallel = sequence_parallel
655
+ self.checkpoint_lvl = checkpoint_lvl
656
+ self.heuristic = heuristic if activation != "sqrelu" else -1
657
+ self.fc1 = ColumnParallelLinear(
658
+ in_features, hidden_features, process_group, bias=bias1, **factory_kwargs
659
+ )
660
+ self.fc2 = RowParallelLinear(
661
+ hidden_features, out_features, process_group, bias=bias2, **factory_kwargs
662
+ )
663
+
664
+ def forward(self, x):
665
+ dtype = x.dtype if not torch.is_autocast_enabled() else torch.get_autocast_gpu_dtype()
666
+ if self.heuristic == "auto":
667
+ if self.activation == "gelu_approx":
668
+ cuda_ver = tuple(map(int, torch.version.cuda.split(".")))
669
+ heuristic = 0 if cuda_ver >= (11, 8) else (1 if dtype == torch.float16 else -1)
670
+ else:
671
+ heuristic = 0
672
+ else:
673
+ heuristic = self.heuristic
674
+ out = fused_mlp_func(
675
+ x,
676
+ self.fc1.weight,
677
+ self.fc2.weight,
678
+ self.fc1.bias,
679
+ self.fc2.bias,
680
+ activation=self.activation,
681
+ save_pre_act=self.training,
682
+ checkpoint_lvl=self.checkpoint_lvl,
683
+ heuristic=heuristic,
684
+ process_group=self.process_group,
685
+ sequence_parallel=self.sequence_parallel,
686
+ )
687
+ reduce_fn = reduce_scatter if self.sequence_parallel else all_reduce
688
+ return reduce_fn(out, self.process_group)
torch-ext/flash_attn/ops/layer_norm.py ADDED
@@ -0,0 +1,800 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2022, Tri Dao.
2
+ # Adapted from https://github.com/NVIDIA/apex/blob/master/apex/contrib/layer_norm/layer_norm.py
3
+
4
+ import dropout_layer_norm
5
+ import torch
6
+ from torch.nn import init
7
+
8
+
9
+ def maybe_align(x, alignment_in_bytes=16):
10
+ """Assume that x already has last dim divisible by alignment_in_bytes"""
11
+ # TD [2023-07-04] I'm not 100% sure that clone will align the memory
12
+ # https://discuss.pytorch.org/t/how-to-ensure-that-tensor-data-ptr-is-aligned-to-16-bytes/183440
13
+ return x if x.data_ptr() % alignment_in_bytes == 0 else x.clone()
14
+
15
+
16
+ def _dropout_add_layer_norm_forward(
17
+ x0,
18
+ residual,
19
+ gamma,
20
+ beta,
21
+ rowscale,
22
+ colscale,
23
+ dropout_p,
24
+ epsilon,
25
+ residual_in_fp32=False,
26
+ is_rms_norm=False,
27
+ ):
28
+ """Assume that arguments are contiguous and aligned to 16 bytes"""
29
+ hidden_size = gamma.numel()
30
+ x0mat = x0.view((-1, hidden_size))
31
+ residualmat = residual.view((-1, hidden_size)) if residual is not None else None
32
+ rowscale = rowscale.view(-1) if rowscale is not None else None
33
+ zmat, xmat, dmask, mu, rsigma = dropout_layer_norm.dropout_add_ln_fwd(
34
+ x0mat,
35
+ residualmat,
36
+ gamma,
37
+ beta,
38
+ rowscale,
39
+ colscale,
40
+ None,
41
+ None,
42
+ dropout_p,
43
+ epsilon,
44
+ 1.0,
45
+ 0,
46
+ None,
47
+ residual_in_fp32,
48
+ is_rms_norm,
49
+ )
50
+ # dmask is None if dropout_p == 0.0
51
+ # xmat is None if dropout_p == 0.0 and residual is None and residual_dtype != input_dtype
52
+ return zmat, xmat if xmat is not None else x0mat, dmask, mu, rsigma
53
+
54
+
55
+ def _dropout_add_layer_norm_backward(
56
+ dz,
57
+ dx,
58
+ x,
59
+ x0,
60
+ dmask,
61
+ mu,
62
+ rsigma,
63
+ gamma,
64
+ rowscale,
65
+ colscale,
66
+ dropout_p,
67
+ has_residual,
68
+ is_rms_norm=False,
69
+ ):
70
+ """Assume that arguments are contiguous and aligned to 16 bytes
71
+ dx == None means that it was a post-norm architecture
72
+ (x = drop(x0) + residual was not returned in the fwd).
73
+ x0 must not be None if we have colscale.
74
+ """
75
+ hidden_size = gamma.numel()
76
+ xmat = x.view((-1, hidden_size))
77
+ dzmat = dz.view(xmat.shape)
78
+ dxmat = dx.view(xmat.shape) if dx is not None else None
79
+ x0mat = x0.view((-1, hidden_size)) if x0 is not None else None
80
+ rowscale = rowscale.view(-1) if rowscale is not None else None
81
+ if colscale is not None:
82
+ assert x0 is not None, "x0 is required to compute the gradient of colscale"
83
+ dx0mat, dresidualmat, dgamma, dbeta, _, _, *rest = dropout_layer_norm.dropout_add_ln_bwd(
84
+ dzmat,
85
+ dxmat,
86
+ xmat,
87
+ x0mat,
88
+ dmask,
89
+ mu,
90
+ rsigma,
91
+ gamma,
92
+ rowscale,
93
+ colscale,
94
+ None,
95
+ None,
96
+ dropout_p,
97
+ 1.0,
98
+ 0,
99
+ has_residual,
100
+ is_rms_norm,
101
+ )
102
+ # dresidualmat is None if not has_residual
103
+ if colscale is None:
104
+ return dx0mat, dresidualmat, dgamma, dbeta
105
+ else:
106
+ dcolscale = rest[0]
107
+ return dx0mat, dresidualmat, dgamma, dbeta, dcolscale
108
+
109
+
110
+ def _dropout_add_layer_norm_subset_forward(
111
+ x0,
112
+ residual,
113
+ gamma,
114
+ beta,
115
+ colscale,
116
+ x0_subset,
117
+ out_subset,
118
+ dropout_p,
119
+ epsilon,
120
+ rowscale_const,
121
+ out_numrows,
122
+ residual_in_fp32=False,
123
+ is_rms_norm=False,
124
+ ):
125
+ """Assume that arguments are contiguous and aligned to 16 bytes"""
126
+ hidden_size = gamma.numel()
127
+ x0mat = x0.view((-1, hidden_size))
128
+ residualmat = residual.view((-1, hidden_size)) if residual is not None else None
129
+ x0_subset = x0_subset.view(-1) if x0_subset is not None else None
130
+ out_subset = out_subset.view(-1) if out_subset is not None else None
131
+ zmat, xmat, dmask, mu, rsigma = dropout_layer_norm.dropout_add_ln_fwd(
132
+ x0mat,
133
+ residualmat,
134
+ gamma,
135
+ beta,
136
+ None,
137
+ colscale,
138
+ x0_subset,
139
+ out_subset,
140
+ dropout_p,
141
+ epsilon,
142
+ rowscale_const,
143
+ out_numrows,
144
+ None,
145
+ residual_in_fp32,
146
+ is_rms_norm,
147
+ )
148
+ # dmask is None if dropout_p == 0.0
149
+ # xmat is None if dropout_p == 0.0 and residual is None and residual_dtype != input_dtype
150
+ return zmat, xmat if xmat is not None else x0mat, dmask, mu, rsigma
151
+
152
+
153
+ def _dropout_add_layer_norm_subset_backward(
154
+ dz,
155
+ dx,
156
+ x,
157
+ x0,
158
+ dmask,
159
+ mu,
160
+ rsigma,
161
+ gamma,
162
+ colscale,
163
+ x0_subset,
164
+ out_subset,
165
+ dropout_p,
166
+ rowscale_const,
167
+ x0_numrows,
168
+ has_residual,
169
+ is_rms_norm=False,
170
+ ):
171
+ """Assume that arguments are contiguous and aligned to 16 bytes
172
+ dx == None means that it was a post-norm architecture
173
+ (x = drop(x0) + residual was not returned in the fwd).
174
+ x0 must not be None if we have colscale.
175
+ """
176
+ hidden_size = gamma.numel()
177
+ xmat = x.view((-1, hidden_size))
178
+ dzmat = dz.view(-1, hidden_size)
179
+ dxmat = dx.view(xmat.shape) if dx is not None else None
180
+ x0mat = x0.view((-1, hidden_size)) if x0 is not None else None
181
+ x0_subset = x0_subset.view(-1) if x0_subset is not None else None
182
+ out_subset = out_subset.view(-1) if out_subset is not None else None
183
+ if colscale is not None:
184
+ assert x0 is not None, "x0 is required to compute the gradient of colscale"
185
+ dx0mat, dresidualmat, dgamma, dbeta, _, _, *rest = dropout_layer_norm.dropout_add_ln_bwd(
186
+ dzmat,
187
+ dxmat,
188
+ xmat,
189
+ x0mat,
190
+ dmask,
191
+ mu,
192
+ rsigma,
193
+ gamma,
194
+ None,
195
+ colscale,
196
+ x0_subset,
197
+ out_subset,
198
+ dropout_p,
199
+ rowscale_const,
200
+ x0_numrows,
201
+ has_residual,
202
+ is_rms_norm,
203
+ )
204
+ # dresidualmat is None if not has_residual
205
+ if colscale is None:
206
+ return dx0mat, dresidualmat, dgamma, dbeta
207
+ else:
208
+ dcolscale = rest[0]
209
+ return dx0mat, dresidualmat, dgamma, dbeta, dcolscale
210
+
211
+
212
+ def _dropout_add_layer_norm_parallel_residual_forward(
213
+ x0,
214
+ x1,
215
+ residual,
216
+ gamma0,
217
+ beta0,
218
+ gamma1,
219
+ beta1,
220
+ dropout_p,
221
+ epsilon,
222
+ residual_in_fp32=False,
223
+ is_rms_norm=False,
224
+ ):
225
+ """Assume that arguments are contiguous and aligned to 16 bytes"""
226
+ hidden_size = gamma0.numel()
227
+ x0mat = x0.view((-1, hidden_size))
228
+ x1mat = x1.view((-1, hidden_size)) if x1 is not None else None
229
+ residualmat = residual.view((-1, hidden_size)) if residual is not None else None
230
+ (
231
+ z0mat,
232
+ z1mat,
233
+ xmat,
234
+ dmask0,
235
+ dmask1,
236
+ mu,
237
+ rsigma,
238
+ ) = dropout_layer_norm.dropout_add_ln_parallel_residual_fwd(
239
+ x0mat,
240
+ x1mat,
241
+ residualmat,
242
+ gamma0,
243
+ beta0,
244
+ gamma1,
245
+ beta1,
246
+ dropout_p,
247
+ epsilon,
248
+ None,
249
+ residual_in_fp32,
250
+ is_rms_norm,
251
+ )
252
+ # dmask0 and dmask1 are None if dropout_p == 0.0
253
+ # xmat is None if dropout_p == 0.0 and residual is None and residual_dtype != input_dtype
254
+ return z0mat, z1mat, xmat if xmat is not None else x0mat, dmask0, dmask1, mu, rsigma
255
+
256
+
257
+ def _dropout_add_layer_norm_parallel_residual_backward(
258
+ dz0,
259
+ dz1,
260
+ dx,
261
+ x,
262
+ dmask0,
263
+ dmask1,
264
+ mu,
265
+ rsigma,
266
+ gamma0,
267
+ gamma1,
268
+ dropout_p,
269
+ has_x1,
270
+ has_residual,
271
+ is_rms_norm=False,
272
+ ):
273
+ """Assume that arguments are contiguous and aligned to 16 bytes
274
+ dx == None means that it was a post-norm architecture
275
+ (x = drop(x0) + residual was not returned in the fwd).
276
+ """
277
+ hidden_size = gamma0.numel()
278
+ xmat = x.view((-1, hidden_size))
279
+ dz0mat = dz0.view(xmat.shape)
280
+ dz1mat = dz1.view(xmat.shape) if dz1 is not None else None
281
+ dxmat = dx.view(xmat.shape) if dx is not None else None
282
+ (
283
+ dx0mat,
284
+ dx1mat,
285
+ dresidualmat,
286
+ dgamma0,
287
+ dbeta0,
288
+ dgamma1,
289
+ dbeta1,
290
+ *rest,
291
+ ) = dropout_layer_norm.dropout_add_ln_parallel_residual_bwd(
292
+ dz0mat,
293
+ dz1mat,
294
+ dxmat,
295
+ xmat,
296
+ dmask0,
297
+ dmask1,
298
+ mu,
299
+ rsigma,
300
+ gamma0,
301
+ gamma1,
302
+ dropout_p,
303
+ has_x1,
304
+ has_residual,
305
+ is_rms_norm,
306
+ )
307
+ # dresidualmat is None if not has_residual
308
+ return dx0mat, dx1mat, dresidualmat, dgamma0, dbeta0, dgamma1, dbeta1
309
+
310
+
311
+ class DropoutAddLayerNormFn(torch.autograd.Function):
312
+ @staticmethod
313
+ def forward(
314
+ ctx,
315
+ x0,
316
+ residual,
317
+ gamma,
318
+ beta,
319
+ rowscale,
320
+ colscale,
321
+ dropout_p,
322
+ epsilon,
323
+ residual_in_fp32=False,
324
+ prenorm=False,
325
+ is_rms_norm=False,
326
+ return_dmask=False,
327
+ ):
328
+ x0 = maybe_align(x0.contiguous(), 16)
329
+ residual = maybe_align(residual.contiguous(), 16) if residual is not None else None
330
+ gamma = maybe_align(gamma.contiguous(), 16)
331
+ beta = maybe_align(beta.contiguous(), 16) if beta is not None else None
332
+ rowscale = maybe_align(rowscale.contiguous(), 16) if rowscale is not None else None
333
+ colscale = maybe_align(colscale.contiguous(), 16) if colscale is not None else None
334
+ zmat, xmat, dmask, mu, rsigma = _dropout_add_layer_norm_forward(
335
+ x0,
336
+ residual,
337
+ gamma,
338
+ beta,
339
+ rowscale,
340
+ colscale,
341
+ dropout_p,
342
+ epsilon,
343
+ residual_in_fp32,
344
+ is_rms_norm,
345
+ )
346
+ # Only need to save x0 if we need to compute gradient wrt colscale
347
+ x0_saved = x0 if colscale is not None else None
348
+ ctx.save_for_backward(
349
+ xmat.view(x0.shape), x0_saved, dmask, gamma, mu, rsigma, rowscale, colscale
350
+ )
351
+ ctx.prenorm = prenorm
352
+ ctx.dropout_p = dropout_p
353
+ ctx.has_residual = residual is not None
354
+ ctx.is_rms_norm = is_rms_norm
355
+ ctx.has_beta = beta is not None
356
+ if not return_dmask:
357
+ return (
358
+ zmat.view(x0.shape) if not prenorm else (zmat.view(x0.shape), xmat.view(x0.shape))
359
+ )
360
+ else:
361
+ dmask = (
362
+ dmask.view(x0.shape)
363
+ if dropout_p > 0.0
364
+ else torch.ones(x0.shape, dtype=torch.uint8, device=x0.device)
365
+ )
366
+ ctx.mark_non_differentiable(dmask)
367
+ return (
368
+ (zmat.view(x0.shape), dmask)
369
+ if not prenorm
370
+ else (zmat.view(x0.shape), xmat.view(x0.shape), dmask)
371
+ )
372
+
373
+ @staticmethod
374
+ def backward(ctx, dz, *args):
375
+ # assert dz.is_contiguous()
376
+ dz = maybe_align(dz.contiguous(), 16) # this happens!
377
+ dx = maybe_align(args[0].contiguous(), 16) if ctx.prenorm else None
378
+ x, x0, dmask, gamma, mu, rsigma, rowscale, colscale = ctx.saved_tensors
379
+ # x0 is None if colscale is None
380
+ dropout_p = ctx.dropout_p
381
+ has_residual = ctx.has_residual
382
+ dx0mat, dresidualmat, dgamma, dbeta, *rest = _dropout_add_layer_norm_backward(
383
+ dz,
384
+ dx,
385
+ x,
386
+ x0,
387
+ dmask,
388
+ mu,
389
+ rsigma,
390
+ gamma,
391
+ rowscale,
392
+ colscale,
393
+ dropout_p,
394
+ has_residual,
395
+ ctx.is_rms_norm,
396
+ )
397
+ dx0 = dx0mat.view(x.shape)
398
+ dresidual = dresidualmat.view(x.shape) if dresidualmat is not None else None
399
+ dcolscale = rest[0] if colscale is not None else None
400
+ return (
401
+ dx0,
402
+ dresidual,
403
+ dgamma,
404
+ dbeta if ctx.has_beta else None,
405
+ None,
406
+ dcolscale,
407
+ None,
408
+ None,
409
+ None,
410
+ None,
411
+ None,
412
+ None,
413
+ )
414
+
415
+
416
+ class DropoutAddLayerNormSubsetFn(torch.autograd.Function):
417
+ @staticmethod
418
+ def forward(
419
+ ctx,
420
+ x0,
421
+ residual,
422
+ gamma,
423
+ beta,
424
+ colscale,
425
+ x0_subset,
426
+ out_subset,
427
+ dropout_p,
428
+ epsilon,
429
+ rowscale_const,
430
+ out_numrows,
431
+ residual_in_fp32=False,
432
+ prenorm=False,
433
+ is_rms_norm=False,
434
+ return_dmask=False,
435
+ ):
436
+ x0 = maybe_align(x0.contiguous(), 16)
437
+ residual = maybe_align(residual.contiguous(), 16) if residual is not None else None
438
+ gamma = maybe_align(gamma.contiguous(), 16)
439
+ beta = maybe_align(beta.contiguous(), 16) if beta is not None else None
440
+ colscale = maybe_align(colscale.contiguous(), 16) if colscale is not None else None
441
+ zmat, xmat, dmask, mu, rsigma = _dropout_add_layer_norm_subset_forward(
442
+ x0,
443
+ residual,
444
+ gamma,
445
+ beta,
446
+ colscale,
447
+ x0_subset,
448
+ out_subset,
449
+ dropout_p,
450
+ epsilon,
451
+ rowscale_const,
452
+ out_numrows,
453
+ residual_in_fp32,
454
+ is_rms_norm,
455
+ )
456
+ # Only need to save x0 if we need to compute gradient wrt colscale
457
+ x0_saved = x0 if colscale is not None else None
458
+ x_shape = (-1, *x0.shape[1:])
459
+ ctx.save_for_backward(
460
+ xmat.view(x_shape), x0_saved, dmask, gamma, mu, rsigma, colscale, x0_subset, out_subset
461
+ )
462
+ ctx.prenorm = prenorm
463
+ ctx.dropout_p = dropout_p
464
+ ctx.rowscale_const = rowscale_const
465
+ ctx.x0_numrows = x0.shape[:-1].numel()
466
+ ctx.has_residual = residual is not None
467
+ ctx.is_rms_norm = is_rms_norm
468
+ ctx.has_beta = beta is not None
469
+ z_shape = (-1, *x0.shape[1:])
470
+ if not return_dmask:
471
+ return zmat.view(z_shape) if not prenorm else (zmat.view(z_shape), xmat.view(x0.shape))
472
+ else:
473
+ z = zmat.view(z_shape)
474
+ dmask = (
475
+ dmask.view(x0.shape)
476
+ if dropout_p > 0.0
477
+ else torch.ones(x0.shape, dtype=torch.uint8, device=x0.device)
478
+ )
479
+ ctx.mark_non_differentiable(dmask)
480
+ return (z, dmask) if not prenorm else (z, xmat.view(x_shape), dmask)
481
+
482
+ @staticmethod
483
+ def backward(ctx, dz, *args):
484
+ # assert dz.is_contiguous()
485
+ dz = maybe_align(dz.contiguous(), 16) # this happens!
486
+ dx = maybe_align(args[0].contiguous(), 16) if ctx.prenorm else None
487
+ x, x0, dmask, gamma, mu, rsigma, colscale, x0_subset, out_subset = ctx.saved_tensors
488
+ # x0 is None if colscale is None
489
+ dropout_p = ctx.dropout_p
490
+ has_residual = ctx.has_residual
491
+ dx0mat, dresidualmat, dgamma, dbeta, *rest = _dropout_add_layer_norm_subset_backward(
492
+ dz,
493
+ dx,
494
+ x,
495
+ x0,
496
+ dmask,
497
+ mu,
498
+ rsigma,
499
+ gamma,
500
+ colscale,
501
+ x0_subset,
502
+ out_subset,
503
+ dropout_p,
504
+ ctx.rowscale_const,
505
+ ctx.x0_numrows,
506
+ has_residual,
507
+ ctx.is_rms_norm,
508
+ )
509
+ dx0 = dx0mat.view(-1, *x.shape[1:])
510
+ dresidual = dresidualmat.view(x.shape) if dresidualmat is not None else None
511
+ dcolscale = rest[0] if colscale is not None else None
512
+ return (
513
+ dx0,
514
+ dresidual,
515
+ dgamma,
516
+ dbeta if ctx.has_beta else None,
517
+ dcolscale,
518
+ None,
519
+ None,
520
+ None,
521
+ None,
522
+ None,
523
+ None,
524
+ None,
525
+ None,
526
+ None,
527
+ None,
528
+ )
529
+
530
+
531
+ class DropoutAddLayerNormParallelResidualFn(torch.autograd.Function):
532
+ @staticmethod
533
+ def forward(
534
+ ctx,
535
+ x0,
536
+ x1,
537
+ residual,
538
+ gamma0,
539
+ beta0,
540
+ gamma1,
541
+ beta1,
542
+ dropout_p,
543
+ epsilon,
544
+ residual_in_fp32=False,
545
+ prenorm=False,
546
+ is_rms_norm=False,
547
+ return_dmask=False,
548
+ ):
549
+ x0 = maybe_align(x0.contiguous(), 16)
550
+ x1 = maybe_align(x1.contiguous(), 16) if x1 is not None else None
551
+ residual = maybe_align(residual.contiguous(), 16) if residual is not None else None
552
+ gamma0 = maybe_align(gamma0.contiguous(), 16)
553
+ beta0 = maybe_align(beta0.contiguous(), 16) if beta0 is not None else None
554
+ gamma1 = maybe_align(gamma1.contiguous(), 16) if gamma1 is not None else None
555
+ beta1 = maybe_align(beta1.contiguous(), 16) if beta1 is not None else None
556
+ (
557
+ z0mat,
558
+ z1mat,
559
+ xmat,
560
+ dmask0,
561
+ dmask1,
562
+ mu,
563
+ rsigma,
564
+ ) = _dropout_add_layer_norm_parallel_residual_forward(
565
+ x0,
566
+ x1,
567
+ residual,
568
+ gamma0,
569
+ beta0,
570
+ gamma1,
571
+ beta1,
572
+ dropout_p,
573
+ epsilon,
574
+ residual_in_fp32,
575
+ is_rms_norm,
576
+ )
577
+ ctx.save_for_backward(xmat.view(x0.shape), dmask0, dmask1, gamma0, gamma1, mu, rsigma)
578
+ ctx.prenorm = prenorm
579
+ ctx.dropout_p = dropout_p
580
+ ctx.has_x1 = x1 is not None
581
+ ctx.has_residual = residual is not None
582
+ ctx.is_rms_norm = is_rms_norm
583
+ ctx.has_beta = beta0 is not None
584
+ z = (z0mat.view(x0.shape), z1mat.view(x0.shape) if z1mat is not None else None)
585
+ if not return_dmask:
586
+ return z if not prenorm else (*z, xmat.view(x0.shape))
587
+ else:
588
+ dmask0 = (
589
+ dmask0.view(x0.shape)
590
+ if dropout_p > 0.0
591
+ else torch.ones(x0.shape, dtype=torch.uint8, device=x0.device)
592
+ )
593
+ dmask1 = (
594
+ dmask1.view(x0.shape)
595
+ if dropout_p > 0.0 and x1 is not None
596
+ else torch.ones(x0.shape, dtype=torch.uint8, device=x0.device)
597
+ )
598
+ ctx.mark_non_differentiable(dmask0)
599
+ ctx.mark_non_differentiable(dmask1)
600
+ return (
601
+ (*z, dmask0, dmask1) if not prenorm else (*z, xmat.view(x0.shape), dmask0, dmask1)
602
+ )
603
+
604
+ @staticmethod
605
+ def backward(ctx, dz0, dz1, *args):
606
+ dz0 = maybe_align(dz0.contiguous(), 16) # this happens!
607
+ dz1 = maybe_align(dz1.contiguous(), 16) if dz1 is not None else None
608
+ dx = maybe_align(args[0].contiguous(), 16) if ctx.prenorm else None
609
+ x, dmask0, dmask1, gamma0, gamma1, mu, rsigma = ctx.saved_tensors
610
+ dropout_p = ctx.dropout_p
611
+ has_x1 = ctx.has_x1
612
+ has_residual = ctx.has_residual
613
+ (
614
+ dx0mat,
615
+ dx1mat,
616
+ dresidualmat,
617
+ dgamma0,
618
+ dbeta0,
619
+ dgamma1,
620
+ dbeta1,
621
+ ) = _dropout_add_layer_norm_parallel_residual_backward(
622
+ dz0,
623
+ dz1,
624
+ dx,
625
+ x,
626
+ dmask0,
627
+ dmask1,
628
+ mu,
629
+ rsigma,
630
+ gamma0,
631
+ gamma1,
632
+ dropout_p,
633
+ has_x1,
634
+ has_residual,
635
+ ctx.is_rms_norm,
636
+ )
637
+ dx0 = dx0mat.view(x.shape)
638
+ dx1 = dx1mat.view(x.shape) if dx1mat is not None else None
639
+ dresidual = dresidualmat.view(x.shape) if dresidualmat is not None else None
640
+ return (
641
+ dx0,
642
+ dx1,
643
+ dresidual,
644
+ dgamma0,
645
+ dbeta0 if ctx.has_beta else None,
646
+ dgamma1,
647
+ dbeta1 if ctx.has_beta else None,
648
+ None,
649
+ None,
650
+ None,
651
+ None,
652
+ None,
653
+ None,
654
+ )
655
+
656
+
657
+ def layer_norm(x, weight, bias, epsilon):
658
+ return DropoutAddLayerNormFn.apply(x, None, weight, bias, None, None, 0.0, epsilon, False)
659
+
660
+
661
+ def dropout_add_layer_norm(
662
+ x0,
663
+ residual,
664
+ weight,
665
+ bias,
666
+ dropout_p,
667
+ epsilon,
668
+ rowscale=None,
669
+ layerscale=None,
670
+ prenorm=False,
671
+ residual_in_fp32=False,
672
+ return_dropout_mask=False,
673
+ ):
674
+ """residual_in_fp32 only has an effect if residual is None.
675
+ Otherwise residual dtype is residual.dtype.
676
+ """
677
+ return DropoutAddLayerNormFn.apply(
678
+ x0,
679
+ residual,
680
+ weight,
681
+ bias,
682
+ rowscale,
683
+ layerscale,
684
+ dropout_p,
685
+ epsilon,
686
+ residual_in_fp32,
687
+ prenorm,
688
+ False,
689
+ return_dropout_mask,
690
+ )
691
+
692
+
693
+ def dropout_add_layer_norm_subset(
694
+ x0,
695
+ residual,
696
+ weight,
697
+ bias,
698
+ dropout_p,
699
+ epsilon,
700
+ layerscale=None,
701
+ x0_subset=None,
702
+ out_subset=None,
703
+ rowscale_const=1.0,
704
+ out_numrows=0,
705
+ prenorm=False,
706
+ residual_in_fp32=False,
707
+ return_dropout_mask=False,
708
+ ):
709
+ """residual_in_fp32 only has an effect if residual is None.
710
+ Otherwise residual dtype is residual.dtype.
711
+ """
712
+ return DropoutAddLayerNormSubsetFn.apply(
713
+ x0,
714
+ residual,
715
+ weight,
716
+ bias,
717
+ layerscale,
718
+ x0_subset,
719
+ out_subset,
720
+ dropout_p,
721
+ epsilon,
722
+ rowscale_const,
723
+ out_numrows,
724
+ residual_in_fp32,
725
+ prenorm,
726
+ False,
727
+ return_dropout_mask,
728
+ )
729
+
730
+
731
+ def dropout_add_layer_norm_parallel_residual(
732
+ x0,
733
+ x1,
734
+ residual,
735
+ weight0,
736
+ bias0,
737
+ weight1,
738
+ bias1,
739
+ dropout_p,
740
+ epsilon,
741
+ prenorm=False,
742
+ residual_in_fp32=False,
743
+ return_dropout_mask=False,
744
+ ):
745
+ """residual_in_fp32 only has an effect if residual is None.
746
+ Otherwise residual dtype is residual.dtype.
747
+ """
748
+ return DropoutAddLayerNormParallelResidualFn.apply(
749
+ x0,
750
+ x1,
751
+ residual,
752
+ weight0,
753
+ bias0,
754
+ weight1,
755
+ bias1,
756
+ dropout_p,
757
+ epsilon,
758
+ residual_in_fp32,
759
+ prenorm,
760
+ False,
761
+ return_dropout_mask,
762
+ )
763
+
764
+
765
+ class DropoutAddLayerNorm(torch.nn.Module):
766
+ def __init__(
767
+ self,
768
+ hidden_size,
769
+ prenorm=False,
770
+ p=0.0,
771
+ eps=1e-5,
772
+ residual_in_fp32=False,
773
+ device=None,
774
+ dtype=None,
775
+ ):
776
+ factory_kwargs = {"device": device, "dtype": dtype}
777
+ super().__init__()
778
+ self.prenorm = prenorm
779
+ self.p = p
780
+ self.eps = eps
781
+ self.residual_in_fp32 = residual_in_fp32
782
+ self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
783
+ self.bias = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
784
+ self.reset_parameters()
785
+
786
+ def reset_parameters(self):
787
+ init.ones_(self.weight)
788
+ init.zeros_(self.bias)
789
+
790
+ def forward(self, x0, residual=None):
791
+ return dropout_add_layer_norm(
792
+ x0,
793
+ residual,
794
+ self.weight,
795
+ self.bias,
796
+ self.p if self.training else 0.0,
797
+ self.eps,
798
+ prenorm=self.prenorm,
799
+ residual_in_fp32=self.residual_in_fp32,
800
+ )
torch-ext/flash_attn/ops/rms_norm.py ADDED
@@ -0,0 +1,174 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2022, Tri Dao.
2
+ # Adapted from https://github.com/NVIDIA/apex/blob/master/apex/contrib/layer_norm/layer_norm.py
3
+
4
+ import torch
5
+ from torch.nn import init
6
+
7
+ from flash_attn.ops.layer_norm import (
8
+ DropoutAddLayerNormFn,
9
+ DropoutAddLayerNormParallelResidualFn,
10
+ DropoutAddLayerNormSubsetFn,
11
+ )
12
+
13
+
14
+ def rms_norm(x, weight, epsilon):
15
+ return DropoutAddLayerNormFn.apply(
16
+ x, None, weight, None, None, None, 0.0, epsilon, False, False, True
17
+ )
18
+
19
+
20
+ def dropout_add_rms_norm(
21
+ x0,
22
+ residual,
23
+ weight,
24
+ bias,
25
+ dropout_p,
26
+ epsilon,
27
+ rowscale=None,
28
+ layerscale=None,
29
+ prenorm=False,
30
+ residual_in_fp32=False,
31
+ return_dropout_mask=False,
32
+ ):
33
+ """residual_in_fp32 only has an effect if residual is None.
34
+ Otherwise residual dtype is residual.dtype.
35
+ """
36
+ return DropoutAddLayerNormFn.apply(
37
+ x0,
38
+ residual,
39
+ weight,
40
+ bias,
41
+ rowscale,
42
+ layerscale,
43
+ dropout_p,
44
+ epsilon,
45
+ residual_in_fp32,
46
+ prenorm,
47
+ True,
48
+ return_dropout_mask,
49
+ )
50
+
51
+
52
+ def dropout_add_rms_norm_subset(
53
+ x0,
54
+ residual,
55
+ weight,
56
+ bias,
57
+ dropout_p,
58
+ epsilon,
59
+ layerscale=None,
60
+ x0_subset=None,
61
+ out_subset=None,
62
+ rowscale_const=1.0,
63
+ out_numrows=0,
64
+ prenorm=False,
65
+ residual_in_fp32=False,
66
+ return_dropout_mask=False,
67
+ ):
68
+ """residual_in_fp32 only has an effect if residual is None.
69
+ Otherwise residual dtype is residual.dtype.
70
+ """
71
+ return DropoutAddLayerNormSubsetFn.apply(
72
+ x0,
73
+ residual,
74
+ weight,
75
+ bias,
76
+ layerscale,
77
+ x0_subset,
78
+ out_subset,
79
+ dropout_p,
80
+ epsilon,
81
+ rowscale_const,
82
+ out_numrows,
83
+ residual_in_fp32,
84
+ prenorm,
85
+ True,
86
+ return_dropout_mask,
87
+ )
88
+
89
+
90
+ def dropout_add_rms_norm_parallel_residual(
91
+ x0,
92
+ x1,
93
+ residual,
94
+ weight0,
95
+ bias0,
96
+ weight1,
97
+ bias1,
98
+ dropout_p,
99
+ epsilon,
100
+ prenorm=False,
101
+ residual_in_fp32=False,
102
+ return_dropout_mask=False,
103
+ ):
104
+ """residual_in_fp32 only has an effect if residual is None.
105
+ Otherwise residual dtype is residual.dtype.
106
+ """
107
+ return DropoutAddLayerNormParallelResidualFn.apply(
108
+ x0,
109
+ x1,
110
+ residual,
111
+ weight0,
112
+ bias0,
113
+ weight1,
114
+ bias1,
115
+ dropout_p,
116
+ epsilon,
117
+ residual_in_fp32,
118
+ prenorm,
119
+ True,
120
+ return_dropout_mask,
121
+ )
122
+
123
+
124
+ class RMSNorm(torch.nn.Module):
125
+ def __init__(self, hidden_size, eps=1e-5, device=None, dtype=None):
126
+ factory_kwargs = {"device": device, "dtype": dtype}
127
+ super().__init__()
128
+ self.eps = eps
129
+ self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
130
+ self.register_parameter("bias", None)
131
+ self.reset_parameters()
132
+
133
+ def reset_parameters(self):
134
+ init.ones_(self.weight)
135
+
136
+ def forward(self, x):
137
+ return rms_norm(x, self.weight, self.eps)
138
+
139
+
140
+ class DropoutAddRMSNorm(torch.nn.Module):
141
+ def __init__(
142
+ self,
143
+ hidden_size,
144
+ prenorm=False,
145
+ p=0.0,
146
+ eps=1e-5,
147
+ residual_in_fp32=False,
148
+ device=None,
149
+ dtype=None,
150
+ ):
151
+ factory_kwargs = {"device": device, "dtype": dtype}
152
+ super().__init__()
153
+ self.prenorm = prenorm
154
+ self.p = p
155
+ self.eps = eps
156
+ self.residual_in_fp32 = residual_in_fp32
157
+ self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
158
+ self.register_parameter("bias", None)
159
+ self.reset_parameters()
160
+
161
+ def reset_parameters(self):
162
+ init.ones_(self.weight)
163
+
164
+ def forward(self, x0, residual=None):
165
+ return dropout_add_rms_norm(
166
+ x0,
167
+ residual,
168
+ self.weight,
169
+ None,
170
+ self.p if self.training else 0.0,
171
+ self.eps,
172
+ prenorm=self.prenorm,
173
+ residual_in_fp32=self.residual_in_fp32,
174
+ )
torch-ext/flash_attn/ops/triton/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+
torch-ext/flash_attn/ops/triton/cross_entropy.py ADDED
@@ -0,0 +1,330 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2023, Tri Dao.
2
+
3
+ from typing import Tuple, Optional, Union
4
+
5
+ import torch
6
+ import torch.nn.functional as F
7
+
8
+ import triton
9
+ import triton.language as tl
10
+
11
+ # `all_gather_into_tensor` and `reduce_scatter_tensor` are new placeholders for
12
+ # `_all_gather_base` and `_reduce_scatter_base`. They require the most recent
13
+ # version of PyTorch. The following 2 lines are for backward compatibility with
14
+ # older PyTorch.
15
+ if "all_gather_into_tensor" not in dir(torch.distributed):
16
+ torch.distributed.all_gather_into_tensor = torch.distributed._all_gather_base
17
+
18
+
19
+ @triton.heuristics(
20
+ {
21
+ "HAS_SMOOTHING": lambda args: args["smoothing"] > 0.0,
22
+ }
23
+ )
24
+ @triton.jit
25
+ def cross_entropy_fwd_kernel(
26
+ loss_ptr, # data ptrs
27
+ lse_ptr,
28
+ z_loss_ptr,
29
+ logits_ptr,
30
+ labels_ptr,
31
+ smoothing,
32
+ logit_scale,
33
+ lse_square_scale,
34
+ ignore_index,
35
+ total_classes,
36
+ class_start_idx, # Useful for tensor parallel when each rank only has a subset of classes
37
+ n_cols, # shapes
38
+ logits_row_stride, # strides
39
+ BLOCK_SIZE: tl.constexpr,
40
+ HAS_SMOOTHING: tl.constexpr,
41
+ # if SPLIT (e.g. tensor parallel), don't include the LSE in the loss since it's not the final LSE
42
+ SPLIT: tl.constexpr,
43
+ PRECOMPUTED_LSE: tl.constexpr, # If LSE is already computed (also no smoothing and logit_scale == 1.0)
44
+ ):
45
+ row_idx = tl.program_id(0)
46
+ logits_ptr = logits_ptr + row_idx * logits_row_stride.to(tl.int64)
47
+ sum_logits = 0.0 # For smoothing
48
+ if not PRECOMPUTED_LSE:
49
+ # Statistics for online softmax
50
+ m_i = -float("inf")
51
+ l_i = 0.0
52
+ for col_offset in range(0, n_cols, BLOCK_SIZE):
53
+ cols = col_offset + tl.arange(0, BLOCK_SIZE)
54
+ logits = tl.load(logits_ptr + cols, mask=cols < n_cols, other=-float("inf")).to(
55
+ tl.float32
56
+ ) * logit_scale
57
+ if HAS_SMOOTHING:
58
+ sum_logits += tl.sum(tl.where(cols < n_cols, logits, 0.0))
59
+ m_i_new = tl.maximum(m_i, tl.max(logits))
60
+ l_i = tl.exp(m_i - m_i_new) * l_i + tl.sum(tl.exp(logits - m_i_new))
61
+ m_i = m_i_new
62
+ lse = tl.log(l_i) + m_i
63
+ tl.store(lse_ptr + row_idx, lse)
64
+ else:
65
+ lse = tl.load(lse_ptr + row_idx)
66
+ label_idx = tl.load(labels_ptr + row_idx)
67
+ if label_idx == ignore_index:
68
+ loss = 0.0
69
+ z_loss = 0.0
70
+ else:
71
+ label_idx -= class_start_idx
72
+ if label_idx >= 0 and label_idx < n_cols:
73
+ logits_label = tl.load(logits_ptr + label_idx) * logit_scale
74
+ if HAS_SMOOTHING:
75
+ loss = (
76
+ (lse if not SPLIT else 0.0)
77
+ - smoothing * sum_logits / total_classes
78
+ - (1 - smoothing) * logits_label
79
+ )
80
+ else:
81
+ loss = (lse if not SPLIT else 0.0) - logits_label
82
+ else:
83
+ # If label is out of bounds, we set the CE loss to 0.0. But we still want the smoothing loss
84
+ if HAS_SMOOTHING:
85
+ loss = smoothing * ((lse if not SPLIT else 0.0) - sum_logits / total_classes)
86
+ else:
87
+ loss = 0.0
88
+ if not SPLIT:
89
+ z_loss = lse_square_scale * lse * lse
90
+ loss += z_loss
91
+ else:
92
+ z_loss = 0.0
93
+ tl.store(loss_ptr + row_idx, loss)
94
+ if not SPLIT:
95
+ tl.store(z_loss_ptr + row_idx, z_loss)
96
+
97
+
98
+ @triton.heuristics(
99
+ {
100
+ "HAS_SMOOTHING": lambda args: args["smoothing"] > 0.0,
101
+ }
102
+ )
103
+ @triton.jit
104
+ def cross_entropy_bwd_kernel(
105
+ dlogits_ptr, # data ptrs
106
+ dloss_ptr,
107
+ logits_ptr,
108
+ lse_ptr,
109
+ labels_ptr,
110
+ smoothing,
111
+ logit_scale,
112
+ lse_square_scale,
113
+ ignore_index,
114
+ total_classes,
115
+ class_start_idx, # Useful for tensor parallel when each rank only has a subset of classes
116
+ n_cols, # shapes
117
+ logits_row_stride, # strides
118
+ dlogits_row_stride,
119
+ dloss_row_stride,
120
+ BLOCK_SIZE: tl.constexpr,
121
+ HAS_SMOOTHING: tl.constexpr,
122
+ ):
123
+ row_idx = tl.program_id(0)
124
+ col_block_idx = tl.program_id(1)
125
+ logits_ptr = logits_ptr + row_idx * logits_row_stride.to(tl.int64)
126
+ dlogits_ptr = dlogits_ptr + row_idx * dlogits_row_stride.to(tl.int64)
127
+ col_offsets = col_block_idx * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
128
+ label_idx = tl.load(labels_ptr + row_idx)
129
+ if label_idx != ignore_index:
130
+ dloss = tl.load(dloss_ptr + row_idx * dloss_row_stride)
131
+ else:
132
+ dloss = 0.0
133
+ logits = tl.load(logits_ptr + col_offsets, mask=col_offsets < n_cols, other=-float("inf")).to(
134
+ tl.float32
135
+ ) * logit_scale
136
+ lse = tl.load(lse_ptr + row_idx)
137
+ probs = tl.exp(logits - lse)
138
+ probs += 2.0 * lse_square_scale * lse * probs
139
+ label_idx -= class_start_idx
140
+ if HAS_SMOOTHING:
141
+ smooth_positive = 1.0 - smoothing
142
+ smooth_negative = smoothing / total_classes
143
+ probs = tl.where(col_offsets == label_idx, probs - smooth_positive, probs) - smooth_negative
144
+ else:
145
+ probs = tl.where(col_offsets == label_idx, probs - 1.0, probs)
146
+ tl.store(dlogits_ptr + col_offsets, (dloss * logit_scale) * probs, mask=col_offsets < n_cols)
147
+
148
+
149
+ class CrossEntropyLoss(torch.autograd.Function):
150
+
151
+ @staticmethod
152
+ def forward(
153
+ ctx,
154
+ logits,
155
+ labels,
156
+ precomputed_lse=None,
157
+ smoothing=0.0,
158
+ logit_scale=1.0,
159
+ lse_square_scale=0.0,
160
+ ignore_index=-100,
161
+ inplace_backward=False,
162
+ process_group=None,
163
+ ):
164
+ # For some reason Triton generates wrong code when labels has dtype long and its address
165
+ # is not aligned to 16 bytes. The ld.global.b64 seems to load the wrong label index.
166
+ if labels.dtype == torch.long and labels.data_ptr() % 16 != 0:
167
+ labels = F.pad(labels, (0, 1))[..., :-1]
168
+ assert labels.data_ptr() % 16 == 0
169
+ assert logit_scale > 0.0
170
+ n_rows, n_cols = logits.shape
171
+ assert labels.shape == (n_rows,)
172
+ world_size = 1 if process_group is None else torch.distributed.get_world_size(process_group)
173
+ total_classes = world_size * n_cols
174
+ rank = 0 if process_group is None else torch.distributed.get_rank(process_group)
175
+ class_start_idx = rank * n_cols
176
+ use_precomputed_lse = precomputed_lse is not None and logit_scale == 1.0 and smoothing == 0.0
177
+
178
+ if logits.stride(-1) != 1:
179
+ logits = logits.contiguous()
180
+ MAX_BLOCK_SIZE = 16 * 1024
181
+ BLOCK_SIZE = min(triton.next_power_of_2(n_cols), MAX_BLOCK_SIZE)
182
+ num_warps = (
183
+ 4
184
+ if BLOCK_SIZE < 2048
185
+ else (8 if BLOCK_SIZE < 8192 else (16 if BLOCK_SIZE < 128 * 1024 else 32))
186
+ )
187
+ losses = torch.empty(n_rows, dtype=torch.float, device=logits.device)
188
+ if use_precomputed_lse:
189
+ assert precomputed_lse.shape == (n_rows,)
190
+ lse = precomputed_lse.contiguous()
191
+ else:
192
+ lse = torch.empty(n_rows, dtype=torch.float, device=logits.device)
193
+ z_losses = torch.empty(n_rows, dtype=torch.float, device=logits.device)
194
+ # Need this, otherwise Triton tries to launch from cuda:0 and we get
195
+ # ValueError: Pointer argument (at 0) cannot be accessed from Triton (cpu tensor?)
196
+ with torch.cuda.device(logits.device.index):
197
+ cross_entropy_fwd_kernel[(n_rows,)](
198
+ losses, # data ptrs
199
+ lse,
200
+ z_losses,
201
+ logits,
202
+ labels,
203
+ smoothing,
204
+ logit_scale,
205
+ lse_square_scale,
206
+ ignore_index,
207
+ total_classes,
208
+ class_start_idx,
209
+ n_cols, # shapes
210
+ logits.stride(0), # strides
211
+ BLOCK_SIZE=BLOCK_SIZE, # constants
212
+ SPLIT=world_size > 1,
213
+ PRECOMPUTED_LSE=use_precomputed_lse,
214
+ num_warps=num_warps,
215
+ )
216
+
217
+ if world_size > 1:
218
+ # If there's no smoothing, if labels are in the vocab of this partition, losses contains
219
+ # - predicted logit, and 0 otherwise.
220
+ # If there's smoothing=0.1, for labels in the vocab of this partition, losses contains
221
+ # -0.9 * predicted logit - 0.1 * sum logit / total_classes.
222
+ # For labels not in the vocab of this partition, losses contains
223
+ # -0.1 * sum logit / total_classes.
224
+ if world_size > 1:
225
+ lse_allgather = torch.empty(world_size, n_rows, dtype=lse.dtype, device=lse.device)
226
+ torch.distributed.all_gather_into_tensor(lse_allgather, lse, group=process_group)
227
+ handle_losses = torch.distributed.all_reduce(
228
+ losses, op=torch.distributed.ReduceOp.SUM, group=process_group, async_op=True
229
+ )
230
+ lse = torch.logsumexp(lse_allgather, dim=0)
231
+ handle_losses.wait()
232
+ # After the allreduce, if there's no smoothing, the total losses are - predicted_logit,
233
+ # we just have to add the (global) lse.
234
+ # If there's smoothing=0.1, the total losses are
235
+ # -0.9 * predicted_logit - 0.1 * sum logit / total_classes.
236
+ # Again, we just have to add the (global) lse.
237
+ losses += lse
238
+ if lse_square_scale != 0.0:
239
+ z_losses = lse_square_scale * lse.square()
240
+ z_losses.masked_fill_(labels == ignore_index, 0.0)
241
+ losses += z_losses
242
+ else:
243
+ z_losses = torch.zeros_like(losses)
244
+ losses.masked_fill_(labels == ignore_index, 0.0)
245
+
246
+ ctx.save_for_backward(logits, lse, labels)
247
+ ctx.mark_non_differentiable(z_losses)
248
+ ctx.smoothing = smoothing
249
+ ctx.logit_scale = logit_scale
250
+ ctx.lse_square_scale = lse_square_scale
251
+ ctx.ignore_index = ignore_index
252
+ ctx.total_classes = total_classes
253
+ ctx.class_start_idx = class_start_idx
254
+ ctx.inplace_backward = inplace_backward
255
+ return losses, z_losses
256
+
257
+ @staticmethod
258
+ def backward(ctx, grad_losses, grad_z_losses):
259
+ del grad_z_losses # z_losses are only for logging.
260
+
261
+ logits, lse, labels = ctx.saved_tensors
262
+ dlogits = logits if ctx.inplace_backward else torch.empty_like(logits)
263
+ n_rows, n_cols = logits.shape
264
+ BLOCK_SIZE = min(triton.next_power_of_2(n_cols), 4 * 1024)
265
+ num_warps = 4 if BLOCK_SIZE < 2048 else (8 if BLOCK_SIZE < 8192 else 16)
266
+ grid = lambda META: (n_rows, triton.cdiv(n_cols, META["BLOCK_SIZE"])) # noqa
267
+ # Need this, otherwise Triton tries to launch from cuda:0 and we get
268
+ # ValueError: Pointer argument (at 0) cannot be accessed from Triton (cpu tensor?)
269
+ with torch.cuda.device(logits.device.index):
270
+ cross_entropy_bwd_kernel[grid](
271
+ dlogits, # data ptrs
272
+ grad_losses,
273
+ logits,
274
+ lse,
275
+ labels,
276
+ ctx.smoothing,
277
+ ctx.logit_scale,
278
+ ctx.lse_square_scale,
279
+ ctx.ignore_index,
280
+ ctx.total_classes,
281
+ ctx.class_start_idx,
282
+ n_cols, # shapes
283
+ logits.stride(0), # strides
284
+ dlogits.stride(0),
285
+ grad_losses.stride(0),
286
+ BLOCK_SIZE=BLOCK_SIZE, # constants
287
+ num_warps=num_warps,
288
+ )
289
+ return dlogits, None, None, None, None, None, None, None, None, None
290
+
291
+
292
+ def cross_entropy_loss(
293
+ logits: torch.Tensor,
294
+ labels: torch.Tensor,
295
+ precomputed_lse: Optional[torch.Tensor] = None,
296
+ label_smoothing: float = 0.0,
297
+ logit_scale: float = 1.0,
298
+ lse_square_scale: float = 0.0,
299
+ ignore_index=-100,
300
+ inplace_backward: bool = False,
301
+ process_group=None,
302
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
303
+ """
304
+ Arguments:
305
+ logits: (batch, vocab_size)
306
+ labels: (batch,)
307
+ label_smoothing: float
308
+ logit_scale: float. Multiply logits by this scale before calculating the loss.
309
+ lse_square_scale: float. If > 0, we add lse_square_scale * lse(logits) ^ 2 to the loss.
310
+ This is also referred to as "z-loss".
311
+ ignore_index: int. If labels == ignore_index, the loss is set to 0.0.
312
+ inplace_backward: bool. If True, we do the backward pass in-place by modifying the logits.
313
+ This saves memory.
314
+ process_group: if not None, we're doing Tensor Parallel: each process is responsible for
315
+ one part of the vocab. The loss will be aggregated across processes.
316
+ Returns:
317
+ losses: (batch,), float
318
+ z_losses: (batch,), float
319
+ """
320
+ return CrossEntropyLoss.apply(
321
+ logits,
322
+ labels,
323
+ precomputed_lse,
324
+ label_smoothing,
325
+ logit_scale,
326
+ lse_square_scale,
327
+ ignore_index,
328
+ inplace_backward,
329
+ process_group,
330
+ )
torch-ext/flash_attn/ops/triton/k_activations.py ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/facebookresearch/xformers/blob/main/xformers/triton/k_activations.py
2
+ # Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
3
+ #
4
+ # This source code is licensed under the BSD license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import math
8
+ from enum import Enum
9
+ from typing import Optional
10
+
11
+ import triton
12
+ import triton.language as tl
13
+
14
+ _sqrt2pi = math.sqrt(2.0 / math.pi)
15
+ _sqrt1_2 = math.sqrt(1.0 / 2)
16
+ _gaussian_pdf_normalization = 1.0 / math.sqrt(2 * math.pi)
17
+
18
+
19
+ class Activation(str, Enum):
20
+ SquaredReLU = "squared_relu"
21
+ GeLU = "gelu"
22
+ GeLUApprox = "gelu_approx"
23
+ LeakyReLU = "leaky_relu"
24
+ ReLU = "relu"
25
+
26
+
27
+ def get_triton_activation_kernel(activation: Optional[Activation]):
28
+ return (
29
+ {
30
+ Activation.ReLU: relu,
31
+ Activation.LeakyReLU: leaky_relu,
32
+ Activation.GeLU: gelu,
33
+ Activation.GeLUApprox: gelu_approx,
34
+ Activation.SquaredReLU: squared_relu,
35
+ }[activation]
36
+ if activation
37
+ else None
38
+ )
39
+
40
+
41
+ def get_triton_activation_bwd_kernel(activation: Optional[Activation]):
42
+ return (
43
+ {
44
+ Activation.ReLU: relu_grad,
45
+ Activation.LeakyReLU: leaky_relu_grad,
46
+ Activation.GeLU: gelu_grad,
47
+ Activation.GeLUApprox: gelu_approx_grad,
48
+ Activation.SquaredReLU: squared_relu_grad,
49
+ }[activation]
50
+ if activation
51
+ else None
52
+ )
53
+
54
+
55
+ @triton.jit
56
+ def tanh(x):
57
+ # Tanh is just a scaled sigmoid
58
+ return 2 * tl.sigmoid(2 * x) - 1
59
+
60
+
61
+ @triton.jit
62
+ def cosh(x):
63
+ exp_x = tl.exp(x)
64
+ return (exp_x + 1.0 / exp_x) * 0.5
65
+
66
+
67
+ # a Triton implementation of the most used activations
68
+ # See for instance http://arxiv.org/abs/1606.08415 for an overview
69
+
70
+ # ReLU
71
+ @triton.jit
72
+ def relu(x):
73
+ """
74
+ ReLU_ activation function
75
+
76
+ .. _ReLU: https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html
77
+ """
78
+ zero = 0.0
79
+ return tl.where(x >= 0, x, zero.to(x.dtype))
80
+
81
+
82
+ @triton.jit
83
+ def relu_grad(x):
84
+ # ReLU is different from other activations
85
+ # in that it does not require the input to retrospectively compute its gradient
86
+ # here the input is the downstream gradient, and we return the upstream gradient directly
87
+ zero = 0.0
88
+ one = 1.0
89
+ return tl.where(x >= 0, one.to(x.dtype), zero.to(x.dtype))
90
+
91
+
92
+ @triton.jit
93
+ def squared_relu(x):
94
+ """
95
+ Squared ReLU activation, as proposed in the Primer_ paper.
96
+
97
+ .. _Primer: https://arxiv.org/abs/2109.08668
98
+ """
99
+ x_ = relu(x)
100
+ return (x_ * x_).to(x.dtype)
101
+
102
+
103
+ @triton.jit
104
+ def squared_relu_grad(x):
105
+ return tl.where(x >= 0, 2.0 * x, 0.0)
106
+
107
+
108
+ # Leaky ReLU
109
+ @triton.jit
110
+ def leaky_relu(x):
111
+ """
112
+ LeakyReLU_ activation
113
+
114
+ .. _LeakyReLU: https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html
115
+ """
116
+ scale = 0.01 + 0.0
117
+ scale = scale.to(x.dtype)
118
+ return tl.where(x >= 0, x, scale * x)
119
+
120
+
121
+ @triton.jit
122
+ def leaky_relu_grad(x):
123
+ min_grad = 0.01
124
+ max_grad = 1
125
+
126
+ min_grad = min_grad.to(x.dtype)
127
+ max_grad = max_grad.to(x.dtype)
128
+
129
+ return tl.where(x >= 0, max_grad, min_grad)
130
+
131
+
132
+ @triton.jit
133
+ def gelu(x):
134
+ """Gaussian Error Linear Unit (GELU)"""
135
+ return x * 0.5 * (1.0 + tl.libdevice.erf(x * _sqrt1_2))
136
+
137
+
138
+ @triton.jit
139
+ def gelu_grad(x):
140
+ cdf = 0.5 * (1.0 + tl.libdevice.erf(x * _sqrt1_2))
141
+ pdf = tl.exp(-0.5 * x * x) * _gaussian_pdf_normalization
142
+ return cdf + x * pdf
143
+
144
+
145
+ @triton.jit
146
+ def gelu_approx(x):
147
+ """
148
+ GeLU_ activation - Gaussian error linear unit, with tanh approximation
149
+
150
+ .. _GeLU: https://arxiv.org/pdf/1606.08415.pdf
151
+ """
152
+ return 0.5 * x * (1.0 + tanh(_sqrt2pi * x * (1.0 + 0.044715 * x * x)))
153
+
154
+
155
+ @triton.jit
156
+ def gelu_approx_grad(x):
157
+ # CREDITS: Fast implementation proposed in
158
+ # https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/fused_bias_gelu.py#L30
159
+ tanh_out = tanh(0.79788456 * x * (1 + 0.044715 * x * x))
160
+ return 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (
161
+ 1 + tanh_out
162
+ )
torch-ext/flash_attn/ops/triton/layer_norm.py ADDED
@@ -0,0 +1,1252 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2024, Tri Dao.
2
+ # Implement dropout + residual + layer_norm / rms_norm.
3
+
4
+ # Based on the Triton LayerNorm tutorial: https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
5
+ # For the backward pass, we keep weight_grad and bias_grad in registers and accumulate.
6
+ # This is faster for dimensions up to 8k, but after that it's much slower due to register spilling.
7
+ # The models we train have hidden dim up to 8k anyway (e.g. Llama 70B), so this is fine.
8
+
9
+ import math
10
+ from typing import Optional, List
11
+
12
+ import torch
13
+ import torch.nn.functional as F
14
+ from torch import Tensor
15
+
16
+ import triton
17
+ import triton.language as tl
18
+
19
+ from flash_attn.utils.torch import custom_fwd, custom_bwd
20
+ from flash_attn.utils.library import triton_op
21
+
22
+
23
+ def maybe_contiguous_lastdim(x):
24
+ return x.contiguous() if x is not None and x.stride(-1) != 1 else x
25
+
26
+
27
+ def maybe_contiguous(x):
28
+ return x.contiguous() if x is not None else None
29
+
30
+
31
+ def triton_autotune_configs():
32
+ # Return configs with a valid warp count for the current device
33
+ configs = []
34
+ # Maximum threads per block is architecture-dependent in theory, but in reality all are 1024
35
+ max_threads_per_block = 1024
36
+ # Default to warp size 32 if not defined by device
37
+ warp_size = getattr(torch.cuda.get_device_properties(torch.cuda.current_device()), "warp_size", 32)
38
+ # Autotune for warp counts which are powers of 2 and do not exceed thread per block limit
39
+ return [triton.Config({}, num_warps=warp_count) for warp_count in [1, 2, 4, 8, 16, 32]
40
+ if warp_count * warp_size <= max_threads_per_block]
41
+ # return [triton.Config({}, num_warps=8)]
42
+
43
+
44
+ def layer_norm_ref(
45
+ x,
46
+ weight,
47
+ bias,
48
+ residual=None,
49
+ x1=None,
50
+ weight1=None,
51
+ bias1=None,
52
+ eps=1e-6,
53
+ dropout_p=0.0,
54
+ rowscale=None,
55
+ prenorm=False,
56
+ zero_centered_weight=False,
57
+ dropout_mask=None,
58
+ dropout_mask1=None,
59
+ upcast=False,
60
+ ):
61
+ dtype = x.dtype
62
+ if upcast:
63
+ x = x.float()
64
+ weight = weight.float()
65
+ bias = bias.float() if bias is not None else None
66
+ residual = residual.float() if residual is not None else residual
67
+ x1 = x1.float() if x1 is not None else None
68
+ weight1 = weight1.float() if weight1 is not None else None
69
+ bias1 = bias1.float() if bias1 is not None else None
70
+ if zero_centered_weight:
71
+ weight = weight + 1.0
72
+ if weight1 is not None:
73
+ weight1 = weight1 + 1.0
74
+ if x1 is not None:
75
+ assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
76
+ if rowscale is not None:
77
+ x = x * rowscale[..., None]
78
+ if dropout_p > 0.0:
79
+ if dropout_mask is not None:
80
+ x = x.masked_fill(~dropout_mask, 0.0) / (1.0 - dropout_p)
81
+ else:
82
+ x = F.dropout(x, p=dropout_p)
83
+ if x1 is not None:
84
+ if dropout_mask1 is not None:
85
+ x1 = x1.masked_fill(~dropout_mask1, 0.0) / (1.0 - dropout_p)
86
+ else:
87
+ x1 = F.dropout(x1, p=dropout_p)
88
+ if x1 is not None:
89
+ x = x + x1
90
+ if residual is not None:
91
+ x = (x + residual).to(x.dtype)
92
+ out = F.layer_norm(x.to(weight.dtype), x.shape[-1:], weight=weight, bias=bias, eps=eps).to(
93
+ dtype
94
+ )
95
+ if weight1 is None:
96
+ return out if not prenorm else (out, x)
97
+ else:
98
+ out1 = F.layer_norm(
99
+ x.to(weight1.dtype), x.shape[-1:], weight=weight1, bias=bias1, eps=eps
100
+ ).to(dtype)
101
+ return (out, out1) if not prenorm else (out, out1, x)
102
+
103
+
104
+ def rms_norm_ref(
105
+ x,
106
+ weight,
107
+ bias,
108
+ residual=None,
109
+ x1=None,
110
+ weight1=None,
111
+ bias1=None,
112
+ eps=1e-6,
113
+ dropout_p=0.0,
114
+ rowscale=None,
115
+ prenorm=False,
116
+ zero_centered_weight=False,
117
+ dropout_mask=None,
118
+ dropout_mask1=None,
119
+ upcast=False,
120
+ ):
121
+ dtype = x.dtype
122
+ if upcast:
123
+ x = x.float()
124
+ weight = weight.float()
125
+ bias = bias.float() if bias is not None else None
126
+ residual = residual.float() if residual is not None else residual
127
+ x1 = x1.float() if x1 is not None else None
128
+ weight1 = weight1.float() if weight1 is not None else None
129
+ bias1 = bias1.float() if bias1 is not None else None
130
+ if zero_centered_weight:
131
+ weight = weight + 1.0
132
+ if weight1 is not None:
133
+ weight1 = weight1 + 1.0
134
+ if x1 is not None:
135
+ assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
136
+ if rowscale is not None:
137
+ x = x * rowscale[..., None]
138
+ if dropout_p > 0.0:
139
+ if dropout_mask is not None:
140
+ x = x.masked_fill(~dropout_mask, 0.0) / (1.0 - dropout_p)
141
+ else:
142
+ x = F.dropout(x, p=dropout_p)
143
+ if x1 is not None:
144
+ if dropout_mask1 is not None:
145
+ x1 = x1.masked_fill(~dropout_mask1, 0.0) / (1.0 - dropout_p)
146
+ else:
147
+ x1 = F.dropout(x1, p=dropout_p)
148
+ if x1 is not None:
149
+ x = x + x1
150
+ if residual is not None:
151
+ x = (x + residual).to(x.dtype)
152
+ rstd = 1 / torch.sqrt((x.square()).mean(dim=-1, keepdim=True) + eps)
153
+ out = ((x * rstd * weight) + bias if bias is not None else (x * rstd * weight)).to(dtype)
154
+ if weight1 is None:
155
+ return out if not prenorm else (out, x)
156
+ else:
157
+ out1 = ((x * rstd * weight1) + bias1 if bias1 is not None else (x * rstd * weight1)).to(
158
+ dtype
159
+ )
160
+ return (out, out1) if not prenorm else (out, out1, x)
161
+
162
+
163
+ @triton.autotune(
164
+ configs=triton_autotune_configs(),
165
+ key=["N", "HAS_RESIDUAL", "STORE_RESIDUAL_OUT", "IS_RMS_NORM", "HAS_BIAS", "HAS_X1", "HAS_W1", "HAS_B1"],
166
+ )
167
+ # torch compile doesn't like triton.heuristics, so we set these manually when calling the kernel
168
+ # @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
169
+ # @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None})
170
+ # @triton.heuristics({"HAS_X1": lambda args: args["X1"] is not None})
171
+ # @triton.heuristics({"HAS_W1": lambda args: args["W1"] is not None})
172
+ # @triton.heuristics({"HAS_B1": lambda args: args["B1"] is not None})
173
+ @triton.jit
174
+ def _layer_norm_fwd_1pass_kernel(
175
+ X, # pointer to the input
176
+ Y, # pointer to the output
177
+ W, # pointer to the weights
178
+ B, # pointer to the biases
179
+ RESIDUAL, # pointer to the residual
180
+ X1,
181
+ W1,
182
+ B1,
183
+ Y1,
184
+ RESIDUAL_OUT, # pointer to the residual
185
+ ROWSCALE,
186
+ SEEDS, # Dropout seeds for each row
187
+ DROPOUT_MASK,
188
+ DROPOUT_MASK1,
189
+ Mean, # pointer to the mean
190
+ Rstd, # pointer to the 1/std
191
+ stride_x_row, # how much to increase the pointer when moving by 1 row
192
+ stride_y_row,
193
+ stride_res_row,
194
+ stride_res_out_row,
195
+ stride_x1_row,
196
+ stride_y1_row,
197
+ M, # number of rows in X
198
+ N, # number of columns in X
199
+ eps, # epsilon to avoid division by zero
200
+ dropout_p, # Dropout probability
201
+ zero_centered_weight, # If true, add 1.0 to the weight
202
+ IS_RMS_NORM: tl.constexpr,
203
+ BLOCK_N: tl.constexpr,
204
+ HAS_RESIDUAL: tl.constexpr,
205
+ STORE_RESIDUAL_OUT: tl.constexpr,
206
+ HAS_BIAS: tl.constexpr,
207
+ HAS_DROPOUT: tl.constexpr,
208
+ STORE_DROPOUT_MASK: tl.constexpr,
209
+ HAS_ROWSCALE: tl.constexpr,
210
+ HAS_X1: tl.constexpr,
211
+ HAS_W1: tl.constexpr,
212
+ HAS_B1: tl.constexpr,
213
+ ):
214
+ # Map the program id to the row of X and Y it should compute.
215
+ row = tl.program_id(0)
216
+ X += row * stride_x_row
217
+ Y += row * stride_y_row
218
+ if HAS_RESIDUAL:
219
+ RESIDUAL += row * stride_res_row
220
+ if STORE_RESIDUAL_OUT:
221
+ RESIDUAL_OUT += row * stride_res_out_row
222
+ if HAS_X1:
223
+ X1 += row * stride_x1_row
224
+ if HAS_W1:
225
+ Y1 += row * stride_y1_row
226
+ # Compute mean and variance
227
+ cols = tl.arange(0, BLOCK_N)
228
+ x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
229
+ if HAS_ROWSCALE:
230
+ rowscale = tl.load(ROWSCALE + row).to(tl.float32)
231
+ x *= rowscale
232
+ if HAS_DROPOUT:
233
+ # Compute dropout mask
234
+ # 7 rounds is good enough, and reduces register pressure
235
+ keep_mask = tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
236
+ x = tl.where(keep_mask, x / (1.0 - dropout_p), 0.0)
237
+ if STORE_DROPOUT_MASK:
238
+ tl.store(DROPOUT_MASK + row * N + cols, keep_mask, mask=cols < N)
239
+ if HAS_X1:
240
+ x1 = tl.load(X1 + cols, mask=cols < N, other=0.0).to(tl.float32)
241
+ if HAS_ROWSCALE:
242
+ rowscale = tl.load(ROWSCALE + M + row).to(tl.float32)
243
+ x1 *= rowscale
244
+ if HAS_DROPOUT:
245
+ # Compute dropout mask
246
+ # 7 rounds is good enough, and reduces register pressure
247
+ keep_mask = (
248
+ tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
249
+ )
250
+ x1 = tl.where(keep_mask, x1 / (1.0 - dropout_p), 0.0)
251
+ if STORE_DROPOUT_MASK:
252
+ tl.store(DROPOUT_MASK1 + row * N + cols, keep_mask, mask=cols < N)
253
+ x += x1
254
+ if HAS_RESIDUAL:
255
+ residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.0).to(tl.float32)
256
+ x += residual
257
+ if STORE_RESIDUAL_OUT:
258
+ tl.store(RESIDUAL_OUT + cols, x, mask=cols < N)
259
+ if not IS_RMS_NORM:
260
+ mean = tl.sum(x, axis=0) / N
261
+ tl.store(Mean + row, mean)
262
+ xbar = tl.where(cols < N, x - mean, 0.0)
263
+ var = tl.sum(xbar * xbar, axis=0) / N
264
+ else:
265
+ xbar = tl.where(cols < N, x, 0.0)
266
+ var = tl.sum(xbar * xbar, axis=0) / N
267
+ rstd = 1 / tl.sqrt(var + eps)
268
+ tl.store(Rstd + row, rstd)
269
+ # Normalize and apply linear transformation
270
+ mask = cols < N
271
+ w = tl.load(W + cols, mask=mask).to(tl.float32)
272
+ if zero_centered_weight:
273
+ w += 1.0
274
+ if HAS_BIAS:
275
+ b = tl.load(B + cols, mask=mask).to(tl.float32)
276
+ x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
277
+ y = x_hat * w + b if HAS_BIAS else x_hat * w
278
+ # Write output
279
+ tl.store(Y + cols, y, mask=mask)
280
+ if HAS_W1:
281
+ w1 = tl.load(W1 + cols, mask=mask).to(tl.float32)
282
+ if zero_centered_weight:
283
+ w1 += 1.0
284
+ if HAS_B1:
285
+ b1 = tl.load(B1 + cols, mask=mask).to(tl.float32)
286
+ y1 = x_hat * w1 + b1 if HAS_B1 else x_hat * w1
287
+ tl.store(Y1 + cols, y1, mask=mask)
288
+
289
+
290
+ def _layer_norm_fwd(
291
+ x: Tensor,
292
+ weight: Tensor,
293
+ bias: Tensor,
294
+ eps: float,
295
+ residual: Optional[Tensor] = None,
296
+ x1: Optional[Tensor] = None,
297
+ weight1: Optional[Tensor] = None,
298
+ bias1: Optional[Tensor] = None,
299
+ dropout_p: float = 0.0,
300
+ rowscale: Optional[Tensor] = None,
301
+ out_dtype: Optional[torch.dtype] = None,
302
+ residual_dtype: Optional[torch.dtype] = None,
303
+ zero_centered_weight: bool = False,
304
+ is_rms_norm: bool = False,
305
+ return_dropout_mask: bool = False,
306
+ out: Optional[Tensor] = None,
307
+ residual_out: Optional[Tensor] = None
308
+ ) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor):
309
+ # Need to wrap to handle the case where residual_out is a alias of x, which makes torch.library
310
+ # and torch.compile unhappy. Also allocate memory for out and residual_out if they are None
311
+ # so that _layer_norm_fwd_impl doesn't have to return them.
312
+ if out is None:
313
+ out = torch.empty_like(x, dtype=x.dtype if out_dtype is None else out_dtype)
314
+ if residual is not None:
315
+ residual_dtype = residual.dtype
316
+ if residual_out is None and (
317
+ residual is not None
318
+ or (residual_dtype is not None and residual_dtype != x.dtype)
319
+ or dropout_p > 0.0
320
+ or rowscale is not None
321
+ or x1 is not None
322
+ ):
323
+ residual_out = torch.empty_like(
324
+ x, dtype=residual_dtype if residual_dtype is not None else x.dtype
325
+ )
326
+ else:
327
+ residual_out = None
328
+ y1, mean, rstd, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd_impl(
329
+ x,
330
+ weight,
331
+ bias,
332
+ eps,
333
+ out,
334
+ residual=residual,
335
+ x1=x1,
336
+ weight1=weight1,
337
+ bias1=bias1,
338
+ dropout_p=dropout_p,
339
+ rowscale=rowscale,
340
+ zero_centered_weight=zero_centered_weight,
341
+ is_rms_norm=is_rms_norm,
342
+ return_dropout_mask=return_dropout_mask,
343
+ residual_out=residual_out,
344
+ )
345
+ # residual_out is None if residual is None and residual_dtype == input_dtype and dropout_p == 0.0
346
+ if residual_out is None:
347
+ residual_out = x
348
+ return out, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1
349
+
350
+
351
+ # [2025-04-28] torch.library.triton_op ignores the schema argument, but here we need the schema
352
+ # since we're returning a tuple of tensors
353
+ @triton_op("flash_attn::layer_norm_fwd_impl", mutates_args={"out", "residual_out"},
354
+ schema="(Tensor x, Tensor weight, Tensor bias, float eps, Tensor(a!) out, Tensor? residual, Tensor? x1, Tensor? weight1, Tensor? bias1, float dropout_p, Tensor? rowscale, bool zero_centered_weight, bool is_rms_norm, bool return_dropout_mask, Tensor(a!)? residual_out) -> (Tensor y1, Tensor mean, Tensor rstd, Tensor seeds, Tensor dropout_mask, Tensor dropout_mask1)")
355
+ def _layer_norm_fwd_impl(
356
+ x: Tensor,
357
+ weight: Tensor,
358
+ bias: Tensor,
359
+ eps: float,
360
+ out: Tensor,
361
+ residual: Optional[Tensor] = None,
362
+ x1: Optional[Tensor] = None,
363
+ weight1: Optional[Tensor] = None,
364
+ bias1: Optional[Tensor] = None,
365
+ dropout_p: float = 0.0,
366
+ rowscale: Optional[Tensor] = None,
367
+ zero_centered_weight: bool = False,
368
+ is_rms_norm: bool = False,
369
+ return_dropout_mask: bool = False,
370
+ residual_out: Optional[Tensor] = None
371
+ ) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor):
372
+ M, N = x.shape
373
+ assert x.stride(-1) == 1
374
+ if residual is not None:
375
+ assert residual.stride(-1) == 1
376
+ assert residual.shape == (M, N)
377
+ assert weight.shape == (N,)
378
+ assert weight.stride(-1) == 1
379
+ if bias is not None:
380
+ assert bias.stride(-1) == 1
381
+ assert bias.shape == (N,)
382
+ if x1 is not None:
383
+ assert x1.shape == x.shape
384
+ assert rowscale is None
385
+ assert x1.stride(-1) == 1
386
+ if weight1 is not None:
387
+ assert weight1.shape == (N,)
388
+ assert weight1.stride(-1) == 1
389
+ if bias1 is not None:
390
+ assert bias1.shape == (N,)
391
+ assert bias1.stride(-1) == 1
392
+ if rowscale is not None:
393
+ assert rowscale.is_contiguous()
394
+ assert rowscale.shape == (M,)
395
+ assert out.shape == x.shape
396
+ assert out.stride(-1) == 1
397
+ if residual_out is not None:
398
+ assert residual_out.shape == x.shape
399
+ assert residual_out.stride(-1) == 1
400
+ if weight1 is not None:
401
+ y1 = torch.empty_like(out)
402
+ assert y1.stride(-1) == 1
403
+ else:
404
+ y1 = None
405
+ mean = torch.empty((M,), dtype=torch.float32, device=x.device) if not is_rms_norm else None
406
+ rstd = torch.empty((M,), dtype=torch.float32, device=x.device)
407
+ if dropout_p > 0.0:
408
+ seeds = torch.randint(
409
+ 2**32, (M if x1 is None else 2 * M,), device=x.device, dtype=torch.int64
410
+ )
411
+ else:
412
+ seeds = None
413
+ if return_dropout_mask and dropout_p > 0.0:
414
+ dropout_mask = torch.empty(M, N, device=x.device, dtype=torch.bool)
415
+ if x1 is not None:
416
+ dropout_mask1 = torch.empty(M, N, device=x.device, dtype=torch.bool)
417
+ else:
418
+ dropout_mask1 = None
419
+ else:
420
+ dropout_mask, dropout_mask1 = None, None
421
+ # Less than 64KB per feature: enqueue fused kernel
422
+ MAX_FUSED_SIZE = 65536 // x.element_size()
423
+ BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
424
+ if N > BLOCK_N:
425
+ raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
426
+ with torch.cuda.device(x.device.index):
427
+ torch.library.wrap_triton(_layer_norm_fwd_1pass_kernel)[(M,)](
428
+ x,
429
+ out,
430
+ weight,
431
+ bias,
432
+ residual,
433
+ x1,
434
+ weight1,
435
+ bias1,
436
+ y1,
437
+ residual_out,
438
+ rowscale,
439
+ seeds,
440
+ dropout_mask,
441
+ dropout_mask1,
442
+ mean,
443
+ rstd,
444
+ x.stride(0),
445
+ out.stride(0),
446
+ residual.stride(0) if residual is not None else 0,
447
+ residual_out.stride(0) if residual_out is not None else 0,
448
+ x1.stride(0) if x1 is not None else 0,
449
+ y1.stride(0) if y1 is not None else 0,
450
+ M,
451
+ N,
452
+ eps,
453
+ dropout_p,
454
+ # Passing bool make torch inductor very unhappy since it then tries to compare to int_max
455
+ int(zero_centered_weight),
456
+ is_rms_norm,
457
+ BLOCK_N,
458
+ residual is not None,
459
+ residual_out is not None,
460
+ bias is not None,
461
+ dropout_p > 0.0,
462
+ dropout_mask is not None,
463
+ rowscale is not None,
464
+ HAS_X1=x1 is not None,
465
+ HAS_W1=weight1 is not None,
466
+ HAS_B1=bias1 is not None,
467
+ )
468
+ return y1, mean, rstd, seeds, dropout_mask, dropout_mask1
469
+
470
+
471
+ @triton.autotune(
472
+ configs=triton_autotune_configs(),
473
+ key=["N", "HAS_DRESIDUAL", "STORE_DRESIDUAL", "IS_RMS_NORM", "HAS_BIAS", "HAS_DROPOUT"],
474
+ )
475
+ # torch compile doesn't like triton.heuristics, so we set these manually when calling the kernel
476
+ # @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
477
+ # @triton.heuristics({"HAS_DRESIDUAL": lambda args: args["DRESIDUAL"] is not None})
478
+ # @triton.heuristics({"STORE_DRESIDUAL": lambda args: args["DRESIDUAL_IN"] is not None})
479
+ # @triton.heuristics({"HAS_ROWSCALE": lambda args: args["ROWSCALE"] is not None})
480
+ # @triton.heuristics({"HAS_DY1": lambda args: args["DY1"] is not None})
481
+ # @triton.heuristics({"HAS_DX1": lambda args: args["DX1"] is not None})
482
+ # @triton.heuristics({"HAS_B1": lambda args: args["DB1"] is not None})
483
+ # @triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None})
484
+ @triton.jit
485
+ def _layer_norm_bwd_kernel(
486
+ X, # pointer to the input
487
+ W, # pointer to the weights
488
+ B, # pointer to the biases
489
+ Y, # pointer to the output to be recomputed
490
+ DY, # pointer to the output gradient
491
+ DX, # pointer to the input gradient
492
+ DW, # pointer to the partial sum of weights gradient
493
+ DB, # pointer to the partial sum of biases gradient
494
+ DRESIDUAL,
495
+ W1,
496
+ DY1,
497
+ DX1,
498
+ DW1,
499
+ DB1,
500
+ DRESIDUAL_IN,
501
+ ROWSCALE,
502
+ SEEDS,
503
+ Mean, # pointer to the mean
504
+ Rstd, # pointer to the 1/std
505
+ stride_x_row, # how much to increase the pointer when moving by 1 row
506
+ stride_y_row,
507
+ stride_dy_row,
508
+ stride_dx_row,
509
+ stride_dres_row,
510
+ stride_dy1_row,
511
+ stride_dx1_row,
512
+ stride_dres_in_row,
513
+ M, # number of rows in X
514
+ N, # number of columns in X
515
+ eps, # epsilon to avoid division by zero
516
+ dropout_p,
517
+ zero_centered_weight,
518
+ rows_per_program,
519
+ IS_RMS_NORM: tl.constexpr,
520
+ BLOCK_N: tl.constexpr,
521
+ HAS_DRESIDUAL: tl.constexpr,
522
+ STORE_DRESIDUAL: tl.constexpr,
523
+ HAS_BIAS: tl.constexpr,
524
+ HAS_DROPOUT: tl.constexpr,
525
+ HAS_ROWSCALE: tl.constexpr,
526
+ HAS_DY1: tl.constexpr,
527
+ HAS_DX1: tl.constexpr,
528
+ HAS_B1: tl.constexpr,
529
+ RECOMPUTE_OUTPUT: tl.constexpr,
530
+ ):
531
+ # Map the program id to the elements of X, DX, and DY it should compute.
532
+ row_block_id = tl.program_id(0)
533
+ row_start = row_block_id * rows_per_program
534
+ # Do not early exit if row_start >= M, because we need to write DW and DB
535
+ cols = tl.arange(0, BLOCK_N)
536
+ mask = cols < N
537
+ X += row_start * stride_x_row
538
+ if HAS_DRESIDUAL:
539
+ DRESIDUAL += row_start * stride_dres_row
540
+ if STORE_DRESIDUAL:
541
+ DRESIDUAL_IN += row_start * stride_dres_in_row
542
+ DY += row_start * stride_dy_row
543
+ DX += row_start * stride_dx_row
544
+ if HAS_DY1:
545
+ DY1 += row_start * stride_dy1_row
546
+ if HAS_DX1:
547
+ DX1 += row_start * stride_dx1_row
548
+ if RECOMPUTE_OUTPUT:
549
+ Y += row_start * stride_y_row
550
+ w = tl.load(W + cols, mask=mask).to(tl.float32)
551
+ if zero_centered_weight:
552
+ w += 1.0
553
+ if RECOMPUTE_OUTPUT and HAS_BIAS:
554
+ b = tl.load(B + cols, mask=mask, other=0.0).to(tl.float32)
555
+ if HAS_DY1:
556
+ w1 = tl.load(W1 + cols, mask=mask).to(tl.float32)
557
+ if zero_centered_weight:
558
+ w1 += 1.0
559
+ dw = tl.zeros((BLOCK_N,), dtype=tl.float32)
560
+ if HAS_BIAS:
561
+ db = tl.zeros((BLOCK_N,), dtype=tl.float32)
562
+ if HAS_DY1:
563
+ dw1 = tl.zeros((BLOCK_N,), dtype=tl.float32)
564
+ if HAS_B1:
565
+ db1 = tl.zeros((BLOCK_N,), dtype=tl.float32)
566
+ row_end = min((row_block_id + 1) * rows_per_program, M)
567
+ for row in range(row_start, row_end):
568
+ # Load data to SRAM
569
+ x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
570
+ dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
571
+ if HAS_DY1:
572
+ dy1 = tl.load(DY1 + cols, mask=mask, other=0).to(tl.float32)
573
+ if not IS_RMS_NORM:
574
+ mean = tl.load(Mean + row)
575
+ rstd = tl.load(Rstd + row)
576
+ # Compute dx
577
+ xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
578
+ xhat = tl.where(mask, xhat, 0.0)
579
+ if RECOMPUTE_OUTPUT:
580
+ y = xhat * w + b if HAS_BIAS else xhat * w
581
+ tl.store(Y + cols, y, mask=mask)
582
+ wdy = w * dy
583
+ dw += dy * xhat
584
+ if HAS_BIAS:
585
+ db += dy
586
+ if HAS_DY1:
587
+ wdy += w1 * dy1
588
+ dw1 += dy1 * xhat
589
+ if HAS_B1:
590
+ db1 += dy1
591
+ if not IS_RMS_NORM:
592
+ c1 = tl.sum(xhat * wdy, axis=0) / N
593
+ c2 = tl.sum(wdy, axis=0) / N
594
+ dx = (wdy - (xhat * c1 + c2)) * rstd
595
+ else:
596
+ c1 = tl.sum(xhat * wdy, axis=0) / N
597
+ dx = (wdy - xhat * c1) * rstd
598
+ if HAS_DRESIDUAL:
599
+ dres = tl.load(DRESIDUAL + cols, mask=mask, other=0).to(tl.float32)
600
+ dx += dres
601
+ # Write dx
602
+ if STORE_DRESIDUAL:
603
+ tl.store(DRESIDUAL_IN + cols, dx, mask=mask)
604
+ if HAS_DX1:
605
+ if HAS_DROPOUT:
606
+ keep_mask = (
607
+ tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
608
+ )
609
+ dx1 = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0)
610
+ else:
611
+ dx1 = dx
612
+ tl.store(DX1 + cols, dx1, mask=mask)
613
+ if HAS_DROPOUT:
614
+ keep_mask = tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
615
+ dx = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0)
616
+ if HAS_ROWSCALE:
617
+ rowscale = tl.load(ROWSCALE + row).to(tl.float32)
618
+ dx *= rowscale
619
+ tl.store(DX + cols, dx, mask=mask)
620
+
621
+ X += stride_x_row
622
+ if HAS_DRESIDUAL:
623
+ DRESIDUAL += stride_dres_row
624
+ if STORE_DRESIDUAL:
625
+ DRESIDUAL_IN += stride_dres_in_row
626
+ if RECOMPUTE_OUTPUT:
627
+ Y += stride_y_row
628
+ DY += stride_dy_row
629
+ DX += stride_dx_row
630
+ if HAS_DY1:
631
+ DY1 += stride_dy1_row
632
+ if HAS_DX1:
633
+ DX1 += stride_dx1_row
634
+ tl.store(DW + row_block_id * N + cols, dw, mask=mask)
635
+ if HAS_BIAS:
636
+ tl.store(DB + row_block_id * N + cols, db, mask=mask)
637
+ if HAS_DY1:
638
+ tl.store(DW1 + row_block_id * N + cols, dw1, mask=mask)
639
+ if HAS_B1:
640
+ tl.store(DB1 + row_block_id * N + cols, db1, mask=mask)
641
+
642
+
643
+ def _layer_norm_bwd(
644
+ dy: Tensor,
645
+ x: Tensor,
646
+ weight: Tensor,
647
+ bias: Tensor,
648
+ eps: float,
649
+ mean: Tensor,
650
+ rstd: Tensor,
651
+ dresidual: Optional[Tensor] = None,
652
+ dy1: Optional[Tensor] = None,
653
+ weight1: Optional[Tensor] = None,
654
+ bias1: Optional[Tensor] = None,
655
+ seeds: Optional[Tensor] = None,
656
+ dropout_p: float = 0.0,
657
+ rowscale: Optional[Tensor] = None,
658
+ has_residual: bool = False,
659
+ has_x1: bool = False,
660
+ zero_centered_weight: bool = False,
661
+ is_rms_norm: bool = False,
662
+ x_dtype: Optional[torch.dtype] = None,
663
+ recompute_output: bool = False,
664
+ ) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor):
665
+ # Need to wrap to handle the case where dresidual_in or dx1 are aliases of x,
666
+ # which makes torch.library unhappy
667
+ dx, dw, db, dresidual_in, dx1, dw1, db1, y = _layer_norm_bwd_impl(
668
+ dy,
669
+ x,
670
+ weight,
671
+ bias,
672
+ eps,
673
+ mean,
674
+ rstd,
675
+ dresidual,
676
+ dy1,
677
+ weight1,
678
+ bias1,
679
+ seeds,
680
+ dropout_p,
681
+ rowscale,
682
+ has_residual,
683
+ has_x1,
684
+ zero_centered_weight,
685
+ is_rms_norm,
686
+ x_dtype=x_dtype,
687
+ recompute_output=recompute_output,
688
+ )
689
+ # Don't need to compute dresidual_in separately in this case
690
+ if has_residual and dx.dtype == x.dtype and dropout_p == 0.0 and rowscale is None:
691
+ dresidual_in = dx
692
+ if has_x1 and dropout_p == 0.0:
693
+ dx1 = dx
694
+ return dx, dw, db, dresidual_in, dx1, dw1, db1, y
695
+
696
+
697
+
698
+ @triton_op("flash_attn::layer_norm_bwd_impl", mutates_args={},
699
+ schema="(Tensor dy, Tensor x, Tensor weight, Tensor bias, float eps, Tensor mean, Tensor rstd, Tensor? dresidual, Tensor? dy1, Tensor? weight1, Tensor? bias1, Tensor? seeds, float dropout_p, Tensor? rowscale, bool has_residual, bool has_x1, bool zero_centered_weight, bool is_rms_norm, ScalarType? x_dtype, bool recompute_output) -> (Tensor dx, Tensor dw, Tensor db, Tensor dresidual_in, Tensor dx1, Tensor dw1, Tensor db1, Tensor y)",
700
+ allow_decomposition=False, # Don't let torch.compile trace inside
701
+ )
702
+ def _layer_norm_bwd_impl(
703
+ dy: Tensor,
704
+ x: Tensor,
705
+ weight: Tensor,
706
+ bias: Tensor,
707
+ eps: float,
708
+ mean: Tensor,
709
+ rstd: Tensor,
710
+ dresidual: Optional[Tensor] = None,
711
+ dy1: Optional[Tensor] = None,
712
+ weight1: Optional[Tensor] = None,
713
+ bias1: Optional[Tensor] = None,
714
+ seeds: Optional[Tensor] = None,
715
+ dropout_p: float = 0.0,
716
+ rowscale: Optional[Tensor] = None,
717
+ has_residual: bool = False,
718
+ has_x1: bool = False,
719
+ zero_centered_weight: bool = False,
720
+ is_rms_norm: bool = False,
721
+ x_dtype: Optional[torch.dtype] = None,
722
+ recompute_output: bool = False,
723
+ ) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor):
724
+ M, N = x.shape
725
+ assert x.stride(-1) == 1
726
+ dy = maybe_contiguous_lastdim(dy)
727
+ assert dy.stride(-1) == 1
728
+ assert dy.shape == (M, N)
729
+ if dresidual is not None:
730
+ dresidual = maybe_contiguous_lastdim(dresidual)
731
+ assert dresidual.stride(-1) == 1
732
+ assert dresidual.shape == (M, N)
733
+ assert weight.shape == (N,)
734
+ assert weight.stride(-1) == 1
735
+ if bias is not None:
736
+ assert bias.stride(-1) == 1
737
+ assert bias.shape == (N,)
738
+ if dy1 is not None:
739
+ dy1 = maybe_contiguous_lastdim(dy1)
740
+ assert weight1 is not None
741
+ assert dy1.shape == dy.shape
742
+ assert dy1.stride(-1) == 1
743
+ if weight1 is not None:
744
+ assert weight1.shape == (N,)
745
+ assert weight1.stride(-1) == 1
746
+ if bias1 is not None:
747
+ assert bias1.shape == (N,)
748
+ assert bias1.stride(-1) == 1
749
+ if seeds is not None:
750
+ assert seeds.is_contiguous()
751
+ assert seeds.shape == (M if not has_x1 else M * 2,)
752
+ if rowscale is not None:
753
+ assert rowscale.is_contiguous()
754
+ assert rowscale.shape == (M,)
755
+ # allocate output
756
+ dx = (
757
+ torch.empty_like(x)
758
+ if x_dtype is None
759
+ else torch.empty(M, N, dtype=x_dtype, device=x.device)
760
+ )
761
+ dresidual_in = (
762
+ torch.empty_like(x)
763
+ if has_residual
764
+ and (dx.dtype != x.dtype or dropout_p > 0.0 or rowscale is not None or has_x1)
765
+ else None
766
+ )
767
+ dx1 = torch.empty_like(dx) if (has_x1 and dropout_p > 0.0) else None
768
+ y = torch.empty(M, N, dtype=dy.dtype, device=dy.device) if recompute_output else None
769
+ if recompute_output:
770
+ assert weight1 is None, "recompute_output is not supported with parallel LayerNorm"
771
+
772
+ # Less than 64KB per feature: enqueue fused kernel
773
+ MAX_FUSED_SIZE = 65536 // x.element_size()
774
+ BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
775
+ if N > BLOCK_N:
776
+ raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
777
+ # Increasing the multiple (e.g. 8) will allow more thread blocks to be launched and hide the
778
+ # latency of the gmem reads/writes, but will increase the time of summing up dw / db.
779
+ sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count * 8
780
+ _dw = torch.empty((sm_count, N), dtype=torch.float32, device=weight.device)
781
+ _db = (
782
+ torch.empty((sm_count, N), dtype=torch.float32, device=bias.device)
783
+ if bias is not None
784
+ else None
785
+ )
786
+ _dw1 = torch.empty_like(_dw) if weight1 is not None else None
787
+ _db1 = torch.empty_like(_db) if bias1 is not None else None
788
+ rows_per_program = math.ceil(M / sm_count)
789
+ grid = (sm_count,)
790
+ with torch.cuda.device(x.device.index):
791
+ torch.library.wrap_triton(_layer_norm_bwd_kernel)[grid](
792
+ x,
793
+ weight,
794
+ bias,
795
+ y,
796
+ dy,
797
+ dx,
798
+ _dw,
799
+ _db,
800
+ dresidual,
801
+ weight1,
802
+ dy1,
803
+ dx1,
804
+ _dw1,
805
+ _db1,
806
+ dresidual_in,
807
+ rowscale,
808
+ seeds,
809
+ mean,
810
+ rstd,
811
+ x.stride(0),
812
+ 0 if not recompute_output else y.stride(0),
813
+ dy.stride(0),
814
+ dx.stride(0),
815
+ dresidual.stride(0) if dresidual is not None else 0,
816
+ dy1.stride(0) if dy1 is not None else 0,
817
+ dx1.stride(0) if dx1 is not None else 0,
818
+ dresidual_in.stride(0) if dresidual_in is not None else 0,
819
+ M,
820
+ N,
821
+ eps,
822
+ dropout_p,
823
+ # Passing bool make torch inductor very unhappy since it then tries to compare to int_max
824
+ int(zero_centered_weight),
825
+ rows_per_program,
826
+ is_rms_norm,
827
+ BLOCK_N,
828
+ dresidual is not None,
829
+ dresidual_in is not None,
830
+ bias is not None,
831
+ dropout_p > 0.0,
832
+ HAS_ROWSCALE=rowscale is not None,
833
+ HAS_DY1=dy1 is not None,
834
+ HAS_DX1=dx1 is not None,
835
+ HAS_B1=bias1 is not None,
836
+ RECOMPUTE_OUTPUT=y is not None,
837
+ )
838
+ dw = _dw.sum(0).to(weight.dtype)
839
+ db = _db.sum(0).to(bias.dtype) if bias is not None else None
840
+ dw1 = _dw1.sum(0).to(weight1.dtype) if weight1 is not None else None
841
+ db1 = _db1.sum(0).to(bias1.dtype) if bias1 is not None else None
842
+ # dresidual_in and dx1 could be None, the wrapper will handle assigning them from dx
843
+ return dx, dw, db, dresidual_in, dx1, dw1, db1, y
844
+
845
+
846
+ class LayerNormFn(torch.autograd.Function):
847
+
848
+ @staticmethod
849
+ def forward(
850
+ ctx,
851
+ x,
852
+ weight,
853
+ bias,
854
+ residual=None,
855
+ x1=None,
856
+ weight1=None,
857
+ bias1=None,
858
+ eps=1e-6,
859
+ dropout_p=0.0,
860
+ rowscale=None,
861
+ prenorm=False,
862
+ residual_in_fp32=False,
863
+ zero_centered_weight=False,
864
+ is_rms_norm=False,
865
+ return_dropout_mask=False,
866
+ out_dtype=None,
867
+ out=None,
868
+ residual_out=None
869
+ ):
870
+ x_shape_og = x.shape
871
+ # reshape input data into 2D tensor
872
+ x = maybe_contiguous_lastdim(x.reshape(-1, x.shape[-1]))
873
+ if residual is not None:
874
+ assert residual.shape == x_shape_og
875
+ residual = maybe_contiguous_lastdim(residual.reshape(-1, residual.shape[-1]))
876
+ if x1 is not None:
877
+ assert x1.shape == x_shape_og
878
+ assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
879
+ x1 = maybe_contiguous_lastdim(x1.reshape(-1, x1.shape[-1]))
880
+ weight = weight.contiguous()
881
+ bias = maybe_contiguous(bias)
882
+ weight1 = maybe_contiguous(weight1)
883
+ bias1 = maybe_contiguous(bias1)
884
+ if rowscale is not None:
885
+ rowscale = rowscale.reshape(-1).contiguous()
886
+ residual_dtype = (
887
+ residual.dtype
888
+ if residual is not None
889
+ else (torch.float32 if residual_in_fp32 else None)
890
+ )
891
+ if out is not None:
892
+ out = out.reshape(-1, out.shape[-1])
893
+ if residual_out is not None:
894
+ residual_out = residual_out.reshape(-1, residual_out.shape[-1])
895
+ y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd(
896
+ x,
897
+ weight,
898
+ bias,
899
+ eps,
900
+ residual,
901
+ x1,
902
+ weight1,
903
+ bias1,
904
+ dropout_p=dropout_p,
905
+ rowscale=rowscale,
906
+ out_dtype=out_dtype,
907
+ residual_dtype=residual_dtype,
908
+ zero_centered_weight=zero_centered_weight,
909
+ is_rms_norm=is_rms_norm,
910
+ return_dropout_mask=return_dropout_mask,
911
+ out=out,
912
+ residual_out=residual_out,
913
+ )
914
+ ctx.save_for_backward(
915
+ residual_out, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd
916
+ )
917
+ ctx.x_shape_og = x_shape_og
918
+ ctx.eps = eps
919
+ ctx.dropout_p = dropout_p
920
+ ctx.is_rms_norm = is_rms_norm
921
+ ctx.has_residual = residual is not None
922
+ ctx.has_x1 = x1 is not None
923
+ ctx.prenorm = prenorm
924
+ ctx.x_dtype = x.dtype
925
+ ctx.zero_centered_weight = zero_centered_weight
926
+ y = y.reshape(x_shape_og)
927
+ y1 = y1.reshape(x_shape_og) if y1 is not None else None
928
+ residual_out = residual_out.reshape(x_shape_og) if residual_out is not None else None
929
+ dropout_mask = dropout_mask.reshape(x_shape_og) if dropout_mask is not None else None
930
+ dropout_mask1 = dropout_mask1.reshape(x_shape_og) if dropout_mask1 is not None else None
931
+ if not return_dropout_mask:
932
+ if weight1 is None:
933
+ return y if not prenorm else (y, residual_out)
934
+ else:
935
+ return (y, y1) if not prenorm else (y, y1, residual_out)
936
+ else:
937
+ if weight1 is None:
938
+ return (
939
+ (y, dropout_mask, dropout_mask1)
940
+ if not prenorm
941
+ else (y, residual_out, dropout_mask, dropout_mask1)
942
+ )
943
+ else:
944
+ return (
945
+ (y, y1, dropout_mask, dropout_mask1)
946
+ if not prenorm
947
+ else (y, y1, residual_out, dropout_mask, dropout_mask1)
948
+ )
949
+
950
+ @staticmethod
951
+ def backward(ctx, dy, *args):
952
+ x, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd = ctx.saved_tensors
953
+ dy = dy.reshape(-1, dy.shape[-1])
954
+ if weight1 is not None:
955
+ dy1, args = args[0], args[1:]
956
+ dy1 = dy1.reshape(-1, dy1.shape[-1])
957
+ assert dy1.shape == x.shape
958
+ else:
959
+ dy1 = None
960
+ if ctx.prenorm:
961
+ dresidual = args[0]
962
+ dresidual = dresidual.reshape(-1, dresidual.shape[-1])
963
+ assert dresidual.shape == x.shape
964
+ else:
965
+ dresidual = None
966
+ dx, dw, db, dresidual_in, dx1, dw1, db1, _ = _layer_norm_bwd(
967
+ dy,
968
+ x,
969
+ weight,
970
+ bias,
971
+ ctx.eps,
972
+ mean,
973
+ rstd,
974
+ dresidual,
975
+ dy1,
976
+ weight1,
977
+ bias1,
978
+ seeds,
979
+ ctx.dropout_p,
980
+ rowscale,
981
+ ctx.has_residual,
982
+ ctx.has_x1,
983
+ ctx.zero_centered_weight,
984
+ ctx.is_rms_norm,
985
+ x_dtype=ctx.x_dtype,
986
+ recompute_output=False,
987
+ )
988
+ return (
989
+ dx.reshape(ctx.x_shape_og),
990
+ dw,
991
+ db,
992
+ dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None,
993
+ dx1.reshape(ctx.x_shape_og) if dx1 is not None else None,
994
+ dw1,
995
+ db1,
996
+ None,
997
+ None,
998
+ None,
999
+ None,
1000
+ None,
1001
+ None,
1002
+ None,
1003
+ None,
1004
+ None,
1005
+ None,
1006
+ None,
1007
+ )
1008
+
1009
+
1010
+ def layer_norm_fn(
1011
+ x,
1012
+ weight,
1013
+ bias,
1014
+ residual=None,
1015
+ x1=None,
1016
+ weight1=None,
1017
+ bias1=None,
1018
+ eps=1e-6,
1019
+ dropout_p=0.0,
1020
+ rowscale=None,
1021
+ prenorm=False,
1022
+ residual_in_fp32=False,
1023
+ zero_centered_weight=False,
1024
+ is_rms_norm=False,
1025
+ return_dropout_mask=False,
1026
+ out_dtype=None,
1027
+ out=None,
1028
+ residual_out=None
1029
+ ):
1030
+ return LayerNormFn.apply(
1031
+ x,
1032
+ weight,
1033
+ bias,
1034
+ residual,
1035
+ x1,
1036
+ weight1,
1037
+ bias1,
1038
+ eps,
1039
+ dropout_p,
1040
+ rowscale,
1041
+ prenorm,
1042
+ residual_in_fp32,
1043
+ zero_centered_weight,
1044
+ is_rms_norm,
1045
+ return_dropout_mask,
1046
+ out_dtype,
1047
+ out,
1048
+ residual_out
1049
+ )
1050
+
1051
+
1052
+ def rms_norm_fn(
1053
+ x,
1054
+ weight,
1055
+ bias,
1056
+ residual=None,
1057
+ x1=None,
1058
+ weight1=None,
1059
+ bias1=None,
1060
+ eps=1e-6,
1061
+ dropout_p=0.0,
1062
+ rowscale=None,
1063
+ prenorm=False,
1064
+ residual_in_fp32=False,
1065
+ zero_centered_weight=False,
1066
+ return_dropout_mask=False,
1067
+ out_dtype=None,
1068
+ out=None,
1069
+ residual_out=None
1070
+ ):
1071
+ return LayerNormFn.apply(
1072
+ x,
1073
+ weight,
1074
+ bias,
1075
+ residual,
1076
+ x1,
1077
+ weight1,
1078
+ bias1,
1079
+ eps,
1080
+ dropout_p,
1081
+ rowscale,
1082
+ prenorm,
1083
+ residual_in_fp32,
1084
+ zero_centered_weight,
1085
+ True,
1086
+ return_dropout_mask,
1087
+ out_dtype,
1088
+ out,
1089
+ residual_out
1090
+ )
1091
+
1092
+
1093
+ class RMSNorm(torch.nn.Module):
1094
+
1095
+ def __init__(self, hidden_size, eps=1e-5, dropout_p=0.0, zero_centered_weight=False,
1096
+ device=None, dtype=None):
1097
+ factory_kwargs = {"device": device, "dtype": dtype}
1098
+ super().__init__()
1099
+ self.eps = eps
1100
+ if dropout_p > 0.0:
1101
+ self.drop = torch.nn.Dropout(dropout_p)
1102
+ else:
1103
+ self.drop = None
1104
+ self.zero_centered_weight = zero_centered_weight
1105
+ self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
1106
+ self.register_parameter("bias", None)
1107
+ self.reset_parameters()
1108
+
1109
+ def reset_parameters(self):
1110
+ if not self.zero_centered_weight:
1111
+ torch.nn.init.ones_(self.weight)
1112
+ else:
1113
+ torch.nn.init.zeros_(self.weight)
1114
+
1115
+ def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False):
1116
+ return rms_norm_fn(
1117
+ x,
1118
+ self.weight,
1119
+ self.bias,
1120
+ residual=residual,
1121
+ eps=self.eps,
1122
+ dropout_p=self.drop.p if self.drop is not None and self.training else 0.0,
1123
+ prenorm=prenorm,
1124
+ residual_in_fp32=residual_in_fp32,
1125
+ zero_centered_weight=self.zero_centered_weight,
1126
+ )
1127
+
1128
+
1129
+ class LayerNormLinearFn(torch.autograd.Function):
1130
+
1131
+ @staticmethod
1132
+ @custom_fwd
1133
+ def forward(
1134
+ ctx,
1135
+ x,
1136
+ norm_weight,
1137
+ norm_bias,
1138
+ linear_weight,
1139
+ linear_bias,
1140
+ residual=None,
1141
+ eps=1e-6,
1142
+ prenorm=False,
1143
+ residual_in_fp32=False,
1144
+ is_rms_norm=False,
1145
+ ):
1146
+ x_shape_og = x.shape
1147
+ # reshape input data into 2D tensor
1148
+ x = maybe_contiguous_lastdim(x.reshape(-1, x.shape[-1]))
1149
+ if residual is not None:
1150
+ assert residual.shape == x_shape_og
1151
+ residual = maybe_contiguous_lastdim(residual.reshape(-1, residual.shape[-1]))
1152
+ norm_weight = norm_weight.contiguous()
1153
+ norm_bias = maybe_contiguous(norm_bias)
1154
+ residual_dtype = (
1155
+ residual.dtype
1156
+ if residual is not None
1157
+ else (torch.float32 if residual_in_fp32 else None)
1158
+ )
1159
+ y, _, mean, rstd, residual_out, *rest = _layer_norm_fwd(
1160
+ x,
1161
+ norm_weight,
1162
+ norm_bias,
1163
+ eps,
1164
+ residual,
1165
+ out_dtype=None if not torch.is_autocast_enabled() else torch.get_autocast_dtype("cuda"),
1166
+ residual_dtype=residual_dtype,
1167
+ is_rms_norm=is_rms_norm,
1168
+ )
1169
+ y = y.reshape(x_shape_og)
1170
+ dtype = torch.get_autocast_dtype("cuda") if torch.is_autocast_enabled() else y.dtype
1171
+ linear_weight = linear_weight.to(dtype)
1172
+ linear_bias = linear_bias.to(dtype) if linear_bias is not None else None
1173
+ out = F.linear(y.to(linear_weight.dtype), linear_weight, linear_bias)
1174
+ # We don't store y, will be recomputed in the backward pass to save memory
1175
+ ctx.save_for_backward(residual_out, norm_weight, norm_bias, linear_weight, mean, rstd)
1176
+ ctx.x_shape_og = x_shape_og
1177
+ ctx.eps = eps
1178
+ ctx.is_rms_norm = is_rms_norm
1179
+ ctx.has_residual = residual is not None
1180
+ ctx.prenorm = prenorm
1181
+ ctx.x_dtype = x.dtype
1182
+ ctx.linear_bias_is_none = linear_bias is None
1183
+ return out if not prenorm else (out, residual_out.reshape(x_shape_og))
1184
+
1185
+ @staticmethod
1186
+ @custom_bwd
1187
+ def backward(ctx, dout, *args):
1188
+ x, norm_weight, norm_bias, linear_weight, mean, rstd = ctx.saved_tensors
1189
+ dout = dout.reshape(-1, dout.shape[-1])
1190
+ dy = F.linear(dout, linear_weight.t())
1191
+ dlinear_bias = None if ctx.linear_bias_is_none else dout.sum(0)
1192
+ dy = maybe_contiguous_lastdim(dy)
1193
+ assert dy.shape == x.shape
1194
+ if ctx.prenorm:
1195
+ dresidual = args[0]
1196
+ dresidual = maybe_contiguous_lastdim(dresidual.reshape(-1, dresidual.shape[-1]))
1197
+ assert dresidual.shape == x.shape
1198
+ else:
1199
+ dresidual = None
1200
+ dx, dnorm_weight, dnorm_bias, dresidual_in, _, _, _, y = _layer_norm_bwd(
1201
+ dy,
1202
+ x,
1203
+ norm_weight,
1204
+ norm_bias,
1205
+ ctx.eps,
1206
+ mean,
1207
+ rstd,
1208
+ dresidual=dresidual,
1209
+ has_residual=ctx.has_residual,
1210
+ is_rms_norm=ctx.is_rms_norm,
1211
+ x_dtype=ctx.x_dtype,
1212
+ recompute_output=True,
1213
+ )
1214
+ dlinear_weight = torch.einsum("bo,bi->oi", dout, y)
1215
+ return (
1216
+ dx.reshape(ctx.x_shape_og),
1217
+ dnorm_weight,
1218
+ dnorm_bias,
1219
+ dlinear_weight,
1220
+ dlinear_bias,
1221
+ dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None,
1222
+ None,
1223
+ None,
1224
+ None,
1225
+ None,
1226
+ )
1227
+
1228
+
1229
+ def layer_norm_linear_fn(
1230
+ x,
1231
+ norm_weight,
1232
+ norm_bias,
1233
+ linear_weight,
1234
+ linear_bias,
1235
+ residual=None,
1236
+ eps=1e-6,
1237
+ prenorm=False,
1238
+ residual_in_fp32=False,
1239
+ is_rms_norm=False,
1240
+ ):
1241
+ return LayerNormLinearFn.apply(
1242
+ x,
1243
+ norm_weight,
1244
+ norm_bias,
1245
+ linear_weight,
1246
+ linear_bias,
1247
+ residual,
1248
+ eps,
1249
+ prenorm,
1250
+ residual_in_fp32,
1251
+ is_rms_norm,
1252
+ )
torch-ext/flash_attn/ops/triton/linear.py ADDED
@@ -0,0 +1,594 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Adapted from https://github.com/ELS-RD/kernl/blob/main/src/kernl/implementations/linear_layer.py
2
+ # and https://github.com/openai/triton/blob/master/python/triton/ops/matmul.py
3
+ from typing import Optional
4
+
5
+ import torch
6
+ import triton
7
+ import triton.language as tl
8
+ from triton.ops.matmul_perf_model import early_config_prune, estimate_matmul_time
9
+
10
+ from flash_attn.ops.triton.k_activations import (
11
+ gelu,
12
+ gelu_approx,
13
+ gelu_approx_grad,
14
+ gelu_grad,
15
+ squared_relu,
16
+ squared_relu_grad,
17
+ )
18
+
19
+ # CREDITS: Initially inspired by the Triton tutorial on matrix multiplications
20
+
21
+
22
+ def init_to_zero(name):
23
+ return lambda nargs: nargs[name].zero_()
24
+
25
+
26
+ def get_configs_io_bound():
27
+ configs = []
28
+ for num_stages in [2, 3, 4, 5, 6]:
29
+ for block_m in [16, 32]:
30
+ for block_k in [32, 64]:
31
+ for block_n in [32, 64, 128, 256]:
32
+ num_warps = 2 if block_n <= 64 else 4
33
+ configs.append(
34
+ triton.Config(
35
+ {
36
+ "BLOCK_M": block_m,
37
+ "BLOCK_N": block_n,
38
+ "BLOCK_K": block_k,
39
+ "SPLIT_K": 1,
40
+ },
41
+ num_stages=num_stages,
42
+ num_warps=num_warps,
43
+ )
44
+ )
45
+ # split_k not used
46
+ # for split_k in [2, 4, 8, 16]:
47
+ # configs.append(triton.Config(
48
+ # {'BLOCK_M': block_m, 'BLOCK_N': block_n, 'BLOCK_K': block_k, 'SPLIT_K': split_k},
49
+ # num_stages=num_stages, num_warps=num_warps, pre_hook=init_to_zero('C')))
50
+ return configs
51
+
52
+
53
+ @triton.autotune(
54
+ configs=[
55
+ triton.Config(
56
+ {"BLOCK_M": 128, "BLOCK_N": 256, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=3, num_warps=8
57
+ ),
58
+ triton.Config(
59
+ {"BLOCK_M": 256, "BLOCK_N": 128, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=3, num_warps=8
60
+ ),
61
+ triton.Config(
62
+ {"BLOCK_M": 256, "BLOCK_N": 64, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4
63
+ ),
64
+ triton.Config(
65
+ {"BLOCK_M": 64, "BLOCK_N": 256, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4
66
+ ),
67
+ triton.Config(
68
+ {"BLOCK_M": 128, "BLOCK_N": 128, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4
69
+ ),
70
+ triton.Config(
71
+ {"BLOCK_M": 128, "BLOCK_N": 64, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4
72
+ ),
73
+ triton.Config(
74
+ {"BLOCK_M": 64, "BLOCK_N": 128, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4
75
+ ),
76
+ triton.Config(
77
+ {"BLOCK_M": 128, "BLOCK_N": 32, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4
78
+ ),
79
+ triton.Config(
80
+ {"BLOCK_M": 64, "BLOCK_N": 32, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=5, num_warps=2
81
+ ),
82
+ # good for int8
83
+ triton.Config(
84
+ {"BLOCK_M": 128, "BLOCK_N": 256, "BLOCK_K": 128, "SPLIT_K": 1},
85
+ num_stages=3,
86
+ num_warps=8,
87
+ ),
88
+ triton.Config(
89
+ {"BLOCK_M": 256, "BLOCK_N": 128, "BLOCK_K": 128, "SPLIT_K": 1},
90
+ num_stages=3,
91
+ num_warps=8,
92
+ ),
93
+ triton.Config(
94
+ {"BLOCK_M": 256, "BLOCK_N": 64, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=4, num_warps=4
95
+ ),
96
+ triton.Config(
97
+ {"BLOCK_M": 64, "BLOCK_N": 256, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=4, num_warps=4
98
+ ),
99
+ triton.Config(
100
+ {"BLOCK_M": 128, "BLOCK_N": 128, "BLOCK_K": 128, "SPLIT_K": 1},
101
+ num_stages=4,
102
+ num_warps=4,
103
+ ),
104
+ triton.Config(
105
+ {"BLOCK_M": 128, "BLOCK_N": 64, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=4, num_warps=4
106
+ ),
107
+ triton.Config(
108
+ {"BLOCK_M": 64, "BLOCK_N": 128, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=4, num_warps=4
109
+ ),
110
+ triton.Config(
111
+ {"BLOCK_M": 128, "BLOCK_N": 32, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=4, num_warps=4
112
+ ),
113
+ triton.Config(
114
+ {"BLOCK_M": 64, "BLOCK_N": 32, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=5, num_warps=2
115
+ ),
116
+ ]
117
+ + get_configs_io_bound(),
118
+ key=["CACHE_KEY_M", "CACHE_KEY_N", "CACHE_KEY_K"],
119
+ prune_configs_by={
120
+ "early_config_prune": early_config_prune,
121
+ "perf_model": estimate_matmul_time,
122
+ "top_k": 10,
123
+ },
124
+ )
125
+ @triton.heuristics(
126
+ {
127
+ "EVEN_K": lambda args: args["K"] % (args["BLOCK_K"] * args["SPLIT_K"]) == 0,
128
+ }
129
+ )
130
+ @triton.jit
131
+ def kernel_fwd(
132
+ C, # Pointers to matrices
133
+ ACT_INPUT,
134
+ A,
135
+ B,
136
+ bias,
137
+ # Matrix dimensions
138
+ M,
139
+ N,
140
+ K,
141
+ CACHE_KEY_M,
142
+ CACHE_KEY_N,
143
+ CACHE_KEY_K,
144
+ # The stride variables represent how much to increase the ptr by when moving by 1
145
+ # element in a particular dimension. E.g. stride_am is how much to increase a_ptr
146
+ # by to get the element one row down (A has M rows)
147
+ stride_cm,
148
+ # stride_cn, # Assume that stride_cn == 1
149
+ stride_am,
150
+ stride_ak,
151
+ stride_bn,
152
+ stride_bk,
153
+ # Meta-parameters
154
+ BLOCK_M: tl.constexpr,
155
+ GROUP_M: tl.constexpr,
156
+ BLOCK_N: tl.constexpr,
157
+ BLOCK_K: tl.constexpr,
158
+ # split k not used, not performant with activation, kept because early_config_prune is expecting it
159
+ SPLIT_K: tl.constexpr,
160
+ EVEN_K: tl.constexpr,
161
+ A_ROWMAJOR: tl.constexpr,
162
+ B_COLMAJOR: tl.constexpr,
163
+ BIAS: tl.constexpr,
164
+ SAVE_ACT_INPUT: tl.constexpr,
165
+ ACTIVATION: tl.constexpr,
166
+ ):
167
+
168
+ """
169
+ Kernel for computing Out = activation(A x W + C)
170
+ - Input has shape (M, K)
171
+ - Weight has shape (K, N)
172
+ - Bias has shape (N,)
173
+ - Output has shape (M, N)
174
+ - ActInputs (optional) has shape (M, N)
175
+ 'ActInputs' optionally saves the A x W + C intermediate for backward computations
176
+ This kernel will consolidate over K
177
+ """
178
+
179
+ pid = tl.program_id(axis=0)
180
+
181
+ grid_m = (M + BLOCK_M - 1) // BLOCK_M
182
+ grid_n = (N + BLOCK_N - 1) // BLOCK_N
183
+ # re-order program ID for better L2 performance
184
+ width = GROUP_M * grid_n
185
+ group_id = pid // width
186
+ group_size = min(grid_m - group_id * GROUP_M, GROUP_M)
187
+ pid_m = group_id * GROUP_M + (pid % group_size)
188
+ pid_n = (pid % width) // (group_size)
189
+
190
+ # now compute the block that each program will go through
191
+ # rm (resp. rn) denotes a range of indices
192
+ # for rows (resp. col) of C
193
+ rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
194
+ rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
195
+ # trick to avoid masking on M and N axis
196
+ ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M)
197
+ rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N)
198
+ rk = tl.arange(0, BLOCK_K)
199
+
200
+ if A_ROWMAJOR:
201
+ A = A + (ram[:, None] * stride_am + rk[None, :])
202
+ else:
203
+ A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak)
204
+ if B_COLMAJOR:
205
+ B = B + (rk[:, None] + rbn[None, :] * stride_bn)
206
+ else:
207
+ B = B + (rk[:, None] * stride_bk + rbn[None, :] * stride_bn)
208
+
209
+ acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)
210
+
211
+ for k in range(K, 0, -BLOCK_K):
212
+ if EVEN_K:
213
+ a = tl.load(A)
214
+ b = tl.load(B)
215
+ else:
216
+ a = tl.load(A, mask=rk[None, :] < k, other=0.0)
217
+ b = tl.load(B, mask=rk[:, None] < k, other=0.0)
218
+ acc += tl.dot(a, b)
219
+
220
+ if A_ROWMAJOR:
221
+ A += BLOCK_K
222
+ else:
223
+ A += BLOCK_K * stride_ak
224
+ if B_COLMAJOR:
225
+ B += BLOCK_K
226
+ else:
227
+ B += BLOCK_K * stride_bk
228
+
229
+ # Putting bias after the matmul (instead of before) is faster, idk why
230
+ if BIAS:
231
+ bias = tl.load(bias + rn, mask=rn < N, other=0.0).to(tl.float32)
232
+ acc += bias[None, :]
233
+
234
+ # optional: save the activation inputs
235
+ if SAVE_ACT_INPUT:
236
+ # act_in_ptrs = ACT_INPUT + ram[:, None] * stride_cm + rbn[None, :] * stride_cn
237
+ act_in_ptrs = ACT_INPUT + ram[:, None] * stride_cm + rbn[None, :]
238
+ tl.store(act_in_ptrs, acc)
239
+
240
+ # optional: fused activation (while the data is in shared memory)
241
+ if ACTIVATION == "gelu":
242
+ acc = gelu(acc)
243
+ elif ACTIVATION == "gelu_approx":
244
+ acc = gelu_approx(acc)
245
+ elif ACTIVATION == "squared_relu":
246
+ acc = squared_relu(acc)
247
+ # rematerialize rm and rn to save registers
248
+ rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
249
+ rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
250
+
251
+ # write back result
252
+ # C = C + rm[:, None] * stride_cm + rn[None, :] * stride_cn
253
+ C = C + rm[:, None] * stride_cm + rn[None, :]
254
+ mask = (rm < M)[:, None] & (rn < N)[None, :]
255
+ tl.store(C, acc)
256
+
257
+
258
+ def triton_linear_act(
259
+ x: torch.Tensor,
260
+ weight: torch.Tensor,
261
+ bias: Optional[torch.Tensor] = None,
262
+ activation: str = "id",
263
+ save_act_input: bool = False,
264
+ ) -> torch.Tensor:
265
+ """
266
+ Compute e = activation(x @ weight.T + bias).
267
+ This wrapper kicks the `kernel_fwd` Triton kernel
268
+ :param x: input tensor
269
+ :param weight: weight matrix
270
+ :param bias: an optional bias tensor
271
+ :param activation: Activation name. Needs to be a Triton kernel.
272
+ :param act_input: an optional tensor to save the activation inputs (for backward)
273
+ :return: result tensor
274
+ """
275
+ # if torch.is_autocast_enabled():
276
+ # dtype = torch.get_autocast_gpu_dtype()
277
+ # x, weight, bias = [a.to(dtype=dtype) for a in [x, weight, bias]]
278
+
279
+ assert activation in ["id", "gelu", "gelu_approx", "squared_relu"]
280
+
281
+ batch_shape, n = x.shape[:-1], x.shape[-1]
282
+ batch_dim = batch_shape.numel()
283
+ x_reshaped = x.reshape(batch_dim, n)
284
+
285
+ if x_reshaped.stride(0) > 1 and x_reshaped.stride(1) > 1:
286
+ x_reshaped = x_reshaped.contiguous()
287
+ if weight.stride(0) > 1 and weight.stride(1) > 1:
288
+ weight = weight.contiguous()
289
+ bias = bias.contiguous() if bias is not None else None
290
+
291
+ assert (
292
+ x.dtype == weight.dtype
293
+ ), f"Input and weight must have the same dtype, got {x.dtype} and {weight.dtype}"
294
+ if bias is not None:
295
+ assert (
296
+ x.dtype == bias.dtype
297
+ ), f"Input and bias must have the same dtype, got {x.dtype} and {bias.dtype}"
298
+ assert (
299
+ x_reshaped.shape[1] == weight.shape[1]
300
+ ), f"Incompatible dimensions: {x_reshaped.shape} - {weight.shape}"
301
+
302
+ assert (
303
+ bias is None or bias.shape[0] == weight.shape[0]
304
+ ), "Incompatible dimensions in between weight and bias"
305
+
306
+ M, K = x_reshaped.shape
307
+ N, K = weight.shape
308
+
309
+ output = torch.empty((M, N), device=x.device, dtype=x.dtype)
310
+ act_input = torch.empty_like(output) if save_act_input else None
311
+
312
+ # 1D launch kernel where each block gets its own program.
313
+ grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),) # noqa
314
+
315
+ kernel_fwd[grid](
316
+ output,
317
+ act_input,
318
+ x_reshaped,
319
+ weight, # data ptrs
320
+ bias if bias is not None else x, # auto skip bias if not present
321
+ M, # shapes
322
+ N,
323
+ K,
324
+ M // 32, # key for triton cache (limit number of compilations)
325
+ N // 32,
326
+ K // 32,
327
+ stride_cm=output.stride(0), # strides
328
+ # stride_cn=output.stride(1),
329
+ stride_am=x_reshaped.stride(0),
330
+ stride_ak=x_reshaped.stride(1),
331
+ stride_bk=weight.stride(1),
332
+ stride_bn=weight.stride(0),
333
+ BIAS=bias is not None, # optional fused bias
334
+ SAVE_ACT_INPUT=save_act_input, # optional save activation inputs
335
+ ACTIVATION=activation, # optional fused activation
336
+ A_ROWMAJOR=x_reshaped.stride(1) == 1,
337
+ B_COLMAJOR=weight.stride(1) == 1,
338
+ GROUP_M=8, # speed optimization: group the programs
339
+ )
340
+
341
+ if not save_act_input:
342
+ return output.reshape(*batch_shape, output.shape[-1])
343
+ else:
344
+ return (
345
+ output.reshape(*batch_shape, output.shape[-1]),
346
+ act_input.reshape(*batch_shape, act_input.shape[-1]),
347
+ )
348
+
349
+
350
+ @triton.autotune(
351
+ configs=[
352
+ triton.Config(
353
+ {"BLOCK_M": 128, "BLOCK_N": 256, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=3, num_warps=8
354
+ ),
355
+ triton.Config(
356
+ {"BLOCK_M": 256, "BLOCK_N": 128, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=3, num_warps=8
357
+ ),
358
+ triton.Config(
359
+ {"BLOCK_M": 256, "BLOCK_N": 64, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4
360
+ ),
361
+ triton.Config(
362
+ {"BLOCK_M": 64, "BLOCK_N": 256, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4
363
+ ),
364
+ triton.Config(
365
+ {"BLOCK_M": 128, "BLOCK_N": 128, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4
366
+ ),
367
+ triton.Config(
368
+ {"BLOCK_M": 128, "BLOCK_N": 64, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4
369
+ ),
370
+ triton.Config(
371
+ {"BLOCK_M": 64, "BLOCK_N": 128, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4
372
+ ),
373
+ triton.Config(
374
+ {"BLOCK_M": 128, "BLOCK_N": 32, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4
375
+ ),
376
+ triton.Config(
377
+ {"BLOCK_M": 64, "BLOCK_N": 32, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=5, num_warps=2
378
+ ),
379
+ # good for int8
380
+ triton.Config(
381
+ {"BLOCK_M": 128, "BLOCK_N": 256, "BLOCK_K": 128, "SPLIT_K": 1},
382
+ num_stages=3,
383
+ num_warps=8,
384
+ ),
385
+ triton.Config(
386
+ {"BLOCK_M": 256, "BLOCK_N": 128, "BLOCK_K": 128, "SPLIT_K": 1},
387
+ num_stages=3,
388
+ num_warps=8,
389
+ ),
390
+ triton.Config(
391
+ {"BLOCK_M": 256, "BLOCK_N": 64, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=4, num_warps=4
392
+ ),
393
+ triton.Config(
394
+ {"BLOCK_M": 64, "BLOCK_N": 256, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=4, num_warps=4
395
+ ),
396
+ triton.Config(
397
+ {"BLOCK_M": 128, "BLOCK_N": 128, "BLOCK_K": 128, "SPLIT_K": 1},
398
+ num_stages=4,
399
+ num_warps=4,
400
+ ),
401
+ triton.Config(
402
+ {"BLOCK_M": 128, "BLOCK_N": 64, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=4, num_warps=4
403
+ ),
404
+ triton.Config(
405
+ {"BLOCK_M": 64, "BLOCK_N": 128, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=4, num_warps=4
406
+ ),
407
+ triton.Config(
408
+ {"BLOCK_M": 128, "BLOCK_N": 32, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=4, num_warps=4
409
+ ),
410
+ triton.Config(
411
+ {"BLOCK_M": 64, "BLOCK_N": 32, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=5, num_warps=2
412
+ ),
413
+ ]
414
+ + get_configs_io_bound(),
415
+ key=["CACHE_KEY_M", "CACHE_KEY_N", "CACHE_KEY_K"],
416
+ prune_configs_by={
417
+ "early_config_prune": early_config_prune,
418
+ "perf_model": estimate_matmul_time,
419
+ "top_k": 10,
420
+ },
421
+ )
422
+ @triton.heuristics(
423
+ {
424
+ "EVEN_K": lambda args: args["K"] % (args["BLOCK_K"] * args["SPLIT_K"]) == 0,
425
+ }
426
+ )
427
+ @triton.jit
428
+ def kernel_bwd(
429
+ C, # Pointers to matrices
430
+ ACT_INPUT,
431
+ A,
432
+ B,
433
+ # Matrix dimensions
434
+ M,
435
+ N,
436
+ K,
437
+ CACHE_KEY_M,
438
+ CACHE_KEY_N,
439
+ CACHE_KEY_K,
440
+ # The stride variables represent how much to increase the ptr by when moving by 1
441
+ # element in a particular dimension. E.g. stride_am is how much to increase a_ptr
442
+ # by to get the element one row down (A has M rows)
443
+ stride_cm,
444
+ # stride_cn, # Assume that stride_cn == 1
445
+ stride_am,
446
+ stride_ak,
447
+ stride_bk,
448
+ stride_bn,
449
+ # Meta-parameters
450
+ BLOCK_M: tl.constexpr,
451
+ GROUP_M: tl.constexpr,
452
+ BLOCK_N: tl.constexpr,
453
+ BLOCK_K: tl.constexpr,
454
+ # split k not used, not performant with activation, kept because early_config_prune is expecting it
455
+ SPLIT_K: tl.constexpr,
456
+ EVEN_K: tl.constexpr,
457
+ ACTIVATION: tl.constexpr,
458
+ ):
459
+
460
+ """
461
+ Kernel for computing Out = activation(A x W + C)
462
+ - Input has shape (M, K)
463
+ - Weight has shape (K, N)
464
+ - Output has shape (M, N)
465
+ - ActInputs (optional) has shape (M, N)
466
+ 'ActInputs' optionally saves the A x W + C intermediate for backward computations
467
+ This kernel will consolidate over K
468
+ """
469
+
470
+ pid = tl.program_id(axis=0)
471
+
472
+ grid_m = (M + BLOCK_M - 1) // BLOCK_M
473
+ grid_n = (N + BLOCK_N - 1) // BLOCK_N
474
+ # re-order program ID for better L2 performance
475
+ width = GROUP_M * grid_n
476
+ group_id = pid // width
477
+ group_size = min(grid_m - group_id * GROUP_M, GROUP_M)
478
+ pid_m = group_id * GROUP_M + (pid % group_size)
479
+ pid_n = (pid % width) // (group_size)
480
+
481
+ # now compute the block that each program will go through
482
+ # rm (resp. rn) denotes a range of indices
483
+ # for rows (resp. col) of C
484
+ rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
485
+ rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
486
+ # trick to avoid masking on M and N axis
487
+ ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M)
488
+ rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N)
489
+ rk = tl.arange(0, BLOCK_K)
490
+
491
+ A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak)
492
+ B = B + (rk[:, None] * stride_bk + rbn[None, :] * stride_bn)
493
+
494
+ acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)
495
+
496
+ for k in range(K, 0, -BLOCK_K):
497
+ if EVEN_K:
498
+ a = tl.load(A)
499
+ b = tl.load(B)
500
+ else:
501
+ a = tl.load(A, mask=rk[None, :] < k, other=0.0)
502
+ b = tl.load(B, mask=rk[:, None] < k, other=0.0)
503
+ acc += tl.dot(a, b)
504
+
505
+ A += BLOCK_K * stride_ak
506
+ B += BLOCK_K * stride_bk
507
+
508
+ # optional: fused activation (while the data is in shared memory)
509
+ if ACTIVATION != "id":
510
+ act_in_ptrs = ACT_INPUT + ram[:, None] * stride_cm + rbn[None, :]
511
+ act_input = tl.load(act_in_ptrs).to(acc.dtype)
512
+ if ACTIVATION == "gelu":
513
+ acc *= gelu_grad(act_input)
514
+ elif ACTIVATION == "gelu_approx":
515
+ acc *= gelu_approx_grad(act_input)
516
+ elif ACTIVATION == "squared_relu":
517
+ acc *= squared_relu_grad(act_input)
518
+
519
+ # rematerialize rm and rn to save registers
520
+ rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
521
+ rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
522
+
523
+ # write back result
524
+ C = C + rm[:, None] * stride_cm + rn[None, :]
525
+ mask = (rm < M)[:, None] & (rn < N)[None, :]
526
+ tl.store(C, acc, mask=mask)
527
+
528
+
529
+ def triton_dgrad_act(
530
+ grad_output: torch.Tensor,
531
+ weight: torch.Tensor,
532
+ activation: str = "id",
533
+ act_input: Optional[torch.Tensor] = None,
534
+ ) -> torch.Tensor:
535
+ """
536
+ Compute e = activation(grad_output @ weight + bias).
537
+ This wrapper kicks the `kernel_fwd` Triton kernel
538
+ :param grad_output: input tensor
539
+ :param weight: weight matrix
540
+ :param activation: Activation name. Needs to be a Triton kernel.
541
+ :param act_input: an optional tensor to save the activation inputs (for backward)
542
+ :return: result tensor
543
+ """
544
+ assert activation in ["id", "gelu", "gelu_approx", "squared_relu"]
545
+
546
+ batch_shape, n = grad_output.shape[:-1], grad_output.shape[-1]
547
+ batch_dim = batch_shape.numel()
548
+ grad_output_reshaped = grad_output.reshape(batch_dim, n)
549
+
550
+ if grad_output_reshaped.stride(0) > 1 and grad_output_reshaped.stride(1) > 1:
551
+ grad_output_reshaped = grad_output_reshaped.contiguous()
552
+ if weight.stride(0) > 1 and weight.stride(1) > 1:
553
+ weight = weight.contiguous()
554
+
555
+ assert (
556
+ grad_output.dtype == weight.dtype
557
+ ), f"grad_output and weight must have the same dtype, got {grad_output.dtype} and {weight.dtype}"
558
+ assert (
559
+ grad_output_reshaped.shape[1] == weight.shape[0]
560
+ ), f"Incompatible dimensions: {grad_output_reshaped.shape} - {weight.shape}"
561
+ if activation != "id":
562
+ assert act_input is not None, f"act_input is required for activation {activation}"
563
+
564
+ # M, N, K in bwd are different from M, N, K in fwd
565
+ M, K = grad_output_reshaped.shape
566
+ K, N = weight.shape
567
+
568
+ grad_input = torch.empty((M, N), device=grad_output.device, dtype=grad_output.dtype)
569
+
570
+ # 1D launch kernel where each block gets its own program.
571
+ grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),) # noqa
572
+
573
+ kernel_bwd[grid](
574
+ grad_input,
575
+ act_input,
576
+ grad_output_reshaped,
577
+ weight, # data ptrs
578
+ M, # shapes
579
+ N,
580
+ K,
581
+ M // 32, # key for triton cache (limit number of compilations)
582
+ N // 32,
583
+ K // 32,
584
+ stride_cm=grad_input.stride(0), # strides
585
+ # stride_cn=grad_input.stride(1),
586
+ stride_am=grad_output_reshaped.stride(0),
587
+ stride_ak=grad_output_reshaped.stride(1),
588
+ stride_bk=weight.stride(0),
589
+ stride_bn=weight.stride(1),
590
+ ACTIVATION=activation, # optional fused activation
591
+ GROUP_M=8, # speed optimization: group the programs
592
+ )
593
+
594
+ return grad_input.reshape(*batch_shape, grad_input.shape[-1])
torch-ext/flash_attn/ops/triton/mlp.py ADDED
@@ -0,0 +1,149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # The triton fused matmul + sqrelu is faster for fp16 but slower for bf16, compared
2
+ # to naive implementation.
3
+ import fused_dense_lib as fused_dense_cuda
4
+ import torch
5
+ import torch.nn as nn
6
+ import torch.nn.functional as F
7
+
8
+ from flash_attn.utils.torch import custom_fwd, custom_bwd
9
+ from flash_attn.ops.activations import sqrelu_bwd, sqrelu_fwd
10
+ from flash_attn.ops.triton.linear import triton_dgrad_act, triton_linear_act
11
+
12
+
13
+ class FusedDenseSqreluDenseFunc(torch.autograd.Function):
14
+ @staticmethod
15
+ @custom_fwd
16
+ def forward(ctx, x, weight1, bias1, weight2, bias2, checkpoint_lvl=0):
17
+ """checkpoint_lvl:
18
+ 0: no recomputation in the bwd
19
+ 1: recompute gelu_out in the bwd
20
+ 2: recompute act_input and gelu_out in the bwd
21
+ """
22
+ if torch.is_autocast_enabled():
23
+ dtype = torch.get_autocast_gpu_dtype()
24
+ x, weight1, bias1, weight2, bias2 = [
25
+ a.to(dtype=dtype) for a in [x, weight1, bias1, weight2, bias2]
26
+ ]
27
+ is_bf16 = x.dtype == torch.bfloat16
28
+ assert checkpoint_lvl in [0, 1, 2]
29
+ x = x.contiguous()
30
+ weight1 = weight1.contiguous()
31
+ bias1 = bias1.contiguous()
32
+ weight2 = weight2.contiguous()
33
+ bias2 = bias2.contiguous()
34
+ batch_shape, n = x.shape[:-1], x.shape[-1]
35
+ batch_dim = batch_shape.numel()
36
+ if is_bf16:
37
+ act_input = fused_dense_cuda.linear_bias_forward(
38
+ x.reshape(batch_dim, n), weight1, bias1
39
+ )
40
+ output1 = sqrelu_fwd(act_input)
41
+ else:
42
+ save_act_input = checkpoint_lvl != 2
43
+ result = triton_linear_act(
44
+ x.reshape(batch_dim, n),
45
+ weight1,
46
+ bias1,
47
+ activation="squared_relu",
48
+ save_act_input=save_act_input,
49
+ )
50
+ if save_act_input:
51
+ output1, act_input = result
52
+ else:
53
+ output1 = result
54
+ output2 = fused_dense_cuda.linear_bias_forward(output1, weight2, bias2)
55
+ ctx.checkpoint_lvl = checkpoint_lvl
56
+ if checkpoint_lvl == 0:
57
+ ctx.save_for_backward(x, weight1, bias1, weight2, act_input, output1)
58
+ elif checkpoint_lvl == 1:
59
+ ctx.save_for_backward(x, weight1, bias1, weight2, act_input)
60
+ elif checkpoint_lvl == 2:
61
+ ctx.save_for_backward(x, weight1, bias1, weight2)
62
+ return output2.reshape(*batch_shape, output2.shape[-1])
63
+
64
+ @staticmethod
65
+ @custom_bwd
66
+ def backward(ctx, grad_output):
67
+ grad_output = grad_output.contiguous()
68
+ checkpoint_lvl = ctx.checkpoint_lvl
69
+ x, weight1, bias1, weight2, *rest = ctx.saved_tensors
70
+ batch_shape, n = x.shape[:-1], x.shape[-1]
71
+ batch_dim = batch_shape.numel()
72
+ is_bf16 = x.dtype == torch.bfloat16
73
+ if checkpoint_lvl == 0:
74
+ act_input, output1 = rest
75
+ elif checkpoint_lvl == 1:
76
+ (act_input,) = rest
77
+ output1 = sqrelu_fwd(act_input)
78
+ elif checkpoint_lvl == 2:
79
+ if is_bf16:
80
+ act_input = fused_dense_cuda.linear_bias_forward(
81
+ x.reshape(batch_dim, n), weight1, bias1
82
+ )
83
+ output1 = sqrelu_fwd(act_input)
84
+ else:
85
+ output1, act_input = triton_linear_act(
86
+ x.reshape(batch_dim, n),
87
+ weight1,
88
+ bias1,
89
+ activation="squared_relu",
90
+ save_act_input=True,
91
+ )
92
+
93
+ if is_bf16:
94
+ grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
95
+ grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(output1, grad_output)
96
+ grad_output1 = grad_output @ weight2
97
+ grad_act_input = sqrelu_bwd(grad_output1, act_input)
98
+ grad_input, grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_backward(
99
+ x.reshape(batch_dim, n), weight1, grad_act_input
100
+ )
101
+ else:
102
+ grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
103
+ grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(output1, grad_output)
104
+ grad_act_input = triton_dgrad_act(
105
+ grad_output, weight2, activation="squared_relu", act_input=act_input
106
+ )
107
+ grad_input, grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_backward(
108
+ x.reshape(batch_dim, n), weight1, grad_act_input
109
+ )
110
+ return grad_input.reshape_as(x), grad_weight1, grad_bias1, grad_weight2, grad_bias2, None
111
+
112
+
113
+ fused_dense_sqrelu_dense_function = FusedDenseSqreluDenseFunc.apply
114
+
115
+
116
+ class FusedDenseSqreluDense(nn.Module):
117
+ def __init__(
118
+ self,
119
+ in_features,
120
+ hidden_features=None,
121
+ out_features=None,
122
+ bias1=True,
123
+ bias2=True,
124
+ checkpoint_lvl=0,
125
+ device=None,
126
+ dtype=None,
127
+ ):
128
+ """
129
+ checkpoint_lvl (increasing lvl means slower but more memory saving):
130
+ 0: no recomputation in the bwd
131
+ 1: recompute gelu_out in the bwd
132
+ 2: recompute gelu_in and gelu_out in the bwd
133
+ """
134
+ assert checkpoint_lvl in [0, 1, 2]
135
+ factory_kwargs = {"device": device, "dtype": dtype}
136
+ super().__init__()
137
+ out_features = out_features or in_features
138
+ hidden_features = hidden_features or in_features * 4
139
+ assert bias1 == True, "DenseSqreluDense module without bias is currently not supported"
140
+ assert bias2 == True, "DenseSqreluDense module without bias is currently not supported"
141
+ self.checkpoint_lvl = checkpoint_lvl
142
+ self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1, **factory_kwargs)
143
+ self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs)
144
+
145
+ def forward(self, x):
146
+ assert x.is_cuda
147
+ return fused_dense_sqrelu_dense_function(
148
+ x, self.fc1.weight, self.fc1.bias, self.fc2.weight, self.fc2.bias, self.checkpoint_lvl
149
+ )
torch-ext/flash_attn/ops/triton/rotary.py ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) 2025, Tri Dao.
2
+ # As of 2025-04-23, we require triton >= 3.0
3
+
4
+ from typing import Optional, Union
5
+
6
+ import torch
7
+
8
+ import triton
9
+ import triton.language as tl
10
+
11
+
12
+ @triton.jit
13
+ def rotary_kernel(
14
+ OUT, # Pointers to matrices
15
+ X,
16
+ COS,
17
+ SIN,
18
+ CU_SEQLENS,
19
+ SEQLEN_OFFSETS, # this could be int or a pointer
20
+ # Matrix dimensions
21
+ seqlen,
22
+ nheads,
23
+ seqlen_ro,
24
+ # strides
25
+ stride_out_batch,
26
+ stride_out_seqlen,
27
+ stride_out_nheads,
28
+ stride_out_headdim,
29
+ stride_x_batch,
30
+ stride_x_seqlen,
31
+ stride_x_nheads,
32
+ stride_x_headdim,
33
+ # Meta-parameters
34
+ # We want ROTARY_DIM to be constexpr, otherwise the triton compiler doesn't know that
35
+ # the mask is constant every 8 elements, and it will generate LDG.16 instead of LDG.128
36
+ ROTARY_DIM: tl.constexpr,
37
+ IS_SEQLEN_OFFSETS_TENSOR: tl.constexpr,
38
+ IS_VARLEN: tl.constexpr,
39
+ INTERLEAVED: tl.constexpr,
40
+ CONJUGATE: tl.constexpr,
41
+ BLOCK_H: tl.constexpr,
42
+ BLOCK_M: tl.constexpr,
43
+ ):
44
+ BLOCK_K: tl.constexpr = triton.next_power_of_2(ROTARY_DIM)
45
+ ROTARY_DIM_HALF = ROTARY_DIM // 2
46
+ pid_head = tl.program_id(axis=0)
47
+ pid_m = tl.program_id(axis=1)
48
+ pid_batch = tl.program_id(axis=2)
49
+
50
+ if not IS_VARLEN:
51
+ X = X + pid_batch * stride_x_batch
52
+ OUT = OUT + pid_batch * stride_out_batch
53
+ else:
54
+ start_idx = tl.load(CU_SEQLENS + pid_batch)
55
+ seqlen = tl.load(CU_SEQLENS + pid_batch + 1) - start_idx
56
+ X = X + start_idx * stride_x_seqlen
57
+ OUT = OUT + start_idx * stride_out_seqlen
58
+
59
+ if pid_m * BLOCK_M >= seqlen:
60
+ return
61
+
62
+ rh = pid_head * BLOCK_H + tl.arange(0, BLOCK_H)
63
+ rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
64
+ if not IS_SEQLEN_OFFSETS_TENSOR:
65
+ rm_cs = rm + SEQLEN_OFFSETS
66
+ else:
67
+ rm_cs = rm + tl.load(SEQLEN_OFFSETS + pid_batch)
68
+
69
+ rk_half = tl.arange(0, BLOCK_K // 2)
70
+ COS = COS + (rm_cs[:, None] * ROTARY_DIM_HALF + rk_half[None, :])
71
+ SIN = SIN + (rm_cs[:, None] * ROTARY_DIM_HALF + rk_half[None, :])
72
+ mask_cs = (rm_cs[:, None] < seqlen_ro) & (rk_half[None, :] < ROTARY_DIM_HALF)
73
+ cos = tl.load(COS, mask=mask_cs, other=1.0).to(tl.float32)
74
+ sin = tl.load(SIN, mask=mask_cs, other=0.0).to(tl.float32)
75
+ if CONJUGATE:
76
+ sin = -sin
77
+
78
+ if not INTERLEAVED:
79
+ # Load the 1st and 2nd halves of X, do calculation, then store to 1st and 2nd halves of OUT
80
+ X = X + (rh[:, None, None] * stride_x_nheads + rm[None, :, None] * stride_x_seqlen + rk_half[None, None, :] * stride_x_headdim)
81
+ OUT = OUT + (rh[:, None, None] * stride_out_nheads + rm[None, :, None] * stride_out_seqlen + rk_half[None, None, :] * stride_out_headdim)
82
+ mask = (rh[:, None, None] < nheads) & (rm[None, :, None] < seqlen) & (rk_half[None, None, :] < ROTARY_DIM_HALF)
83
+ x0 = tl.load(X, mask=mask, other=0.0).to(tl.float32)
84
+ x1 = tl.load(X + ROTARY_DIM_HALF * stride_x_headdim, mask=mask, other=0.0,).to(tl.float32)
85
+ o0 = x0 * cos - x1 * sin
86
+ o1 = x0 * sin + x1 * cos
87
+ tl.store(OUT, o0, mask=mask)
88
+ tl.store(OUT + ROTARY_DIM_HALF * stride_out_headdim, o1, mask=mask)
89
+ else:
90
+ rk = tl.arange(0, BLOCK_K)
91
+ X = X + (rh[:, None, None] * stride_x_nheads + rm[None, :, None] * stride_x_seqlen + rk[None, None, :] * stride_x_headdim)
92
+ OUT = OUT + (rh[:, None, None] * stride_out_nheads + rm[None, :, None] * stride_out_seqlen + rk[None, None, :] * stride_out_headdim)
93
+ mask = (rh[:, None, None] < nheads) & (rm[None, :, None] < seqlen) & (rk[None, None, :] < ROTARY_DIM)
94
+ x = tl.load(X, mask=mask, other=0.0).to(tl.float32)
95
+ x0, x1 = tl.split(tl.reshape(x, [BLOCK_H, BLOCK_M, BLOCK_K // 2, 2]))
96
+ o0 = x0 * cos - x1 * sin
97
+ o1 = x0 * sin + x1 * cos
98
+ o = tl.reshape(tl.join(o0, o1), [BLOCK_H, BLOCK_M, BLOCK_K])
99
+ tl.store(OUT, o, mask=mask)
100
+
101
+
102
+ def apply_rotary(
103
+ x: torch.Tensor,
104
+ cos: torch.Tensor,
105
+ sin: torch.Tensor,
106
+ seqlen_offsets: Union[int, torch.Tensor] = 0,
107
+ cu_seqlens: Optional[torch.Tensor] = None,
108
+ max_seqlen: Optional[int] = None,
109
+ interleaved=False,
110
+ inplace=False,
111
+ conjugate=False,
112
+ ) -> torch.Tensor:
113
+ """
114
+ Arguments:
115
+ x: (batch, seqlen, nheads, headdim) if cu_seqlens is None
116
+ else (total_seqlen, nheads, headdim).
117
+ cos: (seqlen_ro, rotary_dim / 2)
118
+ sin: (seqlen_ro, rotary_dim / 2)
119
+ seqlen_offsets: integer or integer tensor of size (batch,)
120
+ cu_seqlens: (batch + 1,) or None
121
+ max_seqlen: int
122
+ Returns:
123
+ y: (batch, seqlen, nheads, headdim)
124
+ """
125
+ is_varlen = cu_seqlens is not None
126
+ if not is_varlen:
127
+ batch, seqlen, nheads, headdim = x.shape
128
+ else:
129
+ assert max_seqlen is not None, "If cu_seqlens is passed in, then max_seqlen must be passed"
130
+ total_seqlen, nheads, headdim = x.shape
131
+ batch_p_1 = cu_seqlens.shape[0]
132
+ batch = batch_p_1 - 1
133
+ seqlen = max_seqlen
134
+ seqlen_ro, rotary_dim = cos.shape
135
+ assert sin.shape == cos.shape
136
+ rotary_dim *= 2
137
+ assert rotary_dim <= headdim, "rotary_dim must be <= headdim"
138
+ assert headdim <= 256, "Only support headdim <= 256"
139
+ assert seqlen_ro >= seqlen, "seqlen_ro must be >= seqlen"
140
+
141
+ cos, sin = cos.contiguous(), sin.contiguous()
142
+ if isinstance(seqlen_offsets, torch.Tensor):
143
+ assert seqlen_offsets.shape == (batch,)
144
+ assert seqlen_offsets.dtype in [torch.int32, torch.int64]
145
+ seqlen_offsets = seqlen_offsets.contiguous()
146
+ else:
147
+ assert seqlen_offsets + seqlen <= seqlen_ro
148
+
149
+ output = torch.empty_like(x) if not inplace else x
150
+ if rotary_dim < headdim and not inplace:
151
+ output[..., rotary_dim:].copy_(x[..., rotary_dim:])
152
+
153
+ grid = lambda META: (triton.cdiv(nheads, META["BLOCK_H"]), triton.cdiv(seqlen, META["BLOCK_M"]), batch) # noqa
154
+ BLOCK_M = 8 if rotary_dim <= 128 else 4
155
+
156
+ # Need this, otherwise Triton tries to launch from cuda:0 and we get
157
+ # ValueError: Pointer argument (at 0) cannot be accessed from Triton (cpu tensor?)
158
+ with torch.cuda.device(x.device.index):
159
+ torch.library.wrap_triton(rotary_kernel)[grid](
160
+ output, # data ptrs
161
+ x,
162
+ cos,
163
+ sin,
164
+ cu_seqlens,
165
+ seqlen_offsets,
166
+ seqlen, # shapes
167
+ nheads,
168
+ seqlen_ro,
169
+ output.stride(0) if not is_varlen else 0, # batch_strides if not varlen else 0
170
+ output.stride(-3), # seqlen_stride or total_seqlen_stride
171
+ output.stride(-2), # nheads_stride
172
+ output.stride(-1), # headdim_stride
173
+ x.stride(0) if not is_varlen else 0, # batch_strides if not varlen else 0
174
+ x.stride(-3), # seqlen stride or total_seqlen_stride
175
+ x.stride(-2), # nheads stride
176
+ x.stride(-1), # headdim stride
177
+ rotary_dim,
178
+ isinstance(seqlen_offsets, torch.Tensor),
179
+ is_varlen,
180
+ interleaved,
181
+ conjugate,
182
+ BLOCK_M=BLOCK_M,
183
+ BLOCK_H=2,
184
+ )
185
+ return output
torch-ext/torch_binding.cpp CHANGED
@@ -14,23 +14,117 @@
14
  // } 
15
 
16
  TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
17
- ops.def("mha_fwd(Tensor! q, Tensor! k, Tensor! v, Tensor? out_, Tensor? "
18
- "alibi_slopes_, float p_dropout, float softmax_scale, bool "
19
- "is_causal, int window_size_left, int window_size_right, float "
20
- "softcap, bool return_softmax, Generator? gen_) -> Tensor[]");
21
- ops.impl("mha_fwd", torch::kCUDA, &mha_fwd);
 
 
 
 
 
 
 
 
 
 
22
 
23
- ops.def("mha_varlen_fwd(Tensor! q, Tensor! k, Tensor! v, Tensor? out_, Tensor cu_seqlens_q, Tensor cu_seqlens_k, Tensor? seqused_k_, Tensor? leftpad_k_, Tensor? block_table_, Tensor? alibi_slopes_, int max_seqlen_q, int max_seqlen_k, float p_dropout, float softmax_scale, bool zero_tensors, bool is_causal, int window_size_left, int window_size_right, float softcap, bool return_softmax, Generator? gen_) -> Tensor[]");
24
- ops.impl("mha_varlen_fwd", torch::kCUDA, &mha_varlen_fwd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
 
26
- ops.def("mha_bwd(Tensor! dout, Tensor! q, Tensor! k, Tensor! v, Tensor! out, Tensor! softmax_lse, Tensor? dq_, Tensor? dk_, Tensor? dv_, Tensor? alibi_slopes_, float p_dropout, float softmax_scale, bool is_causal, int window_size_left, int window_size_right, float softcap, bool deterministic, Generator? gen_, Tensor? rng_state) -> Tensor[]");
27
- ops.impl("mha_bwd", torch::kCUDA, &mha_bwd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
- ops.def("mha_varlen_bwd(Tensor! dout, Tensor! q, Tensor! k, Tensor! v, Tensor! out, Tensor! softmax_lse, Tensor? dq_, Tensor? dk_, Tensor? dv_, Tensor cu_seqlens_q, Tensor cu_seqlens_k, Tensor? alibi_slopes_, int max_seqlen_q, int max_seqlen_k, float p_dropout, float softmax_scale, bool zero_tensors, bool is_causal, int window_size_left, int window_size_right, float softcap, bool deterministic, Generator? gen_, Tensor? rng_state) -> Tensor[]");
30
- ops.impl("mha_varlen_bwd", torch::kCUDA, &mha_varlen_bwd);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
 
32
- ops.def("mha_fwd_kvcache(Tensor! q, Tensor! kcache, Tensor! vcache, Tensor? k_, Tensor? v_, Tensor? seqlens_k_, Tensor? rotary_cos_, Tensor? rotary_sin_, Tensor? cache_batch_idx_, Tensor? leftpad_k_, Tensor? block_table_, Tensor? alibi_slopes_, Tensor? out_, float softmax_scale, bool is_causal, int window_size_left, int window_size_right, float softcap, bool is_rotary_interleaved, int num_splits) -> Tensor[]");
33
- ops.impl("mha_fwd_kvcache", torch::kCUDA, &mha_fwd_kvcache);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  }
35
 
36
  REGISTER_EXTENSION(TORCH_EXTENSION_NAME)
 
14
  // } 
15
 
16
  TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
17
+ ops.def("fwd("
18
+ "Tensor! q, "
19
+ "Tensor k, "
20
+ "Tensor v, "
21
+ "Tensor(out_!)? out_, "
22
+ "Tensor? alibi_slopes_, "
23
+ "float p_dropout, "
24
+ "float softmax_scale, "
25
+ "bool is_causal,"
26
+ "int window_size_left, "
27
+ "int window_size_right, "
28
+ "float softcap, "
29
+ "bool return_softmax, "
30
+ "Generator? gen_) -> Tensor[]");
31
+ ops.impl("fwd", torch::kCUDA, &mha_fwd);
32
 
33
+ ops.def("varlen_fwd("
34
+ "Tensor! q, "
35
+ "Tensor k, "
36
+ "Tensor v, "
37
+ "Tensor? out_, "
38
+ "Tensor cu_seqlens_q, "
39
+ "Tensor cu_seqlens_k, "
40
+ "Tensor? seqused_k_, "
41
+ "Tensor? leftpad_k_, "
42
+ "Tensor? block_table_, "
43
+ "Tensor? alibi_slopes_, "
44
+ "int max_seqlen_q, "
45
+ "int max_seqlen_k, "
46
+ "float p_dropout, "
47
+ "float softmax_scale, "
48
+ "bool zero_tensors, "
49
+ "bool is_causal, "
50
+ "int window_size_left, "
51
+ "int window_size_right, "
52
+ "float softcap, "
53
+ "bool return_softmax, "
54
+ "Generator? gen_) -> Tensor[]");
55
+ ops.impl("varlen_fwd", torch::kCUDA, &mha_varlen_fwd);
56
 
57
+ ops.def("bwd("
58
+ "Tensor! dout, "
59
+ "Tensor! q, "
60
+ "Tensor! k, "
61
+ "Tensor! v, "
62
+ "Tensor! out, "
63
+ "Tensor! "
64
+ "softmax_lse, "
65
+ "Tensor? dq_, "
66
+ "Tensor? dk_, "
67
+ "Tensor? dv_, "
68
+ "Tensor? alibi_slopes_, "
69
+ "float p_dropout, "
70
+ "float softmax_scale, "
71
+ "bool is_causal, "
72
+ "int window_size_left, "
73
+ "int window_size_right, "
74
+ "float softcap, "
75
+ "bool deterministic, "
76
+ "Generator? gen_, "
77
+ "Tensor? rng_state) -> Tensor[]");
78
+ ops.impl("bwd", torch::kCUDA, &mha_bwd);
79
 
80
+ ops.def("varlen_bwd("
81
+ "Tensor! dout, "
82
+ "Tensor! q, "
83
+ "Tensor! k, "
84
+ "Tensor! v, "
85
+ "Tensor! out, "
86
+ "Tensor! softmax_lse, "
87
+ "Tensor? dq_, "
88
+ "Tensor? dk_, "
89
+ "Tensor? dv_, "
90
+ "Tensor cu_seqlens_q, "
91
+ "Tensor cu_seqlens_k, "
92
+ "Tensor? alibi_slopes_, "
93
+ "int max_seqlen_q, "
94
+ "int max_seqlen_k, "
95
+ "float p_dropout, float softmax_scale, "
96
+ "bool zero_tensors, "
97
+ "bool is_causal, "
98
+ "int window_size_left, "
99
+ "int window_size_right, "
100
+ "float softcap, "
101
+ "bool deterministic, "
102
+ "Generator? gen_, "
103
+ "Tensor? rng_state) -> Tensor[]");
104
+ ops.impl("varlen_bwd", torch::kCUDA, &mha_varlen_bwd);
105
 
106
+ ops.def("fwd_kvcache("
107
+ "Tensor! q, "
108
+ "Tensor! kcache, "
109
+ "Tensor! vcache, "
110
+ "Tensor? k_, "
111
+ "Tensor? v_, "
112
+ "Tensor? seqlens_k_, "
113
+ "Tensor? rotary_cos_, "
114
+ "Tensor? rotary_sin_, "
115
+ "Tensor? cache_batch_idx_, "
116
+ "Tensor? leftpad_k_, "
117
+ "Tensor? block_table_, "
118
+ "Tensor? alibi_slopes_, "
119
+ "Tensor? out_, "
120
+ "float softmax_scale, "
121
+ "bool is_causal, "
122
+ "int window_size_left, "
123
+ "int window_size_right, "
124
+ "float softcap, "
125
+ "bool is_rotary_interleaved, "
126
+ "int num_splits) -> Tensor[]");
127
+ ops.impl("fwd_kvcache", torch::kCUDA, &mha_fwd_kvcache);
128
  }
129
 
130
  REGISTER_EXTENSION(TORCH_EXTENSION_NAME)
torch-ext/torch_binding.h CHANGED
@@ -2,45 +2,47 @@
2
 
3
  #include <torch/torch.h>
4
 
 
5
  std::vector<torch::Tensor>
6
- mha_fwd(torch::Tensor &q,
7
- const torch::Tensor &k,
8
- const torch::Tensor &v,
9
- c10::optional<torch::Tensor> out_,
10
- c10::optional<torch::Tensor> alibi_slopes_,
11
- const double p_dropout,
12
- const double softmax_scale,
13
- bool is_causal,
14
- const int64_t window_size_left,
15
- const int64_t window_size_right,
16
- const double softcap,
17
- const bool return_softmax,
18
- c10::optional<at::Generator> gen_);
 
19
 
20
  std::vector<torch::Tensor>
21
  mha_varlen_fwd(
22
- const torch::Tensor &q, // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
23
- const torch::Tensor &k, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_>
24
- const torch::Tensor &v, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_>
25
- const c10::optional<torch::Tensor> &out_, // total_q x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
26
- const torch::Tensor &cu_seqlens_q, // b+1
27
- const torch::Tensor &cu_seqlens_k, // b+1
28
- const c10::optional<torch::Tensor> &seqused_k_, // b. If given, only this many elements of each batch element's keys are used.
29
- const c10::optional<torch::Tensor> &leftpad_k_, // batch_size
30
- const c10::optional<torch::Tensor> &block_table_, // batch_size x max_num_blocks_per_seq
31
- const c10::optional<torch::Tensor> &alibi_slopes_, // num_heads or b x num_heads
32
- const int64_t max_seqlen_q,
33
- const int64_t max_seqlen_k,
34
- const double p_dropout,
35
- const double softmax_scale,
36
- const bool zero_tensors,
37
- const bool is_causal,
38
- const int64_t window_size_left,
39
- const int64_t window_size_right,
40
- const double softcap,
41
- const bool return_softmax,
42
- const c10::optional<at::Generator> gen_);
43
-
44
 
45
  std::vector<torch::Tensor>
46
  mha_bwd(const torch::Tensor &dout, // batch_size x seqlen_q x num_heads, x multiple_of(head_size_og, 8)
 
2
 
3
  #include <torch/torch.h>
4
 
5
+ // std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>
6
  std::vector<torch::Tensor>
7
+ mha_fwd(
8
+ torch::Tensor &q,
9
+ const torch::Tensor &k,
10
+ const torch::Tensor &v,
11
+ c10::optional<torch::Tensor> out_,\
12
+ c10::optional<torch::Tensor> alibi_slopes_,
13
+ const double p_dropout,
14
+ const double softmax_scale,
15
+ bool is_causal,
16
+ const int64_t window_size_left,
17
+ const int64_t window_size_right,
18
+ const double softcap,
19
+ const bool return_softmax,
20
+ c10::optional<at::Generator> gen_);
21
 
22
  std::vector<torch::Tensor>
23
  mha_varlen_fwd(
24
+ at::Tensor &q, // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
25
+ const torch::Tensor &k, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
26
+ const torch::Tensor &v, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
27
+ c10::optional<torch::Tensor> out_, // total_q x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
28
+ const torch::Tensor &cu_seqlens_q, // b+1
29
+ const torch::Tensor &cu_seqlens_k, // b+1
30
+ c10::optional<torch::Tensor> seqused_k, // b. If given, only this many elements of each batch element's keys are used.
31
+ // c10::optional<const at::Tensor> leftpad_k_, // batch_size
32
+ c10::optional<torch::Tensor> leftpad_k_, // batch_size
33
+ c10::optional<torch::Tensor> block_table_, // batch_size x max_num_blocks_per_seq
34
+ c10::optional<torch::Tensor> alibi_slopes_, // num_heads or b x num_heads
35
+ int64_t max_seqlen_q,
36
+ const int64_t max_seqlen_k,
37
+ const double p_dropout,
38
+ const double softmax_scale,
39
+ const bool zero_tensors,
40
+ bool is_causal,
41
+ int64_t window_size_left,
42
+ int64_t window_size_right,
43
+ const double softcap,
44
+ const bool return_softmax,
45
+ std::optional<at::Generator> gen_);
46
 
47
  std::vector<torch::Tensor>
48
  mha_bwd(const torch::Tensor &dout, // batch_size x seqlen_q x num_heads, x multiple_of(head_size_og, 8)