drbh
commited on
Commit
·
876ac68
1
Parent(s):
3b8334d
fix: refactor bindings and update py library for correctness
Browse files- build.toml +3 -3
- flake.lock +3 -3
- flake.nix +6 -2
- flash_attn/flash_api.cpp +74 -67
- tests/test_flash_attn.py +0 -0
- tests/test_flash_attn_raw.py +201 -0
- tests/test_util.py +274 -0
- torch-ext/flash_attn/__init__.py +45 -16
- torch-ext/flash_attn/bert_padding.py +218 -0
- torch-ext/flash_attn/flash_attn_interface.py +1609 -0
- torch-ext/flash_attn/layers/__init__.py +0 -0
- torch-ext/flash_attn/layers/patch_embed.py +67 -0
- torch-ext/flash_attn/layers/rotary.py +483 -0
- torch-ext/flash_attn/ops/__init__.py +0 -0
- torch-ext/flash_attn/ops/activations.py +135 -0
- torch-ext/flash_attn/ops/fused_dense.py +688 -0
- torch-ext/flash_attn/ops/layer_norm.py +800 -0
- torch-ext/flash_attn/ops/rms_norm.py +174 -0
- torch-ext/flash_attn/ops/triton/__init__.py +1 -0
- torch-ext/flash_attn/ops/triton/cross_entropy.py +330 -0
- torch-ext/flash_attn/ops/triton/k_activations.py +162 -0
- torch-ext/flash_attn/ops/triton/layer_norm.py +1252 -0
- torch-ext/flash_attn/ops/triton/linear.py +594 -0
- torch-ext/flash_attn/ops/triton/mlp.py +149 -0
- torch-ext/flash_attn/ops/triton/rotary.py +185 -0
- torch-ext/torch_binding.cpp +107 -13
- torch-ext/torch_binding.h +37 -35
build.toml
CHANGED
@@ -31,7 +31,7 @@ src = [
|
|
31 |
"flash_attn/src/softmax.h",
|
32 |
"flash_attn/src/utils.h",
|
33 |
|
34 |
-
# bwd kernels
|
35 |
"flash_attn/src/flash_bwd_hdim128_bf16_causal_sm80.cu",
|
36 |
"flash_attn/src/flash_bwd_hdim128_bf16_sm80.cu",
|
37 |
"flash_attn/src/flash_bwd_hdim128_fp16_causal_sm80.cu",
|
@@ -60,7 +60,7 @@ src = [
|
|
60 |
"flash_attn/src/flash_bwd_launch_template.h",
|
61 |
"flash_attn/src/flash_bwd_preprocess_kernel.h",
|
62 |
|
63 |
-
## fwd kernels
|
64 |
"flash_attn/src/flash_fwd_hdim128_bf16_causal_sm80.cu",
|
65 |
"flash_attn/src/flash_fwd_hdim128_bf16_sm80.cu",
|
66 |
"flash_attn/src/flash_fwd_hdim128_fp16_causal_sm80.cu",
|
@@ -88,7 +88,7 @@ src = [
|
|
88 |
"flash_attn/src/flash_fwd_kernel.h",
|
89 |
"flash_attn/src/flash_fwd_launch_template.h",
|
90 |
|
91 |
-
# split kernels
|
92 |
"flash_attn/src/flash_fwd_split_hdim128_bf16_causal_sm80.cu",
|
93 |
"flash_attn/src/flash_fwd_split_hdim128_bf16_sm80.cu",
|
94 |
"flash_attn/src/flash_fwd_split_hdim128_fp16_causal_sm80.cu",
|
|
|
31 |
"flash_attn/src/softmax.h",
|
32 |
"flash_attn/src/utils.h",
|
33 |
|
34 |
+
# bwd kernels - commented out since mha_bwd functions are disabled
|
35 |
"flash_attn/src/flash_bwd_hdim128_bf16_causal_sm80.cu",
|
36 |
"flash_attn/src/flash_bwd_hdim128_bf16_sm80.cu",
|
37 |
"flash_attn/src/flash_bwd_hdim128_fp16_causal_sm80.cu",
|
|
|
60 |
"flash_attn/src/flash_bwd_launch_template.h",
|
61 |
"flash_attn/src/flash_bwd_preprocess_kernel.h",
|
62 |
|
63 |
+
## fwd kernels - keeping only FP16 kernels for hdim 64 and 128 (both causal and non-causal)
|
64 |
"flash_attn/src/flash_fwd_hdim128_bf16_causal_sm80.cu",
|
65 |
"flash_attn/src/flash_fwd_hdim128_bf16_sm80.cu",
|
66 |
"flash_attn/src/flash_fwd_hdim128_fp16_causal_sm80.cu",
|
|
|
88 |
"flash_attn/src/flash_fwd_kernel.h",
|
89 |
"flash_attn/src/flash_fwd_launch_template.h",
|
90 |
|
91 |
+
# split kernels - keeping only FP16 kernels for hdim 64 and 128 (both causal and non-causal)
|
92 |
"flash_attn/src/flash_fwd_split_hdim128_bf16_causal_sm80.cu",
|
93 |
"flash_attn/src/flash_fwd_split_hdim128_bf16_sm80.cu",
|
94 |
"flash_attn/src/flash_fwd_split_hdim128_fp16_causal_sm80.cu",
|
flake.lock
CHANGED
@@ -98,11 +98,11 @@
|
|
98 |
]
|
99 |
},
|
100 |
"locked": {
|
101 |
-
"lastModified":
|
102 |
-
"narHash": "sha256-
|
103 |
"owner": "huggingface",
|
104 |
"repo": "kernel-builder",
|
105 |
-
"rev": "
|
106 |
"type": "github"
|
107 |
},
|
108 |
"original": {
|
|
|
98 |
]
|
99 |
},
|
100 |
"locked": {
|
101 |
+
"lastModified": 1751910742,
|
102 |
+
"narHash": "sha256-VJrRLH9hsq0SCSsgNLBm9/L7ZCNEjVBKg4y3yT1k6Q4=",
|
103 |
"owner": "huggingface",
|
104 |
"repo": "kernel-builder",
|
105 |
+
"rev": "f1099723e3df41950b073051839bc2c5b088c380",
|
106 |
"type": "github"
|
107 |
},
|
108 |
"original": {
|
flake.nix
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
{
|
2 |
-
description = "Flake for
|
3 |
|
4 |
inputs = {
|
5 |
kernel-builder.url = "github:huggingface/kernel-builder";
|
@@ -13,5 +13,9 @@
|
|
13 |
kernel-builder.lib.genFlakeOutputs {
|
14 |
path = ./.;
|
15 |
rev = self.shortRev or self.dirtyShortRev or self.lastModifiedDate;
|
|
|
|
|
|
|
|
|
16 |
};
|
17 |
-
}
|
|
|
1 |
{
|
2 |
+
description = "Flake for flash-attn kernel";
|
3 |
|
4 |
inputs = {
|
5 |
kernel-builder.url = "github:huggingface/kernel-builder";
|
|
|
13 |
kernel-builder.lib.genFlakeOutputs {
|
14 |
path = ./.;
|
15 |
rev = self.shortRev or self.dirtyShortRev or self.lastModifiedDate;
|
16 |
+
|
17 |
+
pythonCheckInputs = pkgs: with pkgs; [
|
18 |
+
einops
|
19 |
+
];
|
20 |
};
|
21 |
+
}
|
flash_attn/flash_api.cpp
CHANGED
@@ -1475,78 +1475,85 @@ mha_fwd_kvcache(at::Tensor &q, // batch_size x seqlen_q x num_he
|
|
1475 |
}
|
1476 |
} // namespace FLASH_NAMESPACE
|
1477 |
|
1478 |
-
//
|
1479 |
std::vector<torch::Tensor>
|
1480 |
-
mha_fwd(
|
1481 |
-
|
1482 |
-
|
1483 |
-
|
1484 |
-
|
1485 |
-
|
1486 |
-
|
1487 |
-
|
1488 |
-
|
1489 |
-
|
1490 |
-
|
1491 |
-
|
1492 |
-
|
1493 |
-
|
1494 |
-
|
1495 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1496 |
}
|
1497 |
|
1498 |
std::vector<torch::Tensor>
|
1499 |
-
mha_varlen_fwd(
|
1500 |
-
|
1501 |
-
|
1502 |
-
|
1503 |
-
|
1504 |
-
|
1505 |
-
|
1506 |
-
|
1507 |
-
|
1508 |
-
|
1509 |
-
|
1510 |
-
|
1511 |
-
|
1512 |
-
|
1513 |
-
|
1514 |
-
|
1515 |
-
|
1516 |
-
|
1517 |
-
|
1518 |
-
|
1519 |
-
|
1520 |
-
|
1521 |
-
auto gen = gen_.value_or(at::cuda::detail::getDefaultCUDAGenerator());
|
1522 |
-
// Prepare the optional arguments as non-const references.
|
1523 |
-
std::optional<at::Tensor> out = out_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(out_.value())) : std::nullopt;
|
1524 |
-
std::optional<at::Tensor> seqused_k = seqused_k_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(seqused_k_.value())) : std::nullopt;
|
1525 |
-
std::optional<const at::Tensor> leftpad_k = leftpad_k_.has_value() ? std::optional<const at::Tensor>(leftpad_k_.value()) : std::nullopt;
|
1526 |
-
std::optional<at::Tensor> block_table = block_table_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(block_table_.value())) : std::nullopt;
|
1527 |
-
std::optional<at::Tensor> alibi_slopes = alibi_slopes_.has_value() ? std::optional<at::Tensor>(const_cast<at::Tensor &>(alibi_slopes_.value())) : std::nullopt;
|
1528 |
-
|
1529 |
-
if (!out.has_value()){
|
1530 |
-
out = torch::empty_like(q);
|
1531 |
-
}
|
1532 |
-
// Convert double to float and int64_t to int.
|
1533 |
-
float p_dropout_float = static_cast<float>(p_dropout);
|
1534 |
-
float softmax_scale_float = static_cast<float>(softmax_scale);
|
1535 |
-
float softcap_float = static_cast<float>(softcap);
|
1536 |
-
int max_seqlen_q_int = static_cast<int>(max_seqlen_q);
|
1537 |
-
int max_seqlen_k_int = static_cast<int>(max_seqlen_k);
|
1538 |
-
int window_size_left_int = static_cast<int>(window_size_left);
|
1539 |
-
int window_size_right_int = static_cast<int>(window_size_right);
|
1540 |
-
|
1541 |
return FLASH_NAMESPACE::mha_varlen_fwd(
|
1542 |
-
const_cast<at::Tensor &>(q),
|
1543 |
-
|
1544 |
-
|
1545 |
-
|
1546 |
-
|
1547 |
-
|
1548 |
-
|
1549 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1550 |
}
|
1551 |
|
1552 |
std::vector<torch::Tensor>
|
|
|
1475 |
}
|
1476 |
} // namespace FLASH_NAMESPACE
|
1477 |
|
1478 |
+
// std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>
|
1479 |
std::vector<torch::Tensor>
|
1480 |
+
mha_fwd(
|
1481 |
+
torch::Tensor &q,
|
1482 |
+
const torch::Tensor &k,
|
1483 |
+
const torch::Tensor &v,
|
1484 |
+
c10::optional<torch::Tensor> out_,
|
1485 |
+
c10::optional<torch::Tensor> alibi_slopes_,
|
1486 |
+
const double p_dropout,
|
1487 |
+
const double softmax_scale,
|
1488 |
+
bool is_causal,
|
1489 |
+
const int64_t window_size_left,
|
1490 |
+
const int64_t window_size_right,
|
1491 |
+
const double softcap,
|
1492 |
+
const bool return_softmax,
|
1493 |
+
c10::optional<at::Generator> gen_) {
|
1494 |
+
return FLASH_NAMESPACE::mha_fwd(
|
1495 |
+
q,
|
1496 |
+
k,
|
1497 |
+
v,
|
1498 |
+
out_,
|
1499 |
+
alibi_slopes_,
|
1500 |
+
static_cast<float>(p_dropout),
|
1501 |
+
static_cast<float>(softmax_scale),
|
1502 |
+
is_causal,
|
1503 |
+
static_cast<int>(window_size_left),
|
1504 |
+
static_cast<int>(window_size_right),
|
1505 |
+
static_cast<float>(softcap),
|
1506 |
+
return_softmax,
|
1507 |
+
gen_
|
1508 |
+
);
|
1509 |
}
|
1510 |
|
1511 |
std::vector<torch::Tensor>
|
1512 |
+
mha_varlen_fwd(
|
1513 |
+
torch::Tensor &q, // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
|
1514 |
+
const torch::Tensor &k, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
|
1515 |
+
const torch::Tensor &v, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
|
1516 |
+
std::optional<torch::Tensor> out_, // total_q x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
|
1517 |
+
const torch::Tensor &cu_seqlens_q, // b+1
|
1518 |
+
const torch::Tensor &cu_seqlens_k, // b+1
|
1519 |
+
std::optional<torch::Tensor> seqused_k, // b. If given, only this many elements of each batch element's keys are used.
|
1520 |
+
std::optional<torch::Tensor> leftpad_k_, // batch_size
|
1521 |
+
std::optional<torch::Tensor> block_table_, // batch_size x max_num_blocks_per_seq
|
1522 |
+
std::optional<torch::Tensor> alibi_slopes_, // num_heads or b x num_heads
|
1523 |
+
int64_t max_seqlen_q,
|
1524 |
+
const int64_t max_seqlen_k,
|
1525 |
+
const double p_dropout,
|
1526 |
+
const double softmax_scale,
|
1527 |
+
const bool zero_tensors,
|
1528 |
+
bool is_causal,
|
1529 |
+
int64_t window_size_left,
|
1530 |
+
int64_t window_size_right,
|
1531 |
+
const double softcap,
|
1532 |
+
const bool return_softmax,
|
1533 |
+
std::optional<at::Generator> gen_) {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1534 |
return FLASH_NAMESPACE::mha_varlen_fwd(
|
1535 |
+
const_cast<at::Tensor &>(q),
|
1536 |
+
k,
|
1537 |
+
v,
|
1538 |
+
out_,
|
1539 |
+
cu_seqlens_q,
|
1540 |
+
cu_seqlens_k,
|
1541 |
+
seqused_k,
|
1542 |
+
reinterpret_cast<std::optional<const at::Tensor>&>(leftpad_k_),
|
1543 |
+
block_table_,
|
1544 |
+
alibi_slopes_,
|
1545 |
+
static_cast<int>(max_seqlen_q),
|
1546 |
+
static_cast<int>(max_seqlen_k),
|
1547 |
+
static_cast<float>(p_dropout),
|
1548 |
+
static_cast<float>(softmax_scale),
|
1549 |
+
zero_tensors,
|
1550 |
+
is_causal,
|
1551 |
+
static_cast<int>(window_size_left),
|
1552 |
+
static_cast<int>(window_size_right),
|
1553 |
+
static_cast<float>(softcap),
|
1554 |
+
return_softmax,
|
1555 |
+
gen_
|
1556 |
+
);
|
1557 |
}
|
1558 |
|
1559 |
std::vector<torch::Tensor>
|
tests/test_flash_attn.py
CHANGED
The diff for this file is too large to render.
See raw diff
|
|
tests/test_flash_attn_raw.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import flash_attn
|
3 |
+
|
4 |
+
# make reproducible
|
5 |
+
torch.manual_seed(0)
|
6 |
+
|
7 |
+
|
8 |
+
def _attention_torch(query, key, value, *, backend):
|
9 |
+
query, key, value = (x.transpose(1, 2).contiguous() for x in (query, key, value))
|
10 |
+
with torch.nn.attention.sdpa_kernel(backend):
|
11 |
+
out = torch.nn.functional.scaled_dot_product_attention(query, key, value)
|
12 |
+
out = out.transpose(1, 2).contiguous()
|
13 |
+
return out
|
14 |
+
|
15 |
+
|
16 |
+
def test_flash_attn():
|
17 |
+
"""Test standard flash attention with mha_fwd"""
|
18 |
+
print("===== Testing mha_fwd =====")
|
19 |
+
|
20 |
+
batch_size = 1
|
21 |
+
seq_len = 4224
|
22 |
+
num_attention_heads = 24
|
23 |
+
attention_head_dim = 128
|
24 |
+
|
25 |
+
shape = (batch_size, seq_len, num_attention_heads, attention_head_dim)
|
26 |
+
|
27 |
+
print(f"Testing shape: {shape}")
|
28 |
+
print(f"Batch size: {batch_size}, Seq len: {seq_len}")
|
29 |
+
print(f"Num heads: {num_attention_heads}, Head dim: {attention_head_dim}")
|
30 |
+
|
31 |
+
query = torch.randn(shape, device="cuda", dtype=torch.float16)
|
32 |
+
key = torch.randn(shape, device="cuda", dtype=torch.float16)
|
33 |
+
value = torch.randn(shape, device="cuda", dtype=torch.float16)
|
34 |
+
|
35 |
+
# Get reference implementation using PyTorch SDPA
|
36 |
+
golden_truth = _attention_torch(
|
37 |
+
query, key, value, backend=torch.nn.attention.SDPBackend.MATH
|
38 |
+
)
|
39 |
+
|
40 |
+
print(f"Golden truth shape: {golden_truth.shape}")
|
41 |
+
print(f"Query sum: {query.sum().item()}")
|
42 |
+
|
43 |
+
# Test non-causal flash attention
|
44 |
+
out, softmax_lse, p, rng_state = flash_attn.fwd(
|
45 |
+
q=query,
|
46 |
+
k=key,
|
47 |
+
v=value,
|
48 |
+
is_causal=False,
|
49 |
+
)
|
50 |
+
|
51 |
+
print(f"Flash attention output shape: {out.shape}")
|
52 |
+
print(f"Query sum after attention: {query.sum().item()}")
|
53 |
+
|
54 |
+
# Compare outputs
|
55 |
+
diff = (out - golden_truth).abs().max()
|
56 |
+
print(f"Max absolute difference (non-causal): {diff.item()}")
|
57 |
+
|
58 |
+
assert out.shape == shape
|
59 |
+
assert diff < 1e-2, f"Difference too large: {diff.item()}"
|
60 |
+
|
61 |
+
# Test causal attention
|
62 |
+
print("\n--- Testing with causal=True ---")
|
63 |
+
out_causal, _, _, _ = flash_attn.fwd(
|
64 |
+
q=query,
|
65 |
+
k=key,
|
66 |
+
v=value,
|
67 |
+
is_causal=True,
|
68 |
+
)
|
69 |
+
|
70 |
+
print(f"Causal attention output shape: {out_causal.shape}")
|
71 |
+
assert out_causal.shape == shape
|
72 |
+
|
73 |
+
# Compare causal vs non-causal (should be different)
|
74 |
+
diff_causal = (out - out_causal).abs().max()
|
75 |
+
print(f"Difference between causal and non-causal: {diff_causal.item()}")
|
76 |
+
assert diff_causal > 1e-3, "Causal and non-causal should produce different results"
|
77 |
+
|
78 |
+
print("✓ mha_fwd test passed!")
|
79 |
+
|
80 |
+
|
81 |
+
def test_mha_varlen_fwd():
|
82 |
+
"""Test variable-length sequences with mha_varlen_fwd"""
|
83 |
+
print("\n===== Testing mha_varlen_fwd =====")
|
84 |
+
|
85 |
+
# Create variable length sequences
|
86 |
+
# Batch with 3 sequences of lengths: 512, 1024, 256
|
87 |
+
seq_lens = [512, 1024, 256]
|
88 |
+
total_seq_len = sum(seq_lens)
|
89 |
+
num_attention_heads = 16
|
90 |
+
attention_head_dim = 64
|
91 |
+
|
92 |
+
# Create cumulative sequence lengths (required for varlen)
|
93 |
+
cu_seqlens = torch.tensor(
|
94 |
+
[0] + [sum(seq_lens[: i + 1]) for i in range(len(seq_lens))],
|
95 |
+
device="cuda",
|
96 |
+
dtype=torch.int32,
|
97 |
+
)
|
98 |
+
|
99 |
+
print(f"Sequence lengths: {seq_lens}")
|
100 |
+
print(f"Cumulative sequence lengths: {cu_seqlens}")
|
101 |
+
print(f"Total sequence length: {total_seq_len}")
|
102 |
+
|
103 |
+
# Create packed tensors (all sequences concatenated)
|
104 |
+
query = torch.randn(
|
105 |
+
total_seq_len,
|
106 |
+
num_attention_heads,
|
107 |
+
attention_head_dim,
|
108 |
+
device="cuda",
|
109 |
+
dtype=torch.float16,
|
110 |
+
)
|
111 |
+
key = torch.randn(
|
112 |
+
total_seq_len,
|
113 |
+
num_attention_heads,
|
114 |
+
attention_head_dim,
|
115 |
+
device="cuda",
|
116 |
+
dtype=torch.float16,
|
117 |
+
)
|
118 |
+
value = torch.randn(
|
119 |
+
total_seq_len,
|
120 |
+
num_attention_heads,
|
121 |
+
attention_head_dim,
|
122 |
+
device="cuda",
|
123 |
+
dtype=torch.float16,
|
124 |
+
)
|
125 |
+
|
126 |
+
print(f"Query shape: {query.shape}")
|
127 |
+
print(f"Key shape: {key.shape}")
|
128 |
+
print(f"Value shape: {value.shape}")
|
129 |
+
|
130 |
+
# Create reference truth by running attention on individual sequences
|
131 |
+
# and concatenating the results
|
132 |
+
golden_truth_parts = []
|
133 |
+
for i, seq_len in enumerate(seq_lens):
|
134 |
+
start_idx = cu_seqlens[i]
|
135 |
+
end_idx = cu_seqlens[i + 1]
|
136 |
+
|
137 |
+
# Extract individual sequence
|
138 |
+
q_seq = query[start_idx:end_idx].unsqueeze(0) # Add batch dimension
|
139 |
+
k_seq = key[start_idx:end_idx].unsqueeze(0)
|
140 |
+
v_seq = value[start_idx:end_idx].unsqueeze(0)
|
141 |
+
|
142 |
+
# Run reference attention on this sequence
|
143 |
+
golden_seq = _attention_torch(
|
144 |
+
q_seq, k_seq, v_seq, backend=torch.nn.attention.SDPBackend.MATH
|
145 |
+
)
|
146 |
+
golden_truth_parts.append(golden_seq.squeeze(0)) # Remove batch dimension
|
147 |
+
|
148 |
+
# Concatenate all sequences back together
|
149 |
+
golden_truth = torch.cat(golden_truth_parts, dim=0)
|
150 |
+
print(f"Golden truth shape: {golden_truth.shape}")
|
151 |
+
|
152 |
+
# Run flash attention varlen
|
153 |
+
out, softmax_lse, p, rng_state = flash_attn.varlen_fwd(
|
154 |
+
q=query,
|
155 |
+
k=key,
|
156 |
+
v=value,
|
157 |
+
cu_seqlens_q=cu_seqlens,
|
158 |
+
cu_seqlens_k=cu_seqlens,
|
159 |
+
max_seqlen_q=max(seq_lens),
|
160 |
+
max_seqlen_k=max(seq_lens),
|
161 |
+
is_causal=False,
|
162 |
+
)
|
163 |
+
|
164 |
+
print(f"Flash attention varlen output shape: {out.shape}")
|
165 |
+
print(f"Output should match input: {out.shape == query.shape}")
|
166 |
+
|
167 |
+
# Compare with reference truth
|
168 |
+
diff = (out - golden_truth).abs().max()
|
169 |
+
print(f"Max absolute difference (non-causal): {diff.item()}")
|
170 |
+
|
171 |
+
# Verify output shape
|
172 |
+
assert out.shape == (total_seq_len, num_attention_heads, attention_head_dim)
|
173 |
+
assert diff < 1e-2, f"Difference too large: {diff.item()}"
|
174 |
+
|
175 |
+
# Test with causal attention
|
176 |
+
print("\n--- Testing with causal=True ---")
|
177 |
+
out_causal, _, _, _ = flash_attn.varlen_fwd(
|
178 |
+
q=query,
|
179 |
+
k=key,
|
180 |
+
v=value,
|
181 |
+
cu_seqlens_q=cu_seqlens,
|
182 |
+
cu_seqlens_k=cu_seqlens,
|
183 |
+
max_seqlen_q=max(seq_lens),
|
184 |
+
max_seqlen_k=max(seq_lens),
|
185 |
+
is_causal=True,
|
186 |
+
)
|
187 |
+
|
188 |
+
print(f"Causal attention output shape: {out_causal.shape}")
|
189 |
+
assert out_causal.shape == (total_seq_len, num_attention_heads, attention_head_dim)
|
190 |
+
|
191 |
+
# The causal and non-causal outputs should be different
|
192 |
+
diff_causal = (out - out_causal).abs().max()
|
193 |
+
print(f"Difference between causal and non-causal: {diff_causal.item()}")
|
194 |
+
assert diff_causal > 1e-3, "Causal and non-causal should produce different results"
|
195 |
+
|
196 |
+
print("✓ mha_varlen_fwd test passed!")
|
197 |
+
|
198 |
+
|
199 |
+
if __name__ == "__main__":
|
200 |
+
test_flash_attn()
|
201 |
+
test_mha_varlen_fwd()
|
tests/test_util.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
from einops import rearrange, repeat
|
5 |
+
from flash_attn.bert_padding import pad_input, unpad_input
|
6 |
+
|
7 |
+
|
8 |
+
def generate_random_padding_mask(max_seqlen, batch_size, device, mode="random", zero_lengths=False):
|
9 |
+
assert mode in ["full", "random", "third"]
|
10 |
+
if mode == "full":
|
11 |
+
lengths = torch.full((batch_size, 1), max_seqlen, device=device, dtype=torch.int32)
|
12 |
+
elif mode == "random":
|
13 |
+
lengths = torch.randint(
|
14 |
+
max(0 if zero_lengths else 1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device
|
15 |
+
)
|
16 |
+
elif mode == "third":
|
17 |
+
lengths = torch.randint(max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device)
|
18 |
+
|
19 |
+
if zero_lengths:
|
20 |
+
# Generate zero-lengths every 5 batches and the last batch.
|
21 |
+
for i in range(batch_size):
|
22 |
+
if i % 5 == 0:
|
23 |
+
lengths[i] = 0
|
24 |
+
lengths[-1] = 0
|
25 |
+
padding_mask = (
|
26 |
+
repeat(torch.arange(max_seqlen, device=device), "s -> b s", b=batch_size) < lengths
|
27 |
+
)
|
28 |
+
return padding_mask
|
29 |
+
|
30 |
+
|
31 |
+
def generate_qkv(
|
32 |
+
q, k, v, query_padding_mask=None, key_padding_mask=None,
|
33 |
+
kvpacked=False, qkvpacked=False, add_unused_qkv=False,
|
34 |
+
query_unused_mask=None, key_unused_mask=None,
|
35 |
+
):
|
36 |
+
"""
|
37 |
+
Arguments:
|
38 |
+
q: (batch_size, seqlen_q, nheads, d)
|
39 |
+
k: (batch_size, seqlen_k, nheads_k, d)
|
40 |
+
v: (batch_size, seqlen_k, nheads_k, d)
|
41 |
+
query_padding_mask: (batch_size, seqlen), bool
|
42 |
+
key_padding_mask: (batch_size, seqlen), bool
|
43 |
+
"""
|
44 |
+
assert not (kvpacked and qkvpacked)
|
45 |
+
batch_size, seqlen_q, nheads, d = q.shape
|
46 |
+
_, seqlen_k, nheads_k, _ = k.shape
|
47 |
+
assert k.shape == (batch_size, seqlen_k, nheads_k, d)
|
48 |
+
assert v.shape == (batch_size, seqlen_k, nheads_k, d)
|
49 |
+
if query_unused_mask is not None or key_unused_mask is not None:
|
50 |
+
assert not kvpacked
|
51 |
+
assert not qkvpacked
|
52 |
+
|
53 |
+
if query_padding_mask is not None:
|
54 |
+
q_unpad, indices_q, cu_seqlens_q, max_seqlen_q, seqused_q = unpad_input(
|
55 |
+
q, query_padding_mask, query_unused_mask,
|
56 |
+
)
|
57 |
+
output_pad_fn = lambda output_unpad: pad_input(
|
58 |
+
output_unpad, indices_q, batch_size, seqlen_q
|
59 |
+
)
|
60 |
+
else:
|
61 |
+
q_unpad = rearrange(q, "b s h d -> (b s) h d")
|
62 |
+
cu_seqlens_q = torch.arange(
|
63 |
+
0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q_unpad.device
|
64 |
+
)
|
65 |
+
seqused_q = None
|
66 |
+
max_seqlen_q = seqlen_q
|
67 |
+
output_pad_fn = lambda output_unpad: rearrange(
|
68 |
+
output_unpad, "(b s) h d -> b s h d", b=batch_size
|
69 |
+
)
|
70 |
+
|
71 |
+
if key_padding_mask is not None:
|
72 |
+
k_unpad, indices_k, cu_seqlens_k, max_seqlen_k, seqused_k = unpad_input(k, key_padding_mask, key_unused_mask)
|
73 |
+
v_unpad, _, _, _, _ = unpad_input(v, key_padding_mask, key_unused_mask)
|
74 |
+
else:
|
75 |
+
k_unpad = rearrange(k, "b s h d -> (b s) h d")
|
76 |
+
v_unpad = rearrange(v, "b s h d -> (b s) h d")
|
77 |
+
cu_seqlens_k = torch.arange(
|
78 |
+
0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=k_unpad.device
|
79 |
+
)
|
80 |
+
seqused_k = None
|
81 |
+
max_seqlen_k = seqlen_k
|
82 |
+
|
83 |
+
if qkvpacked:
|
84 |
+
assert (query_padding_mask == key_padding_mask).all()
|
85 |
+
assert nheads == nheads_k
|
86 |
+
qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
|
87 |
+
qkv = torch.stack([q, k, v], dim=2)
|
88 |
+
if query_padding_mask is not None:
|
89 |
+
dqkv_pad_fn = lambda dqkv_unpad: pad_input(dqkv_unpad, indices_q, batch_size, seqlen_q)
|
90 |
+
else:
|
91 |
+
dqkv_pad_fn = lambda dqkv_unpad: rearrange(
|
92 |
+
dqkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
|
93 |
+
)
|
94 |
+
return (
|
95 |
+
qkv_unpad.detach().requires_grad_(),
|
96 |
+
cu_seqlens_q,
|
97 |
+
max_seqlen_q,
|
98 |
+
qkv.detach().requires_grad_(),
|
99 |
+
output_pad_fn,
|
100 |
+
dqkv_pad_fn,
|
101 |
+
)
|
102 |
+
elif kvpacked:
|
103 |
+
kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
|
104 |
+
kv = torch.stack([k, v], dim=2)
|
105 |
+
dq_pad_fn = output_pad_fn
|
106 |
+
if key_padding_mask is not None:
|
107 |
+
dkv_pad_fn = lambda dkv_unpad: pad_input(dkv_unpad, indices_k, batch_size, seqlen_k)
|
108 |
+
else:
|
109 |
+
dkv_pad_fn = lambda dkv_unpad: rearrange(
|
110 |
+
dkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
|
111 |
+
)
|
112 |
+
return (
|
113 |
+
q_unpad.detach().requires_grad_(),
|
114 |
+
kv_unpad.detach().requires_grad_(),
|
115 |
+
cu_seqlens_q,
|
116 |
+
cu_seqlens_k,
|
117 |
+
max_seqlen_q,
|
118 |
+
max_seqlen_k,
|
119 |
+
q.detach().requires_grad_(),
|
120 |
+
kv.detach().requires_grad_(),
|
121 |
+
output_pad_fn,
|
122 |
+
dq_pad_fn,
|
123 |
+
dkv_pad_fn,
|
124 |
+
)
|
125 |
+
else:
|
126 |
+
dq_pad_fn = output_pad_fn
|
127 |
+
if key_padding_mask is not None:
|
128 |
+
dk_pad_fn = lambda dk_unpad: pad_input(dk_unpad, indices_k, batch_size, seqlen_k)
|
129 |
+
else:
|
130 |
+
dk_pad_fn = lambda dk_unpad: rearrange(dk_unpad, "(b s) h d -> b s h d", b=batch_size)
|
131 |
+
return (
|
132 |
+
q_unpad.detach().requires_grad_(),
|
133 |
+
k_unpad.detach().requires_grad_(),
|
134 |
+
v_unpad.detach().requires_grad_(),
|
135 |
+
cu_seqlens_q,
|
136 |
+
cu_seqlens_k,
|
137 |
+
seqused_q,
|
138 |
+
seqused_k,
|
139 |
+
max_seqlen_q,
|
140 |
+
max_seqlen_k,
|
141 |
+
q.detach().requires_grad_(),
|
142 |
+
k.detach().requires_grad_(),
|
143 |
+
v.detach().requires_grad_(),
|
144 |
+
output_pad_fn,
|
145 |
+
dq_pad_fn,
|
146 |
+
dk_pad_fn,
|
147 |
+
)
|
148 |
+
|
149 |
+
|
150 |
+
def construct_local_mask(
|
151 |
+
seqlen_q,
|
152 |
+
seqlen_k,
|
153 |
+
window_size=(-1, -1), # -1 means infinite window size
|
154 |
+
query_padding_mask=None,
|
155 |
+
key_padding_mask=None,
|
156 |
+
device=None,
|
157 |
+
key_leftpad=None,
|
158 |
+
):
|
159 |
+
row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
|
160 |
+
col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
|
161 |
+
if key_leftpad is not None:
|
162 |
+
key_leftpad = rearrange(key_leftpad, "b -> b 1 1 1")
|
163 |
+
col_idx = repeat(col_idx, "s -> b 1 1 s", b=key_leftpad.shape[0])
|
164 |
+
col_idx = torch.where(col_idx >= key_leftpad, col_idx - key_leftpad, 2**32)
|
165 |
+
sk = (
|
166 |
+
seqlen_k
|
167 |
+
if key_padding_mask is None
|
168 |
+
else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
|
169 |
+
)
|
170 |
+
sq = (
|
171 |
+
seqlen_q
|
172 |
+
if query_padding_mask is None
|
173 |
+
else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
|
174 |
+
)
|
175 |
+
if window_size[0] < 0:
|
176 |
+
return col_idx > row_idx + sk - sq + window_size[1]
|
177 |
+
else:
|
178 |
+
sk = torch.full_like(col_idx, seqlen_k) if key_padding_mask is None else sk
|
179 |
+
return torch.logical_or(
|
180 |
+
col_idx > torch.minimum(row_idx + sk - sq + window_size[1], sk),
|
181 |
+
col_idx < row_idx + sk - sq - window_size[0],
|
182 |
+
)
|
183 |
+
|
184 |
+
|
185 |
+
def attention_ref(
|
186 |
+
q,
|
187 |
+
k,
|
188 |
+
v,
|
189 |
+
query_padding_mask=None,
|
190 |
+
key_padding_mask=None,
|
191 |
+
attn_bias=None,
|
192 |
+
dropout_p=0.0,
|
193 |
+
dropout_mask=None,
|
194 |
+
causal=False,
|
195 |
+
window_size=(-1, -1), # -1 means infinite window size
|
196 |
+
softcap=0.0,
|
197 |
+
upcast=True,
|
198 |
+
reorder_ops=False,
|
199 |
+
key_leftpad=None,
|
200 |
+
):
|
201 |
+
"""
|
202 |
+
Arguments:
|
203 |
+
q: (batch_size, seqlen_q, nheads, head_dim)
|
204 |
+
k: (batch_size, seqlen_k, nheads_k, head_dim)
|
205 |
+
v: (batch_size, seqlen_k, nheads_k, head_dim)
|
206 |
+
query_padding_mask: (batch_size, seqlen_q)
|
207 |
+
key_padding_mask: (batch_size, seqlen_k)
|
208 |
+
attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k)
|
209 |
+
dropout_p: float
|
210 |
+
dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
|
211 |
+
causal: whether to apply causal masking
|
212 |
+
window_size: (int, int), left and right window size
|
213 |
+
upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
|
214 |
+
output back to fp16/bf16.
|
215 |
+
reorder_ops: whether to change the order of operations (scaling k instead of scaling q, etc.)
|
216 |
+
without changing the math. This is to estimate the numerical error from operation
|
217 |
+
reordering.
|
218 |
+
Output:
|
219 |
+
output: (batch_size, seqlen_q, nheads, head_dim)
|
220 |
+
attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout
|
221 |
+
"""
|
222 |
+
if causal:
|
223 |
+
window_size = (window_size[0], 0)
|
224 |
+
dtype_og = q.dtype
|
225 |
+
if upcast:
|
226 |
+
q, k, v = q.float(), k.float(), v.float()
|
227 |
+
seqlen_q, seqlen_k = q.shape[1], k.shape[1]
|
228 |
+
k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
|
229 |
+
v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
|
230 |
+
d = q.shape[-1]
|
231 |
+
if not reorder_ops:
|
232 |
+
scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
|
233 |
+
else:
|
234 |
+
scores = torch.einsum("bthd,bshd->bhts", q, k / math.sqrt(d))
|
235 |
+
if softcap > 0:
|
236 |
+
scores /= softcap
|
237 |
+
scores = scores.tanh()
|
238 |
+
scores *= softcap
|
239 |
+
if key_padding_mask is not None:
|
240 |
+
scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
|
241 |
+
if window_size[0] >= 0 or window_size[1] >= 0:
|
242 |
+
local_mask = construct_local_mask(
|
243 |
+
seqlen_q,
|
244 |
+
seqlen_k,
|
245 |
+
window_size,
|
246 |
+
query_padding_mask,
|
247 |
+
key_padding_mask,
|
248 |
+
q.device,
|
249 |
+
key_leftpad=key_leftpad,
|
250 |
+
)
|
251 |
+
scores.masked_fill_(local_mask, float("-inf"))
|
252 |
+
if attn_bias is not None:
|
253 |
+
scores = scores + attn_bias
|
254 |
+
attention = torch.softmax(scores, dim=-1).to(v.dtype)
|
255 |
+
# Some rows might be completely masked out so we fill them with zero instead of NaN
|
256 |
+
if window_size[0] >= 0 or window_size[1] >= 0:
|
257 |
+
attention = attention.masked_fill(torch.all(local_mask, dim=-1, keepdim=True), 0.0)
|
258 |
+
# We want to mask here so that the attention matrix doesn't have any NaNs
|
259 |
+
# Otherwise we'll get NaN in dV
|
260 |
+
if query_padding_mask is not None:
|
261 |
+
attention = attention.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
|
262 |
+
dropout_scaling = 1.0 / (1 - dropout_p)
|
263 |
+
# attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling
|
264 |
+
# output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
|
265 |
+
if dropout_mask is not None:
|
266 |
+
attention_drop = attention.masked_fill(~dropout_mask, 0.0)
|
267 |
+
else:
|
268 |
+
attention_drop = attention
|
269 |
+
output = torch.einsum("bhts,bshd->bthd", attention_drop, v * dropout_scaling)
|
270 |
+
if query_padding_mask is not None:
|
271 |
+
output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)
|
272 |
+
if key_padding_mask is not None:
|
273 |
+
output.masked_fill_(rearrange(torch.logical_not(torch.any(key_padding_mask, 1)), "b -> b 1 1 1"), 0.0)
|
274 |
+
return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)
|
torch-ext/flash_attn/__init__.py
CHANGED
@@ -1,16 +1,25 @@
|
|
1 |
from typing import Optional, List
|
2 |
import torch
|
3 |
-
from ._ops import ops
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
|
5 |
|
6 |
-
def
|
7 |
q: torch.Tensor,
|
8 |
k: torch.Tensor,
|
9 |
v: torch.Tensor,
|
10 |
out: Optional[torch.Tensor] = None,
|
11 |
alibi_slopes: Optional[torch.Tensor] = None,
|
12 |
p_dropout: float = 0.0,
|
13 |
-
softmax_scale: float =
|
14 |
is_causal: bool = False,
|
15 |
window_size_left: int = -1,
|
16 |
window_size_right: int = -1,
|
@@ -39,7 +48,11 @@ def mha_fwd(
|
|
39 |
Returns:
|
40 |
List of tensors: [output, softmax_lse, (softmax if return_softmax)]
|
41 |
"""
|
42 |
-
|
|
|
|
|
|
|
|
|
43 |
q,
|
44 |
k,
|
45 |
v,
|
@@ -56,7 +69,7 @@ def mha_fwd(
|
|
56 |
)
|
57 |
|
58 |
|
59 |
-
def
|
60 |
q: torch.Tensor,
|
61 |
k: torch.Tensor,
|
62 |
v: torch.Tensor,
|
@@ -70,7 +83,7 @@ def mha_varlen_fwd(
|
|
70 |
max_seqlen_q: int = 0,
|
71 |
max_seqlen_k: int = 0,
|
72 |
p_dropout: float = 0.0,
|
73 |
-
softmax_scale: float =
|
74 |
zero_tensors: bool = False,
|
75 |
is_causal: bool = False,
|
76 |
window_size_left: int = -1,
|
@@ -108,7 +121,11 @@ def mha_varlen_fwd(
|
|
108 |
Returns:
|
109 |
List of tensors: [output, softmax_lse, (softmax if return_softmax)]
|
110 |
"""
|
111 |
-
|
|
|
|
|
|
|
|
|
112 |
q,
|
113 |
k,
|
114 |
v,
|
@@ -133,7 +150,7 @@ def mha_varlen_fwd(
|
|
133 |
)
|
134 |
|
135 |
|
136 |
-
def
|
137 |
dout: torch.Tensor,
|
138 |
q: torch.Tensor,
|
139 |
k: torch.Tensor,
|
@@ -145,7 +162,7 @@ def mha_bwd(
|
|
145 |
dv: Optional[torch.Tensor] = None,
|
146 |
alibi_slopes: Optional[torch.Tensor] = None,
|
147 |
p_dropout: float = 0.0,
|
148 |
-
softmax_scale: float =
|
149 |
is_causal: bool = False,
|
150 |
window_size_left: int = -1,
|
151 |
window_size_right: int = -1,
|
@@ -181,7 +198,11 @@ def mha_bwd(
|
|
181 |
Returns:
|
182 |
List of tensors: [dq, dk, dv]
|
183 |
"""
|
184 |
-
|
|
|
|
|
|
|
|
|
185 |
dout,
|
186 |
q,
|
187 |
k,
|
@@ -204,7 +225,7 @@ def mha_bwd(
|
|
204 |
)
|
205 |
|
206 |
|
207 |
-
def
|
208 |
dout: torch.Tensor,
|
209 |
q: torch.Tensor,
|
210 |
k: torch.Tensor,
|
@@ -220,7 +241,7 @@ def mha_varlen_bwd(
|
|
220 |
max_seqlen_q: int = 0,
|
221 |
max_seqlen_k: int = 0,
|
222 |
p_dropout: float = 0.0,
|
223 |
-
softmax_scale: float =
|
224 |
zero_tensors: bool = False,
|
225 |
is_causal: bool = False,
|
226 |
window_size_left: int = -1,
|
@@ -262,7 +283,11 @@ def mha_varlen_bwd(
|
|
262 |
Returns:
|
263 |
List of tensors: [dq, dk, dv]
|
264 |
"""
|
265 |
-
|
|
|
|
|
|
|
|
|
266 |
dout,
|
267 |
q,
|
268 |
k,
|
@@ -290,7 +315,7 @@ def mha_varlen_bwd(
|
|
290 |
)
|
291 |
|
292 |
|
293 |
-
def
|
294 |
q: torch.Tensor,
|
295 |
kcache: torch.Tensor,
|
296 |
vcache: torch.Tensor,
|
@@ -304,7 +329,7 @@ def mha_fwd_kvcache(
|
|
304 |
block_table: Optional[torch.Tensor] = None,
|
305 |
alibi_slopes: Optional[torch.Tensor] = None,
|
306 |
out: Optional[torch.Tensor] = None,
|
307 |
-
softmax_scale: float =
|
308 |
is_causal: bool = False,
|
309 |
window_size_left: int = -1,
|
310 |
window_size_right: int = -1,
|
@@ -340,7 +365,11 @@ def mha_fwd_kvcache(
|
|
340 |
Returns:
|
341 |
List of tensors: [output, softmax_lse]
|
342 |
"""
|
343 |
-
|
|
|
|
|
|
|
|
|
344 |
q,
|
345 |
kcache,
|
346 |
vcache,
|
|
|
1 |
from typing import Optional, List
|
2 |
import torch
|
3 |
+
from ._ops import ops as flash_attn_ops
|
4 |
+
from .flash_attn_interface import (
|
5 |
+
flash_attn_func,
|
6 |
+
flash_attn_kvpacked_func,
|
7 |
+
flash_attn_qkvpacked_func,
|
8 |
+
flash_attn_varlen_func,
|
9 |
+
flash_attn_varlen_kvpacked_func,
|
10 |
+
flash_attn_varlen_qkvpacked_func,
|
11 |
+
flash_attn_with_kvcache,
|
12 |
+
)
|
13 |
|
14 |
|
15 |
+
def fwd(
|
16 |
q: torch.Tensor,
|
17 |
k: torch.Tensor,
|
18 |
v: torch.Tensor,
|
19 |
out: Optional[torch.Tensor] = None,
|
20 |
alibi_slopes: Optional[torch.Tensor] = None,
|
21 |
p_dropout: float = 0.0,
|
22 |
+
softmax_scale: Optional[float] = None,
|
23 |
is_causal: bool = False,
|
24 |
window_size_left: int = -1,
|
25 |
window_size_right: int = -1,
|
|
|
48 |
Returns:
|
49 |
List of tensors: [output, softmax_lse, (softmax if return_softmax)]
|
50 |
"""
|
51 |
+
if softmax_scale is None:
|
52 |
+
attention_head_dim = q.shape[-1]
|
53 |
+
softmax_scale = 1.0 / (attention_head_dim**0.5)
|
54 |
+
|
55 |
+
return flash_attn_ops.fwd(
|
56 |
q,
|
57 |
k,
|
58 |
v,
|
|
|
69 |
)
|
70 |
|
71 |
|
72 |
+
def varlen_fwd(
|
73 |
q: torch.Tensor,
|
74 |
k: torch.Tensor,
|
75 |
v: torch.Tensor,
|
|
|
83 |
max_seqlen_q: int = 0,
|
84 |
max_seqlen_k: int = 0,
|
85 |
p_dropout: float = 0.0,
|
86 |
+
softmax_scale: Optional[float] = None,
|
87 |
zero_tensors: bool = False,
|
88 |
is_causal: bool = False,
|
89 |
window_size_left: int = -1,
|
|
|
121 |
Returns:
|
122 |
List of tensors: [output, softmax_lse, (softmax if return_softmax)]
|
123 |
"""
|
124 |
+
if softmax_scale is None:
|
125 |
+
attention_head_dim = q.shape[-1]
|
126 |
+
softmax_scale = 1.0 / (attention_head_dim**0.5)
|
127 |
+
|
128 |
+
return flash_attn_ops.varlen_fwd(
|
129 |
q,
|
130 |
k,
|
131 |
v,
|
|
|
150 |
)
|
151 |
|
152 |
|
153 |
+
def bwd(
|
154 |
dout: torch.Tensor,
|
155 |
q: torch.Tensor,
|
156 |
k: torch.Tensor,
|
|
|
162 |
dv: Optional[torch.Tensor] = None,
|
163 |
alibi_slopes: Optional[torch.Tensor] = None,
|
164 |
p_dropout: float = 0.0,
|
165 |
+
softmax_scale: Optional[float] = None,
|
166 |
is_causal: bool = False,
|
167 |
window_size_left: int = -1,
|
168 |
window_size_right: int = -1,
|
|
|
198 |
Returns:
|
199 |
List of tensors: [dq, dk, dv]
|
200 |
"""
|
201 |
+
if softmax_scale is None:
|
202 |
+
attention_head_dim = q.shape[-1]
|
203 |
+
softmax_scale = 1.0 / (attention_head_dim**0.5)
|
204 |
+
|
205 |
+
return flash_attn_ops.bwd(
|
206 |
dout,
|
207 |
q,
|
208 |
k,
|
|
|
225 |
)
|
226 |
|
227 |
|
228 |
+
def varlen_bwd(
|
229 |
dout: torch.Tensor,
|
230 |
q: torch.Tensor,
|
231 |
k: torch.Tensor,
|
|
|
241 |
max_seqlen_q: int = 0,
|
242 |
max_seqlen_k: int = 0,
|
243 |
p_dropout: float = 0.0,
|
244 |
+
softmax_scale: Optional[float] = None,
|
245 |
zero_tensors: bool = False,
|
246 |
is_causal: bool = False,
|
247 |
window_size_left: int = -1,
|
|
|
283 |
Returns:
|
284 |
List of tensors: [dq, dk, dv]
|
285 |
"""
|
286 |
+
if softmax_scale is None:
|
287 |
+
attention_head_dim = q.shape[-1]
|
288 |
+
softmax_scale = 1.0 / (attention_head_dim**0.5)
|
289 |
+
|
290 |
+
return flash_attn_ops.varlen_bwd(
|
291 |
dout,
|
292 |
q,
|
293 |
k,
|
|
|
315 |
)
|
316 |
|
317 |
|
318 |
+
def fwd_kvcache(
|
319 |
q: torch.Tensor,
|
320 |
kcache: torch.Tensor,
|
321 |
vcache: torch.Tensor,
|
|
|
329 |
block_table: Optional[torch.Tensor] = None,
|
330 |
alibi_slopes: Optional[torch.Tensor] = None,
|
331 |
out: Optional[torch.Tensor] = None,
|
332 |
+
softmax_scale: Optional[float] = None,
|
333 |
is_causal: bool = False,
|
334 |
window_size_left: int = -1,
|
335 |
window_size_right: int = -1,
|
|
|
365 |
Returns:
|
366 |
List of tensors: [output, softmax_lse]
|
367 |
"""
|
368 |
+
if softmax_scale is None:
|
369 |
+
attention_head_dim = q.shape[-1]
|
370 |
+
softmax_scale = 1.0 / (attention_head_dim**0.5)
|
371 |
+
|
372 |
+
return flash_attn_ops.fwd_kvcache(
|
373 |
q,
|
374 |
kcache,
|
375 |
vcache,
|
torch-ext/flash_attn/bert_padding.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from einops import rearrange, repeat
|
6 |
+
|
7 |
+
|
8 |
+
class IndexFirstAxis(torch.autograd.Function):
|
9 |
+
@staticmethod
|
10 |
+
def forward(ctx, input, indices):
|
11 |
+
ctx.save_for_backward(indices)
|
12 |
+
assert input.ndim >= 2
|
13 |
+
ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
|
14 |
+
second_dim = other_shape.numel()
|
15 |
+
# TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
|
16 |
+
# return input[indices]
|
17 |
+
return torch.gather(
|
18 |
+
rearrange(input, "b ... -> b (...)"), 0, repeat(indices, "z -> z d", d=second_dim)
|
19 |
+
).reshape(-1, *other_shape)
|
20 |
+
|
21 |
+
@staticmethod
|
22 |
+
def backward(ctx, grad_output):
|
23 |
+
(indices,) = ctx.saved_tensors
|
24 |
+
assert grad_output.ndim >= 2
|
25 |
+
other_shape = grad_output.shape[1:]
|
26 |
+
grad_output = rearrange(grad_output, "b ... -> b (...)")
|
27 |
+
grad_input = torch.zeros(
|
28 |
+
[ctx.first_axis_dim, grad_output.shape[1]],
|
29 |
+
device=grad_output.device,
|
30 |
+
dtype=grad_output.dtype,
|
31 |
+
)
|
32 |
+
# TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
|
33 |
+
# grad_input[indices] = grad_output
|
34 |
+
grad_input.scatter_(0, repeat(indices, "z -> z d", d=grad_output.shape[1]), grad_output)
|
35 |
+
return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
|
36 |
+
|
37 |
+
|
38 |
+
index_first_axis = IndexFirstAxis.apply
|
39 |
+
|
40 |
+
|
41 |
+
class IndexPutFirstAxis(torch.autograd.Function):
|
42 |
+
@staticmethod
|
43 |
+
def forward(ctx, values, indices, first_axis_dim):
|
44 |
+
ctx.save_for_backward(indices)
|
45 |
+
assert indices.ndim == 1
|
46 |
+
assert values.ndim >= 2
|
47 |
+
output = torch.zeros(
|
48 |
+
first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype
|
49 |
+
)
|
50 |
+
# TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
|
51 |
+
output[indices] = values
|
52 |
+
# output.scatter_(0, repeat(indices, 'z -> z d', d=values.shape[1]), values)
|
53 |
+
return output
|
54 |
+
|
55 |
+
@staticmethod
|
56 |
+
def backward(ctx, grad_output):
|
57 |
+
(indices,) = ctx.saved_tensors
|
58 |
+
# TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
|
59 |
+
grad_values = grad_output[indices]
|
60 |
+
# grad_values = torch.gather(grad_output, 0, repeat(indices, 'z -> z d', d=grad_output.shape[1]))
|
61 |
+
return grad_values, None, None
|
62 |
+
|
63 |
+
|
64 |
+
index_put_first_axis = IndexPutFirstAxis.apply
|
65 |
+
|
66 |
+
|
67 |
+
class IndexFirstAxisResidual(torch.autograd.Function):
|
68 |
+
@staticmethod
|
69 |
+
def forward(ctx, input, indices):
|
70 |
+
ctx.save_for_backward(indices)
|
71 |
+
assert input.ndim >= 2
|
72 |
+
ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
|
73 |
+
second_dim = other_shape.numel()
|
74 |
+
# TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
|
75 |
+
output = input[indices]
|
76 |
+
# We don't want to reshape input (b ... -> b (...)) since it could change the channel_last
|
77 |
+
# memory format to channel_first. In other words, input might not be contiguous.
|
78 |
+
# If we don't detach, Pytorch complains about output being a view and is being modified inplace
|
79 |
+
return output, input.detach()
|
80 |
+
|
81 |
+
@staticmethod
|
82 |
+
def backward(ctx, grad_output, grad_residual):
|
83 |
+
(indices,) = ctx.saved_tensors
|
84 |
+
assert grad_output.ndim >= 2
|
85 |
+
other_shape = grad_output.shape[1:]
|
86 |
+
assert grad_residual.shape[1:] == other_shape
|
87 |
+
grad_input = grad_residual
|
88 |
+
# grad_input[indices] += grad_output
|
89 |
+
indices = indices.reshape(indices.shape[0], *((1,) * (grad_output.ndim - 1)))
|
90 |
+
indices = indices.expand_as(grad_output)
|
91 |
+
grad_input.scatter_add_(0, indices, grad_output)
|
92 |
+
return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
|
93 |
+
|
94 |
+
|
95 |
+
index_first_axis_residual = IndexFirstAxisResidual.apply
|
96 |
+
|
97 |
+
|
98 |
+
def unpad_input(hidden_states, attention_mask, unused_mask=None):
|
99 |
+
"""
|
100 |
+
Arguments:
|
101 |
+
hidden_states: (batch, seqlen, ...)
|
102 |
+
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
|
103 |
+
unused_mask: (batch, seqlen), bool / int, 1 means the element is allocated but unused.
|
104 |
+
Return:
|
105 |
+
hidden_states: (total_nnz, ...), where total_nnz = number of tokens selected in attention_mask + unused_mask.
|
106 |
+
indices: (total_nnz), the indices of masked tokens from the flattened input sequence.
|
107 |
+
cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
|
108 |
+
max_seqlen_in_batch: int
|
109 |
+
seqused: (batch), returns the number of tokens selected in attention_mask + unused_mask.
|
110 |
+
"""
|
111 |
+
all_masks = (attention_mask + unused_mask) if unused_mask is not None else attention_mask
|
112 |
+
seqlens_in_batch = all_masks.sum(dim=-1, dtype=torch.int32)
|
113 |
+
used_seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
114 |
+
indices = torch.nonzero(all_masks.flatten(), as_tuple=False).flatten()
|
115 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
116 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
117 |
+
# TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
|
118 |
+
# bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
|
119 |
+
# times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
|
120 |
+
# index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
|
121 |
+
# so we write custom forward and backward to make it a bit faster.
|
122 |
+
return (
|
123 |
+
index_first_axis(rearrange(hidden_states, "b s ... -> (b s) ..."), indices),
|
124 |
+
indices,
|
125 |
+
cu_seqlens,
|
126 |
+
max_seqlen_in_batch,
|
127 |
+
used_seqlens_in_batch,
|
128 |
+
)
|
129 |
+
|
130 |
+
|
131 |
+
def unpad_input_for_concatenated_sequences(hidden_states, attention_mask_in_length):
|
132 |
+
"""
|
133 |
+
Supports concatenating short samples in one sequence. The attention_mask_in_length is utilized to mask other short samples. It helps efficient training of variant lengths-based samples (e.g., the supervised fine-tuning task in large language model).
|
134 |
+
The motivation for this function is explained [here](https://github.com/Dao-AILab/flash-attention/issues/432#issuecomment-1668822286).
|
135 |
+
|
136 |
+
For example, if batch = 3 and seqlen = 6, the attention_mask_in_length is:
|
137 |
+
```
|
138 |
+
[
|
139 |
+
[2, 3, 0, 0, 0, 0],
|
140 |
+
[3, 2, 0, 0, 0, 0],
|
141 |
+
[6, 0, 0, 0, 0, 0]
|
142 |
+
]
|
143 |
+
```
|
144 |
+
, which refers to the 3D-attention mask:
|
145 |
+
```
|
146 |
+
[
|
147 |
+
[
|
148 |
+
[1, 0, 0, 0, 0, 0],
|
149 |
+
[1, 1, 0, 0, 0, 0],
|
150 |
+
[0, 0, 1, 0, 0, 0],
|
151 |
+
[0, 0, 1, 1, 0, 0],
|
152 |
+
[0, 0, 1, 1, 1, 0],
|
153 |
+
[0, 0, 0, 0, 0, 1]
|
154 |
+
],
|
155 |
+
[
|
156 |
+
[1, 0, 0, 0, 0, 0],
|
157 |
+
[1, 1, 0, 0, 0, 0],
|
158 |
+
[1, 1, 1, 0, 0, 0],
|
159 |
+
[0, 0, 0, 1, 0, 0],
|
160 |
+
[0, 0, 0, 1, 1, 0],
|
161 |
+
[0, 0, 0, 0, 0, 1]
|
162 |
+
],
|
163 |
+
[
|
164 |
+
[1, 0, 0, 0, 0, 0],
|
165 |
+
[1, 1, 0, 0, 0, 0],
|
166 |
+
[1, 1, 1, 0, 0, 0],
|
167 |
+
[1, 1, 1, 1, 0, 0],
|
168 |
+
[1, 1, 1, 1, 1, 0],
|
169 |
+
[1, 1, 1, 1, 1, 1]
|
170 |
+
]
|
171 |
+
]
|
172 |
+
```.
|
173 |
+
|
174 |
+
Arguments:
|
175 |
+
hidden_states: (batch, seqlen, ...)
|
176 |
+
attention_mask_in_length: (batch, seqlen), int, a nonzero number (e.g., 1, 2, 3, etc.) means length of concatenated sequence in b-th batch, and 0 means none.
|
177 |
+
Return:
|
178 |
+
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
179 |
+
indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence.
|
180 |
+
cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states.
|
181 |
+
max_seqlen_in_batch: int
|
182 |
+
"""
|
183 |
+
length = attention_mask_in_length.sum(dim=-1)
|
184 |
+
seqlen = attention_mask_in_length.size(-1)
|
185 |
+
attention_mask_2d = torch.arange(seqlen, device=length.device, dtype=length.dtype).expand(len(length), seqlen) < length.unsqueeze(1)
|
186 |
+
real_indices_idx = torch.nonzero(attention_mask_in_length.flatten(), as_tuple=False).flatten()
|
187 |
+
seqlens_in_batch = attention_mask_in_length.flatten()[real_indices_idx]
|
188 |
+
indices = torch.nonzero(attention_mask_2d.flatten(), as_tuple=False).flatten()
|
189 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
190 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
191 |
+
# TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
|
192 |
+
# bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
|
193 |
+
# times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
|
194 |
+
# index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
|
195 |
+
# so we write custom forward and backward to make it a bit faster.
|
196 |
+
return (
|
197 |
+
index_first_axis(rearrange(hidden_states, "b s ... -> (b s) ..."), indices),
|
198 |
+
indices,
|
199 |
+
cu_seqlens,
|
200 |
+
max_seqlen_in_batch,
|
201 |
+
)
|
202 |
+
|
203 |
+
|
204 |
+
def pad_input(hidden_states, indices, batch, seqlen):
|
205 |
+
"""
|
206 |
+
Arguments:
|
207 |
+
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
208 |
+
indices: (total_nnz), the indices that represent the non-masked tokens of the original padded input sequence.
|
209 |
+
batch: int, batch size for the padded sequence.
|
210 |
+
seqlen: int, maximum sequence length for the padded sequence.
|
211 |
+
Return:
|
212 |
+
hidden_states: (batch, seqlen, ...)
|
213 |
+
"""
|
214 |
+
dim = hidden_states.shape[-1]
|
215 |
+
# output = torch.zeros((batch * seqlen), dim, device=hidden_states.device, dtype=hidden_states.dtype)
|
216 |
+
# output[indices] = hidden_states
|
217 |
+
output = index_put_first_axis(hidden_states, indices, batch * seqlen)
|
218 |
+
return rearrange(output, "(b s) ... -> b s ...", b=batch)
|
torch-ext/flash_attn/flash_attn_interface.py
ADDED
@@ -0,0 +1,1609 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, Tri Dao.
|
2 |
+
|
3 |
+
from typing import Optional, Sequence, Tuple, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import os
|
8 |
+
|
9 |
+
# # isort: off
|
10 |
+
# # We need to import the CUDA kernels after importing torch
|
11 |
+
# USE_TRITON_ROCM = os.getenv("FLASH_ATTENTION_TRITON_AMD_ENABLE", "FALSE") == "TRUE"
|
12 |
+
# if USE_TRITON_ROCM:
|
13 |
+
# from .flash_attn_triton_amd import interface_fa as flash_attn_gpu
|
14 |
+
# else:
|
15 |
+
# import flash_attn_2_cuda as flash_attn_gpu
|
16 |
+
|
17 |
+
|
18 |
+
from ._ops import ops as flash_attn_gpu
|
19 |
+
|
20 |
+
# # isort: on
|
21 |
+
|
22 |
+
def maybe_contiguous(x):
|
23 |
+
return x.contiguous() if x is not None and x.stride(-1) != 1 else x
|
24 |
+
|
25 |
+
|
26 |
+
def _get_block_size_n(device, head_dim, is_dropout, is_causal):
|
27 |
+
# This should match the block sizes in the CUDA kernel
|
28 |
+
assert head_dim <= 256
|
29 |
+
major, minor = torch.cuda.get_device_capability(device)
|
30 |
+
is_sm8x = major == 8 and minor > 0 # Only include sm86 and sm89, exclude sm80 (A100)
|
31 |
+
is_sm80 = major == 8 and minor == 0
|
32 |
+
is_sm90 = major == 9 and minor == 0
|
33 |
+
if head_dim <= 32:
|
34 |
+
return 128
|
35 |
+
if head_dim <= 64:
|
36 |
+
return 128 if not is_dropout else 64
|
37 |
+
elif head_dim <= 96:
|
38 |
+
return 64
|
39 |
+
elif head_dim <= 128:
|
40 |
+
if is_sm8x:
|
41 |
+
return 64 if (not is_dropout and is_causal) else 32
|
42 |
+
else:
|
43 |
+
return 64 if not is_dropout else 32
|
44 |
+
elif head_dim <= 192:
|
45 |
+
return 64
|
46 |
+
elif head_dim <= 224:
|
47 |
+
return 64
|
48 |
+
elif head_dim <= 256:
|
49 |
+
return 64
|
50 |
+
|
51 |
+
|
52 |
+
def round_multiple(x, m):
|
53 |
+
return (x + m - 1) // m * m
|
54 |
+
|
55 |
+
|
56 |
+
# torch.compile() support is only enabled for pytorch >= 2.4
|
57 |
+
# The reason for this is that we are using the new custom_op and register_fake
|
58 |
+
# APIs, which support inplace modification of inputs in the function itself
|
59 |
+
if torch.__version__ >= "2.4.0":
|
60 |
+
_torch_custom_op_wrapper = torch.library.custom_op
|
61 |
+
_torch_register_fake_wrapper = torch.library.register_fake
|
62 |
+
else:
|
63 |
+
def noop_custom_op_wrapper(name, fn=None, /, *, mutates_args, device_types=None, schema=None):
|
64 |
+
def wrap(func):
|
65 |
+
return func
|
66 |
+
if fn is None:
|
67 |
+
return wrap
|
68 |
+
return fn
|
69 |
+
def noop_register_fake_wrapper(op, fn=None, /, *, lib=None, _stacklevel=1):
|
70 |
+
def wrap(func):
|
71 |
+
return func
|
72 |
+
if fn is None:
|
73 |
+
return wrap
|
74 |
+
return fn
|
75 |
+
_torch_custom_op_wrapper = noop_custom_op_wrapper
|
76 |
+
_torch_register_fake_wrapper = noop_register_fake_wrapper
|
77 |
+
|
78 |
+
|
79 |
+
@_torch_custom_op_wrapper("flash_attn::_flash_attn_forward", mutates_args=(), device_types="cuda")
|
80 |
+
def _flash_attn_forward(
|
81 |
+
q: torch.Tensor,
|
82 |
+
k: torch.Tensor,
|
83 |
+
v: torch.Tensor,
|
84 |
+
dropout_p: float,
|
85 |
+
softmax_scale: float,
|
86 |
+
causal: bool,
|
87 |
+
window_size_left: int,
|
88 |
+
window_size_right: int,
|
89 |
+
softcap: float,
|
90 |
+
alibi_slopes: Optional[torch.Tensor],
|
91 |
+
return_softmax: bool
|
92 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
93 |
+
q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
|
94 |
+
out, softmax_lse, S_dmask, rng_state = flash_attn_gpu.fwd(
|
95 |
+
q,
|
96 |
+
k,
|
97 |
+
v,
|
98 |
+
None,
|
99 |
+
alibi_slopes,
|
100 |
+
dropout_p,
|
101 |
+
softmax_scale,
|
102 |
+
causal,
|
103 |
+
window_size_left,
|
104 |
+
window_size_right,
|
105 |
+
softcap,
|
106 |
+
return_softmax,
|
107 |
+
None,
|
108 |
+
)
|
109 |
+
return out, softmax_lse, S_dmask, rng_state
|
110 |
+
|
111 |
+
|
112 |
+
@_torch_register_fake_wrapper("flash_attn::_flash_attn_forward")
|
113 |
+
def _flash_attn_forward_fake(
|
114 |
+
q: torch.Tensor,
|
115 |
+
k: torch.Tensor,
|
116 |
+
v: torch.Tensor,
|
117 |
+
dropout_p: float,
|
118 |
+
softmax_scale: float,
|
119 |
+
causal: bool,
|
120 |
+
window_size_left: int,
|
121 |
+
window_size_right: int,
|
122 |
+
softcap: float,
|
123 |
+
alibi_slopes: Optional[torch.Tensor],
|
124 |
+
return_softmax: bool
|
125 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
126 |
+
q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
|
127 |
+
batch_size, seqlen_q, num_heads, head_size = q.shape
|
128 |
+
seqlen_k = k.shape[1]
|
129 |
+
out = torch.empty_like(q)
|
130 |
+
softmax_lse = torch.empty((batch_size, num_heads, seqlen_q), dtype=torch.float32, device=q.device, layout=q.layout)
|
131 |
+
p = torch.empty((0,), dtype=q.dtype, device=q.device, layout=q.layout)
|
132 |
+
if return_softmax:
|
133 |
+
p = torch.empty((batch_size, num_heads, round_multiple(seqlen_q, 128), round_multiple(seqlen_k, 128)), dtype=q.dtype, device=q.device, layout=q.layout)
|
134 |
+
rng_state = torch.empty((2,), dtype=torch.int64, device=q.device)
|
135 |
+
|
136 |
+
return out, softmax_lse, p, rng_state
|
137 |
+
|
138 |
+
|
139 |
+
if torch.__version__ >= "2.4.0":
|
140 |
+
_wrapped_flash_attn_forward = torch.ops.flash_attn._flash_attn_forward
|
141 |
+
else:
|
142 |
+
_wrapped_flash_attn_forward = _flash_attn_forward
|
143 |
+
|
144 |
+
|
145 |
+
@_torch_custom_op_wrapper("flash_attn::_flash_attn_varlen_forward", mutates_args=(), device_types="cuda")
|
146 |
+
def _flash_attn_varlen_forward(
|
147 |
+
q: torch.Tensor,
|
148 |
+
k: torch.Tensor,
|
149 |
+
v: torch.Tensor,
|
150 |
+
cu_seqlens_q: torch.Tensor,
|
151 |
+
cu_seqlens_k: torch.Tensor,
|
152 |
+
max_seqlen_q: int,
|
153 |
+
max_seqlen_k: int,
|
154 |
+
dropout_p: float,
|
155 |
+
softmax_scale: float,
|
156 |
+
causal: bool,
|
157 |
+
window_size_left: int = -1,
|
158 |
+
window_size_right: int = -1,
|
159 |
+
softcap: float = 0.0,
|
160 |
+
alibi_slopes: Optional[torch.Tensor] = None,
|
161 |
+
return_softmax: bool = False,
|
162 |
+
block_table: Optional[torch.Tensor] = None,
|
163 |
+
leftpad_k: Optional[torch.Tensor] = None,
|
164 |
+
seqused_k: Optional[torch.Tensor] = None,
|
165 |
+
zero_tensors: bool = False,
|
166 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
167 |
+
q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
|
168 |
+
out, softmax_lse, S_dmask, rng_state = flash_attn_gpu.varlen_fwd(
|
169 |
+
q,
|
170 |
+
k,
|
171 |
+
v,
|
172 |
+
None,
|
173 |
+
cu_seqlens_q,
|
174 |
+
cu_seqlens_k,
|
175 |
+
seqused_k,
|
176 |
+
leftpad_k,
|
177 |
+
block_table,
|
178 |
+
alibi_slopes,
|
179 |
+
max_seqlen_q,
|
180 |
+
max_seqlen_k,
|
181 |
+
dropout_p,
|
182 |
+
softmax_scale,
|
183 |
+
zero_tensors,
|
184 |
+
causal,
|
185 |
+
window_size_left,
|
186 |
+
window_size_right,
|
187 |
+
softcap,
|
188 |
+
return_softmax,
|
189 |
+
None,
|
190 |
+
)
|
191 |
+
# if out.isnan().any() or softmax_lse.isnan().any():
|
192 |
+
# breakpoint()
|
193 |
+
return out, softmax_lse, S_dmask, rng_state
|
194 |
+
|
195 |
+
|
196 |
+
@_torch_register_fake_wrapper("flash_attn::_flash_attn_varlen_forward")
|
197 |
+
def _flash_attn_varlen_forward_fake(
|
198 |
+
q: torch.Tensor,
|
199 |
+
k: torch.Tensor,
|
200 |
+
v: torch.Tensor,
|
201 |
+
cu_seqlens_q: torch.Tensor,
|
202 |
+
cu_seqlens_k: torch.Tensor,
|
203 |
+
max_seqlen_q: int,
|
204 |
+
max_seqlen_k: int,
|
205 |
+
dropout_p: float,
|
206 |
+
softmax_scale: float,
|
207 |
+
causal: bool,
|
208 |
+
window_size_left: int = -1,
|
209 |
+
window_size_right: int = -1,
|
210 |
+
softcap: float = 0.0,
|
211 |
+
alibi_slopes: Optional[torch.Tensor] = None,
|
212 |
+
return_softmax: bool = False,
|
213 |
+
block_table: Optional[torch.Tensor] = None,
|
214 |
+
leftpad_k: Optional[torch.Tensor] = None,
|
215 |
+
seqused_k: Optional[torch.Tensor] = None,
|
216 |
+
zero_tensors: bool = False,
|
217 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
218 |
+
q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
|
219 |
+
paged_kv = block_table is not None
|
220 |
+
batch_size = cu_seqlens_q.numel() - 1
|
221 |
+
total_q, num_heads, _ = q.shape
|
222 |
+
|
223 |
+
out = torch.empty_like(q)
|
224 |
+
softmax_lse = torch.empty((num_heads, total_q), dtype=torch.float32, device=q.device, layout=q.layout)
|
225 |
+
p = torch.empty((0,), dtype=q.dtype, device=q.device, layout=q.layout)
|
226 |
+
seqlen_q_rounded = round_multiple(max_seqlen_q, 128)
|
227 |
+
seqlen_k_rounded = round_multiple(max_seqlen_k, 128)
|
228 |
+
if return_softmax:
|
229 |
+
p = torch.empty((batch_size, num_heads, seqlen_q_rounded, seqlen_k_rounded), dtype=q.dtype, device=q.device, layout=q.layout)
|
230 |
+
rng_state = torch.empty((2,), dtype=torch.int64, device=q.device)
|
231 |
+
return out, softmax_lse, p, rng_state
|
232 |
+
|
233 |
+
|
234 |
+
if torch.__version__ >= "2.4.0":
|
235 |
+
_wrapped_flash_attn_varlen_forward = torch.ops.flash_attn._flash_attn_varlen_forward
|
236 |
+
else:
|
237 |
+
_wrapped_flash_attn_varlen_forward = _flash_attn_varlen_forward
|
238 |
+
|
239 |
+
|
240 |
+
@_torch_custom_op_wrapper("flash_attn::_flash_attn_backward", mutates_args=("dq", "dk", "dv"), device_types="cuda")
|
241 |
+
def _flash_attn_backward(
|
242 |
+
dout: torch.Tensor,
|
243 |
+
q: torch.Tensor,
|
244 |
+
k: torch.Tensor,
|
245 |
+
v: torch.Tensor,
|
246 |
+
out: torch.Tensor,
|
247 |
+
softmax_lse: torch.Tensor,
|
248 |
+
dq: Optional[torch.Tensor],
|
249 |
+
dk: Optional[torch.Tensor],
|
250 |
+
dv: Optional[torch.Tensor],
|
251 |
+
dropout_p: float,
|
252 |
+
softmax_scale: float,
|
253 |
+
causal: bool,
|
254 |
+
window_size_left: int,
|
255 |
+
window_size_right: int,
|
256 |
+
softcap: float,
|
257 |
+
alibi_slopes: Optional[torch.Tensor],
|
258 |
+
deterministic: bool,
|
259 |
+
rng_state: Optional[torch.Tensor] = None,
|
260 |
+
) -> torch.Tensor:
|
261 |
+
# dq, dk, dv are allocated by us so they should already be contiguous
|
262 |
+
dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
|
263 |
+
(
|
264 |
+
dq,
|
265 |
+
dk,
|
266 |
+
dv,
|
267 |
+
softmax_d,
|
268 |
+
) = flash_attn_gpu.bwd(
|
269 |
+
dout,
|
270 |
+
q,
|
271 |
+
k,
|
272 |
+
v,
|
273 |
+
out,
|
274 |
+
softmax_lse,
|
275 |
+
dq,
|
276 |
+
dk,
|
277 |
+
dv,
|
278 |
+
alibi_slopes,
|
279 |
+
dropout_p,
|
280 |
+
softmax_scale,
|
281 |
+
causal,
|
282 |
+
window_size_left,
|
283 |
+
window_size_right,
|
284 |
+
softcap,
|
285 |
+
deterministic,
|
286 |
+
None,
|
287 |
+
rng_state,
|
288 |
+
)
|
289 |
+
return softmax_d
|
290 |
+
|
291 |
+
|
292 |
+
@_torch_register_fake_wrapper("flash_attn::_flash_attn_backward")
|
293 |
+
def _flash_attn_backward_fake(
|
294 |
+
dout: torch.Tensor,
|
295 |
+
q: torch.Tensor,
|
296 |
+
k: torch.Tensor,
|
297 |
+
v: torch.Tensor,
|
298 |
+
out: torch.Tensor,
|
299 |
+
softmax_lse: torch.Tensor,
|
300 |
+
dq: Optional[torch.Tensor],
|
301 |
+
dk: Optional[torch.Tensor],
|
302 |
+
dv: Optional[torch.Tensor],
|
303 |
+
dropout_p: float,
|
304 |
+
softmax_scale: float,
|
305 |
+
causal: bool,
|
306 |
+
window_size_left: int,
|
307 |
+
window_size_right: int,
|
308 |
+
softcap: float,
|
309 |
+
alibi_slopes: Optional[torch.Tensor],
|
310 |
+
deterministic: bool,
|
311 |
+
rng_state: Optional[torch.Tensor] = None,
|
312 |
+
) -> torch.Tensor:
|
313 |
+
dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
|
314 |
+
if dq is None:
|
315 |
+
dq = torch.empty_like(q)
|
316 |
+
if dk is None:
|
317 |
+
dk = torch.empty_like(k)
|
318 |
+
if dv is None:
|
319 |
+
dv = torch.empty_like(v)
|
320 |
+
batch_size, seqlen_q, num_heads, _ = q.shape
|
321 |
+
softmax_d = torch.empty((batch_size, num_heads, round_multiple(seqlen_q, 128)), device=q.device, dtype=torch.float32)
|
322 |
+
|
323 |
+
return softmax_d
|
324 |
+
|
325 |
+
|
326 |
+
if torch.__version__ >= "2.4.0":
|
327 |
+
_wrapped_flash_attn_backward = torch.ops.flash_attn._flash_attn_backward
|
328 |
+
else:
|
329 |
+
_wrapped_flash_attn_backward = _flash_attn_backward
|
330 |
+
|
331 |
+
|
332 |
+
@_torch_custom_op_wrapper("flash_attn::_flash_attn_varlen_backward", mutates_args=("dq", "dk", "dv"), device_types="cuda")
|
333 |
+
def _flash_attn_varlen_backward(
|
334 |
+
dout: torch.Tensor,
|
335 |
+
q: torch.Tensor,
|
336 |
+
k: torch.Tensor,
|
337 |
+
v: torch.Tensor,
|
338 |
+
out: torch.Tensor,
|
339 |
+
softmax_lse: torch.Tensor,
|
340 |
+
dq: Optional[torch.Tensor],
|
341 |
+
dk: Optional[torch.Tensor],
|
342 |
+
dv: Optional[torch.Tensor],
|
343 |
+
cu_seqlens_q: torch.Tensor,
|
344 |
+
cu_seqlens_k: torch.Tensor,
|
345 |
+
max_seqlen_q: int,
|
346 |
+
max_seqlen_k: int,
|
347 |
+
dropout_p: float,
|
348 |
+
softmax_scale: float,
|
349 |
+
causal: bool,
|
350 |
+
window_size_left: int,
|
351 |
+
window_size_right: int,
|
352 |
+
softcap: float,
|
353 |
+
alibi_slopes: Optional[torch.Tensor],
|
354 |
+
deterministic: bool,
|
355 |
+
rng_state: Optional[torch.Tensor] = None,
|
356 |
+
zero_tensors: bool = False,
|
357 |
+
) -> torch.Tensor:
|
358 |
+
# dq, dk, dv are allocated by us so they should already be contiguous
|
359 |
+
dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
|
360 |
+
(
|
361 |
+
dq,
|
362 |
+
dk,
|
363 |
+
dv,
|
364 |
+
softmax_d,
|
365 |
+
) = flash_attn_gpu.varlen_bwd(
|
366 |
+
dout,
|
367 |
+
q,
|
368 |
+
k,
|
369 |
+
v,
|
370 |
+
out,
|
371 |
+
softmax_lse,
|
372 |
+
dq,
|
373 |
+
dk,
|
374 |
+
dv,
|
375 |
+
cu_seqlens_q,
|
376 |
+
cu_seqlens_k,
|
377 |
+
alibi_slopes,
|
378 |
+
max_seqlen_q,
|
379 |
+
max_seqlen_k,
|
380 |
+
dropout_p,
|
381 |
+
softmax_scale,
|
382 |
+
zero_tensors,
|
383 |
+
causal,
|
384 |
+
window_size_left,
|
385 |
+
window_size_right,
|
386 |
+
softcap,
|
387 |
+
deterministic,
|
388 |
+
None,
|
389 |
+
rng_state,
|
390 |
+
)
|
391 |
+
# if dk.isnan().any() or dk.isnan().any() or dv.isnan().any() or softmax_d.isnan().any():
|
392 |
+
# breakpoint()
|
393 |
+
return softmax_d
|
394 |
+
|
395 |
+
|
396 |
+
@_torch_register_fake_wrapper("flash_attn::_flash_attn_varlen_backward")
|
397 |
+
def _flash_attn_varlen_backward_fake(
|
398 |
+
dout: torch.Tensor,
|
399 |
+
q: torch.Tensor,
|
400 |
+
k: torch.Tensor,
|
401 |
+
v: torch.Tensor,
|
402 |
+
out: torch.Tensor,
|
403 |
+
softmax_lse: torch.Tensor,
|
404 |
+
dq: Optional[torch.Tensor],
|
405 |
+
dk: Optional[torch.Tensor],
|
406 |
+
dv: Optional[torch.Tensor],
|
407 |
+
cu_seqlens_q: torch.Tensor,
|
408 |
+
cu_seqlens_k: torch.Tensor,
|
409 |
+
max_seqlen_q: int,
|
410 |
+
max_seqlen_k: int,
|
411 |
+
dropout_p: float,
|
412 |
+
softmax_scale: float,
|
413 |
+
causal: bool,
|
414 |
+
window_size_left: int,
|
415 |
+
window_size_right: int,
|
416 |
+
softcap: float,
|
417 |
+
alibi_slopes: Optional[torch.Tensor],
|
418 |
+
deterministic: bool,
|
419 |
+
rng_state: Optional[torch.Tensor] = None,
|
420 |
+
zero_tensors: bool = False,
|
421 |
+
) -> torch.Tensor:
|
422 |
+
dout, q, k, v, out = [maybe_contiguous(x) for x in (dout, q, k, v, out)]
|
423 |
+
batch_size = cu_seqlens_q.numel() - 1
|
424 |
+
total_q, num_heads, _ = q.shape
|
425 |
+
|
426 |
+
if dq is None:
|
427 |
+
dq = torch.empty_like(q)
|
428 |
+
if dk is None:
|
429 |
+
dk = torch.empty_like(k)
|
430 |
+
if dv is None:
|
431 |
+
dv = torch.empty_like(v)
|
432 |
+
softmax_d = torch.empty((num_heads, total_q + 128 * batch_size), device=q.device, dtype=torch.float32)
|
433 |
+
|
434 |
+
return softmax_d
|
435 |
+
|
436 |
+
|
437 |
+
if torch.__version__ >= "2.4.0":
|
438 |
+
_wrapped_flash_attn_varlen_backward = torch.ops.flash_attn._flash_attn_varlen_backward
|
439 |
+
else:
|
440 |
+
_wrapped_flash_attn_varlen_backward = _flash_attn_varlen_backward
|
441 |
+
|
442 |
+
|
443 |
+
class FlashAttnQKVPackedFunc(torch.autograd.Function):
|
444 |
+
@staticmethod
|
445 |
+
def forward(
|
446 |
+
ctx,
|
447 |
+
qkv,
|
448 |
+
dropout_p,
|
449 |
+
softmax_scale,
|
450 |
+
causal,
|
451 |
+
window_size,
|
452 |
+
softcap,
|
453 |
+
alibi_slopes,
|
454 |
+
deterministic,
|
455 |
+
return_softmax,
|
456 |
+
is_grad_enabled,
|
457 |
+
):
|
458 |
+
is_grad = is_grad_enabled and qkv.requires_grad
|
459 |
+
if softmax_scale is None:
|
460 |
+
softmax_scale = qkv.shape[-1] ** (-0.5)
|
461 |
+
q, k, v = qkv[:, :, 0].detach(), qkv[:, :, 1].detach(), qkv[:, :, 2].detach()
|
462 |
+
head_size_og = q.size(3)
|
463 |
+
if head_size_og % 8 != 0:
|
464 |
+
q = torch.nn.functional.pad(q, [0, 8 - head_size_og % 8])
|
465 |
+
k = torch.nn.functional.pad(k, [0, 8 - head_size_og % 8])
|
466 |
+
v = torch.nn.functional.pad(v, [0, 8 - head_size_og % 8])
|
467 |
+
out_padded, softmax_lse, S_dmask, rng_state = _wrapped_flash_attn_forward(
|
468 |
+
q,
|
469 |
+
k,
|
470 |
+
v,
|
471 |
+
dropout_p,
|
472 |
+
softmax_scale,
|
473 |
+
causal=causal,
|
474 |
+
window_size_left=window_size[0],
|
475 |
+
window_size_right=window_size[1],
|
476 |
+
softcap=softcap,
|
477 |
+
alibi_slopes=alibi_slopes,
|
478 |
+
return_softmax=return_softmax and dropout_p > 0,
|
479 |
+
)
|
480 |
+
if is_grad:
|
481 |
+
ctx.save_for_backward(q, k, v, out_padded, softmax_lse, rng_state)
|
482 |
+
ctx.dropout_p = dropout_p
|
483 |
+
ctx.softmax_scale = softmax_scale
|
484 |
+
ctx.causal = causal
|
485 |
+
ctx.window_size = window_size
|
486 |
+
ctx.softcap = softcap
|
487 |
+
ctx.alibi_slopes = alibi_slopes
|
488 |
+
ctx.deterministic = deterministic
|
489 |
+
out = out_padded[..., :head_size_og]
|
490 |
+
return out if not return_softmax else (out, softmax_lse, S_dmask)
|
491 |
+
|
492 |
+
@staticmethod
|
493 |
+
def backward(ctx, dout, *args):
|
494 |
+
q, k, v, out, softmax_lse, rng_state = ctx.saved_tensors
|
495 |
+
qkv_shape = q.shape[:-2] + (3, *q.shape[-2:])
|
496 |
+
dqkv = torch.empty(qkv_shape, dtype=q.dtype, device=q.device)
|
497 |
+
head_size_og = dout.size(3)
|
498 |
+
dout_padded = dout
|
499 |
+
if head_size_og % 8 != 0:
|
500 |
+
dout_padded = torch.nn.functional.pad(dout, [0, 8 - head_size_og % 8])
|
501 |
+
_wrapped_flash_attn_backward(
|
502 |
+
dout_padded,
|
503 |
+
q,
|
504 |
+
k,
|
505 |
+
v,
|
506 |
+
out,
|
507 |
+
softmax_lse,
|
508 |
+
dqkv[:, :, 0],
|
509 |
+
dqkv[:, :, 1],
|
510 |
+
dqkv[:, :, 2],
|
511 |
+
ctx.dropout_p,
|
512 |
+
ctx.softmax_scale,
|
513 |
+
ctx.causal,
|
514 |
+
ctx.window_size[0],
|
515 |
+
ctx.window_size[1],
|
516 |
+
ctx.softcap,
|
517 |
+
ctx.alibi_slopes,
|
518 |
+
ctx.deterministic,
|
519 |
+
rng_state=rng_state,
|
520 |
+
)
|
521 |
+
dqkv = dqkv[..., : dout.shape[-1]] # We could have padded the head dimension
|
522 |
+
return dqkv, None, None, None, None, None, None, None, None, None
|
523 |
+
|
524 |
+
|
525 |
+
class FlashAttnVarlenQKVPackedFunc(torch.autograd.Function):
|
526 |
+
@staticmethod
|
527 |
+
def forward(
|
528 |
+
ctx,
|
529 |
+
qkv,
|
530 |
+
cu_seqlens,
|
531 |
+
max_seqlen,
|
532 |
+
dropout_p,
|
533 |
+
softmax_scale,
|
534 |
+
causal,
|
535 |
+
window_size,
|
536 |
+
softcap,
|
537 |
+
alibi_slopes,
|
538 |
+
deterministic,
|
539 |
+
return_softmax,
|
540 |
+
is_grad_enabled,
|
541 |
+
):
|
542 |
+
is_grad = is_grad_enabled and qkv.requires_grad
|
543 |
+
if softmax_scale is None:
|
544 |
+
softmax_scale = qkv.shape[-1] ** (-0.5)
|
545 |
+
q, k, v = qkv[:, 0].detach(), qkv[:, 1].detach(), qkv[:, 2].detach()
|
546 |
+
head_size_og = q.size(2)
|
547 |
+
if head_size_og % 8 != 0:
|
548 |
+
q = torch.nn.functional.pad(q, [0, 8 - head_size_og % 8])
|
549 |
+
k = torch.nn.functional.pad(k, [0, 8 - head_size_og % 8])
|
550 |
+
v = torch.nn.functional.pad(v, [0, 8 - head_size_og % 8])
|
551 |
+
out_padded, softmax_lse, S_dmask, rng_state = _wrapped_flash_attn_varlen_forward(
|
552 |
+
q,
|
553 |
+
k,
|
554 |
+
v,
|
555 |
+
cu_seqlens,
|
556 |
+
cu_seqlens,
|
557 |
+
max_seqlen,
|
558 |
+
max_seqlen,
|
559 |
+
dropout_p,
|
560 |
+
softmax_scale,
|
561 |
+
causal=causal,
|
562 |
+
window_size_left=window_size[0],
|
563 |
+
window_size_right=window_size[1],
|
564 |
+
softcap=softcap,
|
565 |
+
alibi_slopes=alibi_slopes,
|
566 |
+
return_softmax=return_softmax and dropout_p > 0,
|
567 |
+
block_table=None,
|
568 |
+
)
|
569 |
+
if is_grad:
|
570 |
+
ctx.save_for_backward(q, k, v, out_padded, softmax_lse, cu_seqlens, rng_state)
|
571 |
+
ctx.dropout_p = dropout_p
|
572 |
+
ctx.max_seqlen = max_seqlen
|
573 |
+
ctx.softmax_scale = softmax_scale
|
574 |
+
ctx.causal = causal
|
575 |
+
ctx.window_size = window_size
|
576 |
+
ctx.softcap = softcap
|
577 |
+
ctx.alibi_slopes = alibi_slopes
|
578 |
+
ctx.deterministic = deterministic
|
579 |
+
out = out_padded[..., :head_size_og]
|
580 |
+
return out if not return_softmax else (out, softmax_lse, S_dmask)
|
581 |
+
|
582 |
+
@staticmethod
|
583 |
+
def backward(ctx, dout, *args):
|
584 |
+
q, k, v, out, softmax_lse, cu_seqlens, rng_state = ctx.saved_tensors
|
585 |
+
qkv_shape = q.shape[:-2] + (3, *q.shape[-2:])
|
586 |
+
dqkv = torch.empty(qkv_shape, dtype=q.dtype, device=q.device)
|
587 |
+
head_size_og = dout.size(2)
|
588 |
+
dout_padded = dout
|
589 |
+
if head_size_og % 8 != 0:
|
590 |
+
dout_padded = torch.nn.functional.pad(dout, [0, 8 - head_size_og % 8])
|
591 |
+
_wrapped_flash_attn_varlen_backward(
|
592 |
+
dout_padded,
|
593 |
+
q,
|
594 |
+
k,
|
595 |
+
v,
|
596 |
+
out,
|
597 |
+
softmax_lse,
|
598 |
+
dqkv[:, 0],
|
599 |
+
dqkv[:, 1],
|
600 |
+
dqkv[:, 2],
|
601 |
+
cu_seqlens,
|
602 |
+
cu_seqlens,
|
603 |
+
ctx.max_seqlen,
|
604 |
+
ctx.max_seqlen,
|
605 |
+
ctx.dropout_p,
|
606 |
+
ctx.softmax_scale,
|
607 |
+
ctx.causal,
|
608 |
+
ctx.window_size[0],
|
609 |
+
ctx.window_size[1],
|
610 |
+
ctx.softcap,
|
611 |
+
ctx.alibi_slopes,
|
612 |
+
ctx.deterministic,
|
613 |
+
rng_state=rng_state,
|
614 |
+
)
|
615 |
+
dqkv = dqkv[..., : dout.shape[-1]] # We could have padded the head dimension
|
616 |
+
return dqkv, None, None, None, None, None, None, None, None, None, None, None
|
617 |
+
|
618 |
+
|
619 |
+
class FlashAttnKVPackedFunc(torch.autograd.Function):
|
620 |
+
@staticmethod
|
621 |
+
def forward(
|
622 |
+
ctx,
|
623 |
+
q,
|
624 |
+
kv,
|
625 |
+
dropout_p,
|
626 |
+
softmax_scale,
|
627 |
+
causal,
|
628 |
+
window_size,
|
629 |
+
softcap,
|
630 |
+
alibi_slopes,
|
631 |
+
deterministic,
|
632 |
+
return_softmax,
|
633 |
+
is_grad_enabled,
|
634 |
+
):
|
635 |
+
is_grad = is_grad_enabled and any(
|
636 |
+
x.requires_grad for x in [q, kv]
|
637 |
+
)
|
638 |
+
if softmax_scale is None:
|
639 |
+
softmax_scale = q.shape[-1] ** (-0.5)
|
640 |
+
k, v = kv[:, :, 0].detach(), kv[:, :, 1].detach()
|
641 |
+
head_size_og = q.size(3)
|
642 |
+
if head_size_og % 8 != 0:
|
643 |
+
q = torch.nn.functional.pad(q, [0, 8 - head_size_og % 8])
|
644 |
+
k = torch.nn.functional.pad(k, [0, 8 - head_size_og % 8])
|
645 |
+
v = torch.nn.functional.pad(v, [0, 8 - head_size_og % 8])
|
646 |
+
out_padded, softmax_lse, S_dmask, rng_state = _wrapped_flash_attn_forward(
|
647 |
+
q,
|
648 |
+
k,
|
649 |
+
v,
|
650 |
+
dropout_p,
|
651 |
+
softmax_scale,
|
652 |
+
causal=causal,
|
653 |
+
window_size_left=window_size[0],
|
654 |
+
window_size_right=window_size[1],
|
655 |
+
softcap=softcap,
|
656 |
+
alibi_slopes=alibi_slopes,
|
657 |
+
return_softmax=return_softmax and dropout_p > 0,
|
658 |
+
)
|
659 |
+
if is_grad:
|
660 |
+
ctx.save_for_backward(q, k, v, out_padded, softmax_lse, rng_state)
|
661 |
+
ctx.dropout_p = dropout_p
|
662 |
+
ctx.softmax_scale = softmax_scale
|
663 |
+
ctx.causal = causal
|
664 |
+
ctx.window_size = window_size
|
665 |
+
ctx.softcap = softcap
|
666 |
+
ctx.alibi_slopes = alibi_slopes
|
667 |
+
ctx.deterministic = deterministic
|
668 |
+
out = out_padded[..., :head_size_og]
|
669 |
+
return out if not return_softmax else (out, softmax_lse, S_dmask)
|
670 |
+
|
671 |
+
@staticmethod
|
672 |
+
def backward(ctx, dout, *args):
|
673 |
+
q, k, v, out, softmax_lse, rng_state = ctx.saved_tensors
|
674 |
+
dq = torch.empty_like(q)
|
675 |
+
kv_shape = k.shape[:-2] + (2, *k.shape[-2:])
|
676 |
+
dkv = torch.empty(kv_shape, dtype=k.dtype, device=k.device)
|
677 |
+
head_size_og = dout.size(3)
|
678 |
+
dout_padded = dout
|
679 |
+
if head_size_og % 8 != 0:
|
680 |
+
dout_padded = torch.nn.functional.pad(dout, [0, 8 - head_size_og % 8])
|
681 |
+
_wrapped_flash_attn_backward(
|
682 |
+
dout_padded,
|
683 |
+
q,
|
684 |
+
k,
|
685 |
+
v,
|
686 |
+
out,
|
687 |
+
softmax_lse,
|
688 |
+
dq,
|
689 |
+
dkv[:, :, 0],
|
690 |
+
dkv[:, :, 1],
|
691 |
+
ctx.dropout_p,
|
692 |
+
ctx.softmax_scale,
|
693 |
+
ctx.causal,
|
694 |
+
ctx.window_size[0],
|
695 |
+
ctx.window_size[1],
|
696 |
+
ctx.softcap,
|
697 |
+
ctx.alibi_slopes,
|
698 |
+
ctx.deterministic,
|
699 |
+
rng_state=rng_state,
|
700 |
+
)
|
701 |
+
dq = dq[..., : dout.shape[-1]] # We could have padded the head dimension
|
702 |
+
dkv = dkv[..., : dout.shape[-1]]
|
703 |
+
return dq, dkv, None, None, None, None, None, None, None, None, None
|
704 |
+
|
705 |
+
|
706 |
+
class FlashAttnVarlenKVPackedFunc(torch.autograd.Function):
|
707 |
+
@staticmethod
|
708 |
+
def forward(
|
709 |
+
ctx,
|
710 |
+
q,
|
711 |
+
kv,
|
712 |
+
cu_seqlens_q,
|
713 |
+
cu_seqlens_k,
|
714 |
+
max_seqlen_q,
|
715 |
+
max_seqlen_k,
|
716 |
+
dropout_p,
|
717 |
+
softmax_scale,
|
718 |
+
causal,
|
719 |
+
window_size,
|
720 |
+
softcap,
|
721 |
+
alibi_slopes,
|
722 |
+
deterministic,
|
723 |
+
return_softmax,
|
724 |
+
is_grad_enabled,
|
725 |
+
):
|
726 |
+
is_grad = is_grad_enabled and any(
|
727 |
+
x.requires_grad for x in [q, kv]
|
728 |
+
)
|
729 |
+
if softmax_scale is None:
|
730 |
+
softmax_scale = q.shape[-1] ** (-0.5)
|
731 |
+
k, v = kv[:, 0].detach(), kv[:, 1].detach()
|
732 |
+
head_size_og = q.size(2)
|
733 |
+
if head_size_og % 8 != 0:
|
734 |
+
q = torch.nn.functional.pad(q, [0, 8 - head_size_og % 8])
|
735 |
+
k = torch.nn.functional.pad(k, [0, 8 - head_size_og % 8])
|
736 |
+
v = torch.nn.functional.pad(v, [0, 8 - head_size_og % 8])
|
737 |
+
out_padded, softmax_lse, S_dmask, rng_state = _wrapped_flash_attn_varlen_forward(
|
738 |
+
q,
|
739 |
+
k,
|
740 |
+
v,
|
741 |
+
cu_seqlens_q,
|
742 |
+
cu_seqlens_k,
|
743 |
+
max_seqlen_q,
|
744 |
+
max_seqlen_k,
|
745 |
+
dropout_p,
|
746 |
+
softmax_scale,
|
747 |
+
causal=causal,
|
748 |
+
window_size_left=window_size[0],
|
749 |
+
window_size_right=window_size[1],
|
750 |
+
softcap=softcap,
|
751 |
+
alibi_slopes=alibi_slopes,
|
752 |
+
return_softmax=return_softmax and dropout_p > 0,
|
753 |
+
block_table=None,
|
754 |
+
)
|
755 |
+
if is_grad:
|
756 |
+
ctx.save_for_backward(
|
757 |
+
q, k, v, out_padded, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state
|
758 |
+
)
|
759 |
+
ctx.dropout_p = dropout_p
|
760 |
+
ctx.max_seqlen_q = max_seqlen_q
|
761 |
+
ctx.max_seqlen_k = max_seqlen_k
|
762 |
+
ctx.softmax_scale = softmax_scale
|
763 |
+
ctx.causal = causal
|
764 |
+
ctx.window_size = window_size
|
765 |
+
ctx.softcap = softcap
|
766 |
+
ctx.alibi_slopes = alibi_slopes
|
767 |
+
ctx.deterministic = deterministic
|
768 |
+
out = out_padded[..., :head_size_og]
|
769 |
+
return out if not return_softmax else (out, softmax_lse, S_dmask)
|
770 |
+
|
771 |
+
@staticmethod
|
772 |
+
def backward(ctx, dout, *args):
|
773 |
+
q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state = ctx.saved_tensors
|
774 |
+
dq = torch.empty_like(q)
|
775 |
+
kv_shape = k.shape[:-2] + (2, *k.shape[-2:])
|
776 |
+
dkv = torch.empty(kv_shape, dtype=k.dtype, device=k.device)
|
777 |
+
head_size_og = dout.size(2)
|
778 |
+
dout_padded = dout
|
779 |
+
if head_size_og % 8 != 0:
|
780 |
+
dout_padded = torch.nn.functional.pad(dout, [0, 8 - head_size_og % 8])
|
781 |
+
_wrapped_flash_attn_varlen_backward(
|
782 |
+
dout_padded,
|
783 |
+
q,
|
784 |
+
k,
|
785 |
+
v,
|
786 |
+
out,
|
787 |
+
softmax_lse,
|
788 |
+
dq,
|
789 |
+
dkv[:, 0],
|
790 |
+
dkv[:, 1],
|
791 |
+
cu_seqlens_q,
|
792 |
+
cu_seqlens_k,
|
793 |
+
ctx.max_seqlen_q,
|
794 |
+
ctx.max_seqlen_k,
|
795 |
+
ctx.dropout_p,
|
796 |
+
ctx.softmax_scale,
|
797 |
+
ctx.causal,
|
798 |
+
ctx.window_size[0],
|
799 |
+
ctx.window_size[1],
|
800 |
+
ctx.softcap,
|
801 |
+
ctx.alibi_slopes,
|
802 |
+
ctx.deterministic,
|
803 |
+
rng_state=rng_state,
|
804 |
+
)
|
805 |
+
dq = dq[..., : dout.shape[-1]] # We could have padded the head dimension
|
806 |
+
dkv = dkv[..., : dout.shape[-1]]
|
807 |
+
return dq, dkv, None, None, None, None, None, None, None, None, None, None, None, None, None
|
808 |
+
|
809 |
+
|
810 |
+
class FlashAttnFunc(torch.autograd.Function):
|
811 |
+
@staticmethod
|
812 |
+
def forward(
|
813 |
+
ctx,
|
814 |
+
q,
|
815 |
+
k,
|
816 |
+
v,
|
817 |
+
dropout_p,
|
818 |
+
softmax_scale,
|
819 |
+
causal,
|
820 |
+
window_size,
|
821 |
+
softcap,
|
822 |
+
alibi_slopes,
|
823 |
+
deterministic,
|
824 |
+
return_softmax,
|
825 |
+
is_grad_enabled,
|
826 |
+
):
|
827 |
+
is_grad = is_grad_enabled and any(
|
828 |
+
x.requires_grad for x in [q, k, v]
|
829 |
+
)
|
830 |
+
if softmax_scale is None:
|
831 |
+
softmax_scale = q.shape[-1] ** (-0.5)
|
832 |
+
head_size_og = q.size(3)
|
833 |
+
if head_size_og % 8 != 0:
|
834 |
+
q = torch.nn.functional.pad(q, [0, 8 - head_size_og % 8])
|
835 |
+
k = torch.nn.functional.pad(k, [0, 8 - head_size_og % 8])
|
836 |
+
v = torch.nn.functional.pad(v, [0, 8 - head_size_og % 8])
|
837 |
+
out_padded, softmax_lse, S_dmask, rng_state = _wrapped_flash_attn_forward(
|
838 |
+
q,
|
839 |
+
k,
|
840 |
+
v,
|
841 |
+
dropout_p,
|
842 |
+
softmax_scale,
|
843 |
+
causal=causal,
|
844 |
+
window_size_left=window_size[0],
|
845 |
+
window_size_right=window_size[1],
|
846 |
+
softcap=softcap,
|
847 |
+
alibi_slopes=alibi_slopes,
|
848 |
+
return_softmax=return_softmax and dropout_p > 0,
|
849 |
+
)
|
850 |
+
if is_grad:
|
851 |
+
ctx.save_for_backward(q, k, v, out_padded, softmax_lse, rng_state)
|
852 |
+
ctx.dropout_p = dropout_p
|
853 |
+
ctx.softmax_scale = softmax_scale
|
854 |
+
ctx.causal = causal
|
855 |
+
ctx.window_size = window_size
|
856 |
+
ctx.softcap = softcap
|
857 |
+
ctx.alibi_slopes = alibi_slopes
|
858 |
+
ctx.deterministic = deterministic
|
859 |
+
out = out_padded[..., :head_size_og]
|
860 |
+
return out if not return_softmax else (out, softmax_lse, S_dmask)
|
861 |
+
|
862 |
+
@staticmethod
|
863 |
+
def backward(ctx, dout, *args):
|
864 |
+
q, k, v, out, softmax_lse, rng_state = ctx.saved_tensors
|
865 |
+
dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
|
866 |
+
head_size_og = dout.size(3)
|
867 |
+
dout_padded = dout
|
868 |
+
if head_size_og % 8 != 0:
|
869 |
+
dout_padded = torch.nn.functional.pad(dout, [0, 8 - head_size_og % 8])
|
870 |
+
_wrapped_flash_attn_backward(
|
871 |
+
dout_padded,
|
872 |
+
q,
|
873 |
+
k,
|
874 |
+
v,
|
875 |
+
out,
|
876 |
+
softmax_lse,
|
877 |
+
dq,
|
878 |
+
dk,
|
879 |
+
dv,
|
880 |
+
ctx.dropout_p,
|
881 |
+
ctx.softmax_scale,
|
882 |
+
ctx.causal,
|
883 |
+
ctx.window_size[0],
|
884 |
+
ctx.window_size[1],
|
885 |
+
ctx.softcap,
|
886 |
+
ctx.alibi_slopes,
|
887 |
+
ctx.deterministic,
|
888 |
+
rng_state=rng_state,
|
889 |
+
)
|
890 |
+
dq = dq[..., : dout.shape[-1]] # We could have padded the head dimension
|
891 |
+
dk = dk[..., : dout.shape[-1]]
|
892 |
+
dv = dv[..., : dout.shape[-1]]
|
893 |
+
return dq, dk, dv, None, None, None, None, None, None, None, None, None
|
894 |
+
|
895 |
+
|
896 |
+
class FlashAttnVarlenFunc(torch.autograd.Function):
|
897 |
+
@staticmethod
|
898 |
+
def forward(
|
899 |
+
ctx,
|
900 |
+
q,
|
901 |
+
k,
|
902 |
+
v,
|
903 |
+
cu_seqlens_q,
|
904 |
+
cu_seqlens_k,
|
905 |
+
max_seqlen_q,
|
906 |
+
max_seqlen_k,
|
907 |
+
dropout_p,
|
908 |
+
softmax_scale,
|
909 |
+
causal,
|
910 |
+
window_size,
|
911 |
+
softcap,
|
912 |
+
alibi_slopes,
|
913 |
+
deterministic,
|
914 |
+
return_softmax,
|
915 |
+
block_table,
|
916 |
+
is_grad_enabled,
|
917 |
+
):
|
918 |
+
is_grad = is_grad_enabled and any(
|
919 |
+
x.requires_grad for x in [q, k, v]
|
920 |
+
)
|
921 |
+
if softmax_scale is None:
|
922 |
+
softmax_scale = q.shape[-1] ** (-0.5)
|
923 |
+
head_size_og = q.size(2)
|
924 |
+
if head_size_og % 8 != 0:
|
925 |
+
q = torch.nn.functional.pad(q, [0, 8 - head_size_og % 8])
|
926 |
+
k = torch.nn.functional.pad(k, [0, 8 - head_size_og % 8])
|
927 |
+
v = torch.nn.functional.pad(v, [0, 8 - head_size_og % 8])
|
928 |
+
out_padded, softmax_lse, S_dmask, rng_state = _wrapped_flash_attn_varlen_forward(
|
929 |
+
q,
|
930 |
+
k,
|
931 |
+
v,
|
932 |
+
cu_seqlens_q,
|
933 |
+
cu_seqlens_k,
|
934 |
+
max_seqlen_q,
|
935 |
+
max_seqlen_k,
|
936 |
+
dropout_p,
|
937 |
+
softmax_scale,
|
938 |
+
causal=causal,
|
939 |
+
window_size_left=window_size[0],
|
940 |
+
window_size_right=window_size[1],
|
941 |
+
softcap=softcap,
|
942 |
+
alibi_slopes=alibi_slopes,
|
943 |
+
return_softmax=return_softmax and dropout_p > 0,
|
944 |
+
block_table=block_table,
|
945 |
+
)
|
946 |
+
if is_grad:
|
947 |
+
ctx.save_for_backward(
|
948 |
+
q, k, v, out_padded, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state
|
949 |
+
)
|
950 |
+
ctx.dropout_p = dropout_p
|
951 |
+
ctx.max_seqlen_q = max_seqlen_q
|
952 |
+
ctx.max_seqlen_k = max_seqlen_k
|
953 |
+
ctx.softmax_scale = softmax_scale
|
954 |
+
ctx.causal = causal
|
955 |
+
ctx.window_size = window_size
|
956 |
+
ctx.softcap = softcap
|
957 |
+
ctx.alibi_slopes = alibi_slopes
|
958 |
+
ctx.deterministic = deterministic
|
959 |
+
|
960 |
+
out = out_padded[..., :head_size_og]
|
961 |
+
return out if not return_softmax else (out, softmax_lse, S_dmask)
|
962 |
+
|
963 |
+
@staticmethod
|
964 |
+
def backward(ctx, dout, *args):
|
965 |
+
q, k, v, out, softmax_lse, cu_seqlens_q, cu_seqlens_k, rng_state = ctx.saved_tensors
|
966 |
+
dq, dk, dv = torch.empty_like(q), torch.empty_like(k), torch.empty_like(v)
|
967 |
+
head_size_og = dout.size(2)
|
968 |
+
dout_padded = dout
|
969 |
+
if head_size_og % 8 != 0:
|
970 |
+
dout_padded = torch.nn.functional.pad(dout, [0, 8 - head_size_og % 8])
|
971 |
+
_wrapped_flash_attn_varlen_backward(
|
972 |
+
dout_padded,
|
973 |
+
q,
|
974 |
+
k,
|
975 |
+
v,
|
976 |
+
out,
|
977 |
+
softmax_lse,
|
978 |
+
dq,
|
979 |
+
dk,
|
980 |
+
dv,
|
981 |
+
cu_seqlens_q,
|
982 |
+
cu_seqlens_k,
|
983 |
+
ctx.max_seqlen_q,
|
984 |
+
ctx.max_seqlen_k,
|
985 |
+
ctx.dropout_p,
|
986 |
+
ctx.softmax_scale,
|
987 |
+
ctx.causal,
|
988 |
+
ctx.window_size[0],
|
989 |
+
ctx.window_size[1],
|
990 |
+
ctx.softcap,
|
991 |
+
ctx.alibi_slopes,
|
992 |
+
ctx.deterministic,
|
993 |
+
rng_state=rng_state,
|
994 |
+
)
|
995 |
+
dq = dq[..., : dout.shape[-1]] # We could have padded the head dimension
|
996 |
+
dk = dk[..., : dout.shape[-1]]
|
997 |
+
dv = dv[..., : dout.shape[-1]]
|
998 |
+
return dq, dk, dv, None, None, None, None, None, None, None, None, None, None, None, None, None, None
|
999 |
+
|
1000 |
+
|
1001 |
+
def flash_attn_qkvpacked_func(
|
1002 |
+
qkv,
|
1003 |
+
dropout_p=0.0,
|
1004 |
+
softmax_scale=None,
|
1005 |
+
causal=False,
|
1006 |
+
window_size=(-1, -1), # -1 means infinite context window
|
1007 |
+
softcap=0.0, # <=0.0 means deactivate
|
1008 |
+
alibi_slopes=None,
|
1009 |
+
deterministic=False,
|
1010 |
+
return_attn_probs=False,
|
1011 |
+
):
|
1012 |
+
"""dropout_p should be set to 0.0 during evaluation
|
1013 |
+
If Q, K, V are already stacked into 1 tensor, this function will be faster than
|
1014 |
+
calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation
|
1015 |
+
of the gradients of Q, K, V.
|
1016 |
+
For multi-query and grouped-query attention (MQA/GQA), please see
|
1017 |
+
flash_attn_kvpacked_func and flash_attn_func.
|
1018 |
+
|
1019 |
+
If window_size != (-1, -1), implements sliding window local attention. Query at position i
|
1020 |
+
will only attend to keys between [i - window_size[0], i + window_size[1]] inclusive.
|
1021 |
+
|
1022 |
+
Arguments:
|
1023 |
+
qkv: (batch_size, seqlen, 3, nheads, headdim)
|
1024 |
+
dropout_p: float. Dropout probability.
|
1025 |
+
softmax_scale: float. The scaling of QK^T before applying softmax.
|
1026 |
+
Default to 1 / sqrt(headdim).
|
1027 |
+
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
|
1028 |
+
window_size: (left, right). If not (-1, -1), implements sliding window local attention.
|
1029 |
+
softcap: float. Anything > 0 activates softcapping attention.
|
1030 |
+
alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of (-alibi_slope * |i - j|) is added to
|
1031 |
+
the attention score of query i and key j.
|
1032 |
+
deterministic: bool. Whether to use the deterministic implementation of the backward pass,
|
1033 |
+
which is slightly slower and uses more memory. The forward pass is always deterministic.
|
1034 |
+
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
|
1035 |
+
testing only. The returned probabilities are not guaranteed to be correct
|
1036 |
+
(they might not have the right scaling).
|
1037 |
+
Return:
|
1038 |
+
out: (batch_size, seqlen, nheads, headdim).
|
1039 |
+
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
|
1040 |
+
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
|
1041 |
+
normalization factor).
|
1042 |
+
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
|
1043 |
+
The output of softmax (possibly with different scaling). It also encodes the dropout
|
1044 |
+
pattern (negative means that location was dropped, nonnegative means it was kept).
|
1045 |
+
"""
|
1046 |
+
return FlashAttnQKVPackedFunc.apply(
|
1047 |
+
qkv,
|
1048 |
+
dropout_p,
|
1049 |
+
softmax_scale,
|
1050 |
+
causal,
|
1051 |
+
window_size,
|
1052 |
+
softcap,
|
1053 |
+
alibi_slopes,
|
1054 |
+
deterministic,
|
1055 |
+
return_attn_probs,
|
1056 |
+
torch.is_grad_enabled(),
|
1057 |
+
)
|
1058 |
+
|
1059 |
+
|
1060 |
+
def flash_attn_kvpacked_func(
|
1061 |
+
q,
|
1062 |
+
kv,
|
1063 |
+
dropout_p=0.0,
|
1064 |
+
softmax_scale=None,
|
1065 |
+
causal=False,
|
1066 |
+
window_size=(-1, -1), # -1 means infinite context window
|
1067 |
+
softcap=0.0, # 0.0 means deactivated
|
1068 |
+
alibi_slopes=None,
|
1069 |
+
deterministic=False,
|
1070 |
+
return_attn_probs=False,
|
1071 |
+
):
|
1072 |
+
"""dropout_p should be set to 0.0 during evaluation
|
1073 |
+
If K, V are already stacked into 1 tensor, this function will be faster than
|
1074 |
+
calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation
|
1075 |
+
of the gradients of K, V.
|
1076 |
+
Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
|
1077 |
+
than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
|
1078 |
+
For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
|
1079 |
+
0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
|
1080 |
+
|
1081 |
+
If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
|
1082 |
+
For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
|
1083 |
+
1 1 1 1 0
|
1084 |
+
1 1 1 1 1
|
1085 |
+
If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
|
1086 |
+
0 0
|
1087 |
+
0 0
|
1088 |
+
0 0
|
1089 |
+
1 0
|
1090 |
+
1 1
|
1091 |
+
If the row of the mask is all zero, the output will be zero.
|
1092 |
+
|
1093 |
+
If window_size != (-1, -1), implements sliding window local attention. Query at position i
|
1094 |
+
will only attend to keys between
|
1095 |
+
[i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
|
1096 |
+
|
1097 |
+
Arguments:
|
1098 |
+
q: (batch_size, seqlen, nheads, headdim)
|
1099 |
+
kv: (batch_size, seqlen, 2, nheads_k, headdim)
|
1100 |
+
dropout_p: float. Dropout probability.
|
1101 |
+
softmax_scale: float. The scaling of QK^T before applying softmax.
|
1102 |
+
Default to 1 / sqrt(headdim).
|
1103 |
+
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
|
1104 |
+
window_size: (left, right). If not (-1, -1), implements sliding window local attention.
|
1105 |
+
softcap: float. Anything > 0 activates softcapping attention.
|
1106 |
+
alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
|
1107 |
+
(-alibi_slope * |i + seqlen_k - seqlen_q - j|)
|
1108 |
+
is added to the attention score of query i and key j.
|
1109 |
+
deterministic: bool. Whether to use the deterministic implementation of the backward pass,
|
1110 |
+
which is slightly slower and uses more memory. The forward pass is always deterministic.
|
1111 |
+
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
|
1112 |
+
testing only. The returned probabilities are not guaranteed to be correct
|
1113 |
+
(they might not have the right scaling).
|
1114 |
+
Return:
|
1115 |
+
out: (batch_size, seqlen, nheads, headdim).
|
1116 |
+
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
|
1117 |
+
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
|
1118 |
+
normalization factor).
|
1119 |
+
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
|
1120 |
+
The output of softmax (possibly with different scaling). It also encodes the dropout
|
1121 |
+
pattern (negative means that location was dropped, nonnegative means it was kept).
|
1122 |
+
"""
|
1123 |
+
return FlashAttnKVPackedFunc.apply(
|
1124 |
+
q,
|
1125 |
+
kv,
|
1126 |
+
dropout_p,
|
1127 |
+
softmax_scale,
|
1128 |
+
causal,
|
1129 |
+
window_size,
|
1130 |
+
softcap,
|
1131 |
+
alibi_slopes,
|
1132 |
+
deterministic,
|
1133 |
+
return_attn_probs,
|
1134 |
+
torch.is_grad_enabled(),
|
1135 |
+
)
|
1136 |
+
|
1137 |
+
|
1138 |
+
def flash_attn_func(
|
1139 |
+
q,
|
1140 |
+
k,
|
1141 |
+
v,
|
1142 |
+
dropout_p=0.0,
|
1143 |
+
softmax_scale=None,
|
1144 |
+
causal=False,
|
1145 |
+
window_size=(-1, -1), # -1 means infinite context window
|
1146 |
+
softcap=0.0, # 0.0 means deactivated
|
1147 |
+
alibi_slopes=None,
|
1148 |
+
deterministic=False,
|
1149 |
+
return_attn_probs=False,
|
1150 |
+
):
|
1151 |
+
"""dropout_p should be set to 0.0 during evaluation
|
1152 |
+
Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
|
1153 |
+
than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
|
1154 |
+
For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
|
1155 |
+
0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
|
1156 |
+
|
1157 |
+
If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
|
1158 |
+
For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
|
1159 |
+
1 1 1 1 0
|
1160 |
+
1 1 1 1 1
|
1161 |
+
If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
|
1162 |
+
0 0
|
1163 |
+
0 0
|
1164 |
+
0 0
|
1165 |
+
1 0
|
1166 |
+
1 1
|
1167 |
+
If the row of the mask is all zero, the output will be zero.
|
1168 |
+
|
1169 |
+
If window_size != (-1, -1), implements sliding window local attention. Query at position i
|
1170 |
+
will only attend to keys between
|
1171 |
+
[i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
|
1172 |
+
|
1173 |
+
Arguments:
|
1174 |
+
q: (batch_size, seqlen, nheads, headdim)
|
1175 |
+
k: (batch_size, seqlen, nheads_k, headdim)
|
1176 |
+
v: (batch_size, seqlen, nheads_k, headdim)
|
1177 |
+
dropout_p: float. Dropout probability.
|
1178 |
+
softmax_scale: float. The scaling of QK^T before applying softmax.
|
1179 |
+
Default to 1 / sqrt(headdim).
|
1180 |
+
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
|
1181 |
+
window_size: (left, right). If not (-1, -1), implements sliding window local attention.
|
1182 |
+
alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
|
1183 |
+
(-alibi_slope * |i + seqlen_k - seqlen_q - j|)
|
1184 |
+
is added to the attention score of query i and key j.
|
1185 |
+
deterministic: bool. Whether to use the deterministic implementation of the backward pass,
|
1186 |
+
which is slightly slower and uses more memory. The forward pass is always deterministic.
|
1187 |
+
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
|
1188 |
+
testing only. The returned probabilities are not guaranteed to be correct
|
1189 |
+
(they might not have the right scaling).
|
1190 |
+
Return:
|
1191 |
+
out: (batch_size, seqlen, nheads, headdim).
|
1192 |
+
softmax_lse [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen). The
|
1193 |
+
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
|
1194 |
+
normalization factor).
|
1195 |
+
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
|
1196 |
+
The output of softmax (possibly with different scaling). It also encodes the dropout
|
1197 |
+
pattern (negative means that location was dropped, nonnegative means it was kept).
|
1198 |
+
"""
|
1199 |
+
return FlashAttnFunc.apply(
|
1200 |
+
q,
|
1201 |
+
k,
|
1202 |
+
v,
|
1203 |
+
dropout_p,
|
1204 |
+
softmax_scale,
|
1205 |
+
causal,
|
1206 |
+
window_size,
|
1207 |
+
softcap,
|
1208 |
+
alibi_slopes,
|
1209 |
+
deterministic,
|
1210 |
+
return_attn_probs,
|
1211 |
+
torch.is_grad_enabled(),
|
1212 |
+
)
|
1213 |
+
|
1214 |
+
|
1215 |
+
def flash_attn_varlen_qkvpacked_func(
|
1216 |
+
qkv,
|
1217 |
+
cu_seqlens,
|
1218 |
+
max_seqlen,
|
1219 |
+
dropout_p=0.0,
|
1220 |
+
softmax_scale=None,
|
1221 |
+
causal=False,
|
1222 |
+
window_size=(-1, -1), # -1 means infinite context window
|
1223 |
+
softcap=0.0, # 0.0 means deactivated
|
1224 |
+
alibi_slopes=None,
|
1225 |
+
deterministic=False,
|
1226 |
+
return_attn_probs=False,
|
1227 |
+
):
|
1228 |
+
"""dropout_p should be set to 0.0 during evaluation
|
1229 |
+
If Q, K, V are already stacked into 1 tensor, this function will be faster than
|
1230 |
+
calling flash_attn_varlen_func on Q, K, V since the backward pass avoids explicit concatenation
|
1231 |
+
of the gradients of Q, K, V.
|
1232 |
+
For multi-query and grouped-query attention (MQA/GQA), please see
|
1233 |
+
flash_attn_varlen_kvpacked_func and flash_attn_varlen_func.
|
1234 |
+
|
1235 |
+
If window_size != (-1, -1), implements sliding window local attention. Query at position i
|
1236 |
+
will only attend to keys between [i - window_size[0], i + window_size[1]] inclusive.
|
1237 |
+
|
1238 |
+
Arguments:
|
1239 |
+
qkv: (total, 3, nheads, headdim), where total = total number of tokens in the batch.
|
1240 |
+
cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
1241 |
+
of the sequences in the batch, used to index into qkv.
|
1242 |
+
max_seqlen: int. Maximum sequence length in the batch.
|
1243 |
+
dropout_p: float. Dropout probability.
|
1244 |
+
softmax_scale: float. The scaling of QK^T before applying softmax.
|
1245 |
+
Default to 1 / sqrt(headdim).
|
1246 |
+
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
|
1247 |
+
window_size: (left, right). If not (-1, -1), implements sliding window local attention.
|
1248 |
+
softcap: float. Anything > 0 activates softcapping attention.
|
1249 |
+
alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of (-alibi_slope * |i - j|)
|
1250 |
+
is added to the attention score of query i and key j.
|
1251 |
+
deterministic: bool. Whether to use the deterministic implementation of the backward pass,
|
1252 |
+
which is slightly slower and uses more memory. The forward pass is always deterministic.
|
1253 |
+
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
|
1254 |
+
testing only. The returned probabilities are not guaranteed to be correct
|
1255 |
+
(they might not have the right scaling).
|
1256 |
+
Return:
|
1257 |
+
out: (total, nheads, headdim).
|
1258 |
+
softmax_lse [optional, if return_attn_probs=True]: (nheads, total_q_seqlen). The
|
1259 |
+
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
|
1260 |
+
normalization factor).
|
1261 |
+
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
|
1262 |
+
The output of softmax (possibly with different scaling). It also encodes the dropout
|
1263 |
+
pattern (negative means that location was dropped, nonnegative means it was kept).
|
1264 |
+
"""
|
1265 |
+
return FlashAttnVarlenQKVPackedFunc.apply(
|
1266 |
+
qkv,
|
1267 |
+
cu_seqlens,
|
1268 |
+
max_seqlen,
|
1269 |
+
dropout_p,
|
1270 |
+
softmax_scale,
|
1271 |
+
causal,
|
1272 |
+
window_size,
|
1273 |
+
softcap,
|
1274 |
+
alibi_slopes,
|
1275 |
+
deterministic,
|
1276 |
+
return_attn_probs,
|
1277 |
+
torch.is_grad_enabled(),
|
1278 |
+
)
|
1279 |
+
|
1280 |
+
|
1281 |
+
def flash_attn_varlen_kvpacked_func(
|
1282 |
+
q,
|
1283 |
+
kv,
|
1284 |
+
cu_seqlens_q,
|
1285 |
+
cu_seqlens_k,
|
1286 |
+
max_seqlen_q,
|
1287 |
+
max_seqlen_k,
|
1288 |
+
dropout_p=0.0,
|
1289 |
+
softmax_scale=None,
|
1290 |
+
causal=False,
|
1291 |
+
window_size=(-1, -1), # -1 means infinite context window
|
1292 |
+
softcap=0.0, # 0.0 means deactivated
|
1293 |
+
alibi_slopes=None,
|
1294 |
+
deterministic=False,
|
1295 |
+
return_attn_probs=False,
|
1296 |
+
):
|
1297 |
+
"""dropout_p should be set to 0.0 during evaluation
|
1298 |
+
If K, V are already stacked into 1 tensor, this function will be faster than
|
1299 |
+
calling flash_attn_func on Q, K, V since the backward pass avoids explicit concatenation
|
1300 |
+
of the gradients of K, V.
|
1301 |
+
Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
|
1302 |
+
than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
|
1303 |
+
For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
|
1304 |
+
0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
|
1305 |
+
|
1306 |
+
If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
|
1307 |
+
For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
|
1308 |
+
1 1 1 1 0
|
1309 |
+
1 1 1 1 1
|
1310 |
+
If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
|
1311 |
+
0 0
|
1312 |
+
0 0
|
1313 |
+
0 0
|
1314 |
+
1 0
|
1315 |
+
1 1
|
1316 |
+
If the row of the mask is all zero, the output will be zero.
|
1317 |
+
|
1318 |
+
If window_size != (-1, -1), implements sliding window local attention. Query at position i
|
1319 |
+
will only attend to keys between
|
1320 |
+
[i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
|
1321 |
+
|
1322 |
+
Arguments:
|
1323 |
+
q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch.
|
1324 |
+
kv: (total_k, 2, nheads_k, headdim), where total_k = total number of key tokens in the batch.
|
1325 |
+
cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
1326 |
+
of the sequences in the batch, used to index into q.
|
1327 |
+
cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
1328 |
+
of the sequences in the batch, used to index into kv.
|
1329 |
+
max_seqlen_q: int. Maximum query sequence length in the batch.
|
1330 |
+
max_seqlen_k: int. Maximum key sequence length in the batch.
|
1331 |
+
dropout_p: float. Dropout probability.
|
1332 |
+
softmax_scale: float. The scaling of QK^T before applying softmax.
|
1333 |
+
Default to 1 / sqrt(headdim).
|
1334 |
+
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
|
1335 |
+
window_size: (left, right). If not (-1, -1), implements sliding window local attention.
|
1336 |
+
softcap: float. Anything > 0 activates softcapping attention.
|
1337 |
+
alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
|
1338 |
+
(-alibi_slope * |i + seqlen_k - seqlen_q - j|)
|
1339 |
+
is added to the attention score of query i and key j.
|
1340 |
+
deterministic: bool. Whether to use the deterministic implementation of the backward pass,
|
1341 |
+
which is slightly slower and uses more memory. The forward pass is always deterministic.
|
1342 |
+
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
|
1343 |
+
testing only. The returned probabilities are not guaranteed to be correct
|
1344 |
+
(they might not have the right scaling).
|
1345 |
+
Return:
|
1346 |
+
out: (total, nheads, headdim).
|
1347 |
+
softmax_lse [optional, if return_attn_probs=True]: (nheads, total_q_seqlen). The
|
1348 |
+
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
|
1349 |
+
normalization factor).
|
1350 |
+
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
|
1351 |
+
The output of softmax (possibly with different scaling). It also encodes the dropout
|
1352 |
+
pattern (negative means that location was dropped, nonnegative means it was kept).
|
1353 |
+
"""
|
1354 |
+
return FlashAttnVarlenKVPackedFunc.apply(
|
1355 |
+
q,
|
1356 |
+
kv,
|
1357 |
+
cu_seqlens_q,
|
1358 |
+
cu_seqlens_k,
|
1359 |
+
max_seqlen_q,
|
1360 |
+
max_seqlen_k,
|
1361 |
+
dropout_p,
|
1362 |
+
softmax_scale,
|
1363 |
+
causal,
|
1364 |
+
window_size,
|
1365 |
+
softcap,
|
1366 |
+
alibi_slopes,
|
1367 |
+
deterministic,
|
1368 |
+
return_attn_probs,
|
1369 |
+
torch.is_grad_enabled(),
|
1370 |
+
)
|
1371 |
+
|
1372 |
+
|
1373 |
+
def flash_attn_varlen_func(
|
1374 |
+
q,
|
1375 |
+
k,
|
1376 |
+
v,
|
1377 |
+
cu_seqlens_q,
|
1378 |
+
cu_seqlens_k,
|
1379 |
+
max_seqlen_q,
|
1380 |
+
max_seqlen_k,
|
1381 |
+
dropout_p=0.0,
|
1382 |
+
softmax_scale=None,
|
1383 |
+
causal=False,
|
1384 |
+
window_size=(-1, -1), # -1 means infinite context window
|
1385 |
+
softcap=0.0, # 0.0 means deactivated
|
1386 |
+
alibi_slopes=None,
|
1387 |
+
deterministic=False,
|
1388 |
+
return_attn_probs=False,
|
1389 |
+
block_table=None,
|
1390 |
+
):
|
1391 |
+
"""dropout_p should be set to 0.0 during evaluation
|
1392 |
+
Supports multi-query and grouped-query attention (MQA/GQA) by passing in K, V with fewer heads
|
1393 |
+
than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
|
1394 |
+
For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
|
1395 |
+
0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
|
1396 |
+
|
1397 |
+
If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
|
1398 |
+
For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
|
1399 |
+
1 1 1 1 0
|
1400 |
+
1 1 1 1 1
|
1401 |
+
If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
|
1402 |
+
0 0
|
1403 |
+
0 0
|
1404 |
+
0 0
|
1405 |
+
1 0
|
1406 |
+
1 1
|
1407 |
+
If the row of the mask is all zero, the output will be zero.
|
1408 |
+
|
1409 |
+
If window_size != (-1, -1), implements sliding window local attention. Query at position i
|
1410 |
+
will only attend to keys between
|
1411 |
+
[i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
|
1412 |
+
|
1413 |
+
Arguments:
|
1414 |
+
q: (total_q, nheads, headdim), where total_q = total number of query tokens in the batch.
|
1415 |
+
k: (total_k, nheads_k, headdim), where total_k = total number of key tokens in the batch.
|
1416 |
+
v: (total_k, nheads_k, headdim), where total_k = total number of key tokens in the batch.
|
1417 |
+
cu_seqlens_q: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
1418 |
+
of the sequences in the batch, used to index into q.
|
1419 |
+
cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
|
1420 |
+
of the sequences in the batch, used to index into kv.
|
1421 |
+
max_seqlen_q: int. Maximum query sequence length in the batch.
|
1422 |
+
max_seqlen_k: int. Maximum key sequence length in the batch.
|
1423 |
+
dropout_p: float. Dropout probability.
|
1424 |
+
softmax_scale: float. The scaling of QK^T before applying softmax.
|
1425 |
+
Default to 1 / sqrt(headdim).
|
1426 |
+
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
|
1427 |
+
window_size: (left, right). If not (-1, -1), implements sliding window local attention.
|
1428 |
+
softcap: float. Anything > 0 activates softcapping attention.
|
1429 |
+
alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
|
1430 |
+
(-alibi_slope * |i + seqlen_k - seqlen_q - j|)
|
1431 |
+
is added to the attention score of query i and key j.
|
1432 |
+
deterministic: bool. Whether to use the deterministic implementation of the backward pass,
|
1433 |
+
which is slightly slower and uses more memory. The forward pass is always deterministic.
|
1434 |
+
return_attn_probs: bool. Whether to return the attention probabilities. This option is for
|
1435 |
+
testing only. The returned probabilities are not guaranteed to be correct
|
1436 |
+
(they might not have the right scaling).
|
1437 |
+
Return:
|
1438 |
+
out: (total, nheads, headdim).
|
1439 |
+
softmax_lse [optional, if return_attn_probs=True]: (nheads, total_q_seqlen). The
|
1440 |
+
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
|
1441 |
+
normalization factor).
|
1442 |
+
S_dmask [optional, if return_attn_probs=True]: (batch_size, nheads, seqlen, seqlen).
|
1443 |
+
The output of softmax (possibly with different scaling). It also encodes the dropout
|
1444 |
+
pattern (negative means that location was dropped, nonnegative means it was kept).
|
1445 |
+
"""
|
1446 |
+
return FlashAttnVarlenFunc.apply(
|
1447 |
+
q,
|
1448 |
+
k,
|
1449 |
+
v,
|
1450 |
+
cu_seqlens_q,
|
1451 |
+
cu_seqlens_k,
|
1452 |
+
max_seqlen_q,
|
1453 |
+
max_seqlen_k,
|
1454 |
+
dropout_p,
|
1455 |
+
softmax_scale,
|
1456 |
+
causal,
|
1457 |
+
window_size,
|
1458 |
+
softcap,
|
1459 |
+
alibi_slopes,
|
1460 |
+
deterministic,
|
1461 |
+
return_attn_probs,
|
1462 |
+
block_table,
|
1463 |
+
torch.is_grad_enabled(),
|
1464 |
+
)
|
1465 |
+
|
1466 |
+
|
1467 |
+
def flash_attn_with_kvcache(
|
1468 |
+
q,
|
1469 |
+
k_cache,
|
1470 |
+
v_cache,
|
1471 |
+
k=None,
|
1472 |
+
v=None,
|
1473 |
+
rotary_cos=None,
|
1474 |
+
rotary_sin=None,
|
1475 |
+
cache_seqlens: Optional[Union[(int, torch.Tensor)]] = None,
|
1476 |
+
cache_batch_idx: Optional[torch.Tensor] = None,
|
1477 |
+
cache_leftpad: Optional[torch.Tensor] = None,
|
1478 |
+
block_table: Optional[torch.Tensor] = None,
|
1479 |
+
softmax_scale=None,
|
1480 |
+
causal=False,
|
1481 |
+
window_size=(-1, -1), # -1 means infinite context window
|
1482 |
+
softcap=0.0, # 0.0 means deactivated
|
1483 |
+
rotary_interleaved=True,
|
1484 |
+
alibi_slopes=None,
|
1485 |
+
num_splits=0,
|
1486 |
+
return_softmax_lse=False,
|
1487 |
+
):
|
1488 |
+
"""
|
1489 |
+
If k and v are not None, k_cache and v_cache will be updated *inplace* with the new values from
|
1490 |
+
k and v. This is useful for incremental decoding: you can pass in the cached keys/values from
|
1491 |
+
the previous step, and update them with the new keys/values from the current step, and do
|
1492 |
+
attention with the updated cache, all in 1 kernel.
|
1493 |
+
|
1494 |
+
If you pass in k / v, you must make sure that the cache is large enough to hold the new values.
|
1495 |
+
For example, the KV cache could be pre-allocated with the max sequence length, and you can use
|
1496 |
+
cache_seqlens to keep track of the current sequence lengths of each sequence in the batch.
|
1497 |
+
|
1498 |
+
Also apply rotary embedding if rotary_cos and rotary_sin are passed in. The key @k will be
|
1499 |
+
rotated by rotary_cos and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc.
|
1500 |
+
If causal or local (i.e., window_size != (-1, -1)), the query @q will be rotated by rotary_cos
|
1501 |
+
and rotary_sin at indices cache_seqlens, cache_seqlens + 1, etc.
|
1502 |
+
If not causal and not local, the query @q will be rotated by rotary_cos and rotary_sin at
|
1503 |
+
indices cache_seqlens only (i.e. we consider all tokens in @q to be at position cache_seqlens).
|
1504 |
+
|
1505 |
+
See tests/test_flash_attn.py::test_flash_attn_kvcache for examples of how to use this function.
|
1506 |
+
|
1507 |
+
Supports multi-query and grouped-query attention (MQA/GQA) by passing in KV with fewer heads
|
1508 |
+
than Q. Note that the number of heads in Q must be divisible by the number of heads in KV.
|
1509 |
+
For example, if Q has 6 heads and K, V have 2 heads, head 0, 1, 2 of Q will attention to head
|
1510 |
+
0 of K, V, and head 3, 4, 5 of Q will attention to head 1 of K, V.
|
1511 |
+
|
1512 |
+
If causal=True, the causal mask is aligned to the bottom right corner of the attention matrix.
|
1513 |
+
For example, if seqlen_q = 2 and seqlen_k = 5, the causal mask (1 = keep, 0 = masked out) is:
|
1514 |
+
1 1 1 1 0
|
1515 |
+
1 1 1 1 1
|
1516 |
+
If seqlen_q = 5 and seqlen_k = 2, the causal mask is:
|
1517 |
+
0 0
|
1518 |
+
0 0
|
1519 |
+
0 0
|
1520 |
+
1 0
|
1521 |
+
1 1
|
1522 |
+
If the row of the mask is all zero, the output will be zero.
|
1523 |
+
|
1524 |
+
If window_size != (-1, -1), implements sliding window local attention. Query at position i
|
1525 |
+
will only attend to keys between
|
1526 |
+
[i + seqlen_k - seqlen_q - window_size[0], i + seqlen_k - seqlen_q + window_size[1]] inclusive.
|
1527 |
+
|
1528 |
+
Note: Does not support backward pass.
|
1529 |
+
|
1530 |
+
Arguments:
|
1531 |
+
q: (batch_size, seqlen, nheads, headdim)
|
1532 |
+
k_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim) if there's no block_table,
|
1533 |
+
or (num_blocks, page_block_size, nheads_k, headdim) if there's a block_table (i.e. paged KV cache)
|
1534 |
+
page_block_size must be a multiple of 256.
|
1535 |
+
v_cache: (batch_size_cache, seqlen_cache, nheads_k, headdim) if there's no block_table,
|
1536 |
+
or (num_blocks, page_block_size, nheads_k, headdim) if there's a block_table (i.e. paged KV cache)
|
1537 |
+
k [optional]: (batch_size, seqlen_new, nheads_k, headdim). If not None, we concatenate
|
1538 |
+
k with k_cache, starting at the indices specified by cache_seqlens.
|
1539 |
+
v [optional]: (batch_size, seqlen_new, nheads_k, headdim). Similar to k.
|
1540 |
+
rotary_cos [optional]: (seqlen_ro, rotary_dim / 2). If not None, we apply rotary embedding
|
1541 |
+
to k and q. Only applicable if k and v are passed in. rotary_dim must be divisible by 16.
|
1542 |
+
rotary_sin [optional]: (seqlen_ro, rotary_dim / 2). Similar to rotary_cos.
|
1543 |
+
cache_seqlens: int, or (batch_size,), dtype torch.int32. The sequence lengths of the
|
1544 |
+
KV cache.
|
1545 |
+
cache_batch_idx: (batch_size,), dtype torch.int32. The indices used to index into the KV cache.
|
1546 |
+
If None, we assume that the batch indices are [0, 1, 2, ..., batch_size - 1].
|
1547 |
+
If the indices are not distinct, and k and v are provided, the values updated in the cache
|
1548 |
+
might come from any of the duplicate indices.
|
1549 |
+
cache_leftpad: (batch_size,), dtype torch.int32. The index that the KV cache starts. If None, assume 0.
|
1550 |
+
block_table [optional]: (batch_size, max_num_blocks_per_seq), dtype torch.int32.
|
1551 |
+
softmax_scale: float. The scaling of QK^T before applying softmax.
|
1552 |
+
Default to 1 / sqrt(headdim).
|
1553 |
+
causal: bool. Whether to apply causal attention mask (e.g., for auto-regressive modeling).
|
1554 |
+
window_size: (left, right). If not (-1, -1), implements sliding window local attention.
|
1555 |
+
softcap: float. Anything > 0 activates softcapping attention.
|
1556 |
+
rotary_interleaved: bool. Only applicable if rotary_cos and rotary_sin are passed in.
|
1557 |
+
If True, rotary embedding will combine dimensions 0 & 1, 2 & 3, etc. If False,
|
1558 |
+
rotary embedding will combine dimensions 0 & rotary_dim / 2, 1 & rotary_dim / 2 + 1
|
1559 |
+
(i.e. GPT-NeoX style).
|
1560 |
+
alibi_slopes: (nheads,) or (batch_size, nheads), fp32. A bias of
|
1561 |
+
(-alibi_slope * |i + seqlen_k - seqlen_q - j|)
|
1562 |
+
is added to the attention score of query i and key j.
|
1563 |
+
num_splits: int. If > 1, split the key/value into this many chunks along the sequence.
|
1564 |
+
If num_splits == 1, we don't split the key/value. If num_splits == 0, we use a heuristic
|
1565 |
+
to automatically determine the number of splits.
|
1566 |
+
Don't change this unless you know what you are doing.
|
1567 |
+
return_softmax_lse: bool. Whether to return the logsumexp of the attention scores.
|
1568 |
+
|
1569 |
+
Return:
|
1570 |
+
out: (batch_size, seqlen, nheads, headdim).
|
1571 |
+
softmax_lse [optional, if return_softmax_lse=True]: (batch_size, nheads, seqlen). The
|
1572 |
+
logsumexp of each row of the matrix QK^T * scaling (e.g., log of the softmax
|
1573 |
+
normalization factor).
|
1574 |
+
"""
|
1575 |
+
assert k_cache.stride(-1) == 1, "k_cache must have contiguous last dimension"
|
1576 |
+
assert v_cache.stride(-1) == 1, "v_cache must have contiguous last dimension"
|
1577 |
+
q, k, v = [maybe_contiguous(x) for x in (q, k, v)]
|
1578 |
+
if softmax_scale is None:
|
1579 |
+
softmax_scale = q.shape[-1] ** (-0.5)
|
1580 |
+
if cache_seqlens is not None and isinstance(cache_seqlens, int):
|
1581 |
+
cache_seqlens = torch.full(
|
1582 |
+
(k_cache.shape[0],), cache_seqlens, dtype=torch.int32, device=k_cache.device
|
1583 |
+
)
|
1584 |
+
cache_seqlens = maybe_contiguous(cache_seqlens)
|
1585 |
+
cache_batch_idx = maybe_contiguous(cache_batch_idx)
|
1586 |
+
block_table = maybe_contiguous(block_table)
|
1587 |
+
out, softmax_lse = flash_attn_gpu.fwd_kvcache(
|
1588 |
+
q,
|
1589 |
+
k_cache,
|
1590 |
+
v_cache,
|
1591 |
+
k,
|
1592 |
+
v,
|
1593 |
+
cache_seqlens,
|
1594 |
+
rotary_cos,
|
1595 |
+
rotary_sin,
|
1596 |
+
cache_batch_idx,
|
1597 |
+
cache_leftpad,
|
1598 |
+
block_table,
|
1599 |
+
alibi_slopes,
|
1600 |
+
None,
|
1601 |
+
softmax_scale,
|
1602 |
+
causal,
|
1603 |
+
window_size[0],
|
1604 |
+
window_size[1],
|
1605 |
+
softcap,
|
1606 |
+
rotary_interleaved,
|
1607 |
+
num_splits,
|
1608 |
+
)
|
1609 |
+
return (out, softmax_lse) if return_softmax_lse else out
|
torch-ext/flash_attn/layers/__init__.py
ADDED
File without changes
|
torch-ext/flash_attn/layers/patch_embed.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# We use the same API as https://github.com/rwightman/pytorch-image-models/blob/v0.6.11/timm/models/layers/patch_embed.py
|
2 |
+
# But we use nn.Linear instead of Conv2d and it's about 8x faster.
|
3 |
+
|
4 |
+
from functools import partial
|
5 |
+
|
6 |
+
import torch.nn as nn
|
7 |
+
from einops import rearrange
|
8 |
+
from torch import _assert
|
9 |
+
from torch.nn.modules.utils import _pair
|
10 |
+
|
11 |
+
try:
|
12 |
+
from flash_attn.ops.fused_dense import FusedDense
|
13 |
+
except ImportError:
|
14 |
+
FusedDense = None
|
15 |
+
|
16 |
+
|
17 |
+
class PatchEmbed(nn.Module):
|
18 |
+
"""2D Image to Patch Embedding"""
|
19 |
+
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
img_size=224,
|
23 |
+
patch_size=16,
|
24 |
+
in_chans=3,
|
25 |
+
embed_dim=768,
|
26 |
+
norm_layer=None,
|
27 |
+
flatten=True,
|
28 |
+
bias=True,
|
29 |
+
fused_bias_fc=False,
|
30 |
+
):
|
31 |
+
super().__init__()
|
32 |
+
img_size = _pair(img_size)
|
33 |
+
patch_size = _pair(patch_size)
|
34 |
+
self.img_size = img_size
|
35 |
+
self.patch_size = patch_size
|
36 |
+
self.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
|
37 |
+
self.num_patches = self.grid_size[0] * self.grid_size[1]
|
38 |
+
self.flatten = flatten
|
39 |
+
if fused_bias_fc and FusedDense is None:
|
40 |
+
raise ImportError("fused_dense is not installed")
|
41 |
+
|
42 |
+
linear_cls = nn.Linear if not fused_bias_fc or not bias else FusedDense
|
43 |
+
self.proj = linear_cls(in_chans * patch_size[0] * patch_size[1], embed_dim, bias=bias)
|
44 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
45 |
+
|
46 |
+
def forward(self, x):
|
47 |
+
_, _, H, W = x.shape
|
48 |
+
_assert(
|
49 |
+
H == self.img_size[0],
|
50 |
+
f"Input image height ({H}) doesn't match model ({self.img_size[0]}).",
|
51 |
+
)
|
52 |
+
_assert(
|
53 |
+
W == self.img_size[1],
|
54 |
+
f"Input image width ({W}) doesn't match model ({self.img_size[1]}).",
|
55 |
+
)
|
56 |
+
x = self.proj(
|
57 |
+
rearrange(
|
58 |
+
x,
|
59 |
+
"b c (h p1) (w p2) -> b h w (c p1 p2)",
|
60 |
+
p1=self.patch_size[0],
|
61 |
+
p2=self.patch_size[1],
|
62 |
+
)
|
63 |
+
)
|
64 |
+
if self.flatten:
|
65 |
+
x = rearrange(x, "b h w c -> b (h w) c")
|
66 |
+
x = self.norm(x)
|
67 |
+
return x
|
torch-ext/flash_attn/layers/rotary.py
ADDED
@@ -0,0 +1,483 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025, Tri Dao
|
2 |
+
|
3 |
+
import math
|
4 |
+
from functools import partial
|
5 |
+
from typing import Optional, Tuple, Union
|
6 |
+
|
7 |
+
import torch
|
8 |
+
from torch import Tensor
|
9 |
+
|
10 |
+
from einops import rearrange, repeat
|
11 |
+
# from flash_attn.ops.triton.rotary import apply_rotary
|
12 |
+
from ..ops.triton.rotary import apply_rotary
|
13 |
+
|
14 |
+
|
15 |
+
def rotate_half(x, interleaved=False):
|
16 |
+
if not interleaved:
|
17 |
+
x1, x2 = x.chunk(2, dim=-1)
|
18 |
+
return torch.cat((-x2, x1), dim=-1)
|
19 |
+
else:
|
20 |
+
x1, x2 = x[..., ::2], x[..., 1::2]
|
21 |
+
return rearrange(torch.stack((-x2, x1), dim=-1), "... d two -> ... (d two)", two=2)
|
22 |
+
|
23 |
+
|
24 |
+
def apply_rotary_emb_torch(x, cos, sin, interleaved=False):
|
25 |
+
"""
|
26 |
+
x: (batch_size, seqlen, nheads, headdim)
|
27 |
+
cos, sin: (seqlen, rotary_dim / 2) or (batch_size, seqlen, rotary_dim / 2)
|
28 |
+
"""
|
29 |
+
ro_dim = cos.shape[-1] * 2
|
30 |
+
assert ro_dim <= x.shape[-1]
|
31 |
+
cos = repeat(cos, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
|
32 |
+
sin = repeat(sin, "... d -> ... 1 (2 d)" if not interleaved else "... d -> ... 1 (d 2)")
|
33 |
+
return torch.cat(
|
34 |
+
[x[..., :ro_dim] * cos + rotate_half(x[..., :ro_dim], interleaved) * sin, x[..., ro_dim:]],
|
35 |
+
dim=-1,
|
36 |
+
)
|
37 |
+
|
38 |
+
|
39 |
+
class ApplyRotaryEmb(torch.autograd.Function):
|
40 |
+
@staticmethod
|
41 |
+
def forward(
|
42 |
+
ctx,
|
43 |
+
x,
|
44 |
+
cos,
|
45 |
+
sin,
|
46 |
+
interleaved=False,
|
47 |
+
inplace=False,
|
48 |
+
seqlen_offsets: Union[int, Tensor] = 0,
|
49 |
+
cu_seqlens: Optional[Tensor] = None,
|
50 |
+
max_seqlen: Optional[int] = None,
|
51 |
+
):
|
52 |
+
out = apply_rotary(
|
53 |
+
x,
|
54 |
+
cos,
|
55 |
+
sin,
|
56 |
+
seqlen_offsets=seqlen_offsets,
|
57 |
+
cu_seqlens=cu_seqlens,
|
58 |
+
max_seqlen=max_seqlen,
|
59 |
+
interleaved=interleaved,
|
60 |
+
inplace=inplace,
|
61 |
+
)
|
62 |
+
if isinstance(seqlen_offsets, int):
|
63 |
+
ctx.save_for_backward(cos, sin, cu_seqlens) # Can't save int with save_for_backward
|
64 |
+
ctx.seqlen_offsets = seqlen_offsets
|
65 |
+
else:
|
66 |
+
ctx.save_for_backward(cos, sin, cu_seqlens, seqlen_offsets)
|
67 |
+
ctx.seqlen_offsets = None
|
68 |
+
ctx.interleaved = interleaved
|
69 |
+
ctx.inplace = inplace
|
70 |
+
ctx.max_seqlen = max_seqlen
|
71 |
+
return out if not inplace else x
|
72 |
+
|
73 |
+
@staticmethod
|
74 |
+
def backward(ctx, do):
|
75 |
+
seqlen_offsets = ctx.seqlen_offsets
|
76 |
+
if seqlen_offsets is None:
|
77 |
+
cos, sin, cu_seqlens, seqlen_offsets = ctx.saved_tensors
|
78 |
+
else:
|
79 |
+
cos, sin, cu_seqlens = ctx.saved_tensors
|
80 |
+
dx = apply_rotary(
|
81 |
+
do,
|
82 |
+
cos,
|
83 |
+
sin,
|
84 |
+
seqlen_offsets=seqlen_offsets,
|
85 |
+
cu_seqlens=cu_seqlens,
|
86 |
+
max_seqlen=ctx.max_seqlen,
|
87 |
+
interleaved=ctx.interleaved,
|
88 |
+
inplace=ctx.inplace,
|
89 |
+
conjugate=True,
|
90 |
+
)
|
91 |
+
return dx, None, None, None, None, None, None, None
|
92 |
+
|
93 |
+
|
94 |
+
def apply_rotary_emb(
|
95 |
+
x,
|
96 |
+
cos,
|
97 |
+
sin,
|
98 |
+
interleaved=False,
|
99 |
+
inplace=False,
|
100 |
+
seqlen_offsets: Union[int, Tensor] = 0,
|
101 |
+
cu_seqlens: Optional[Tensor] = None,
|
102 |
+
max_seqlen: Optional[int] = None,
|
103 |
+
):
|
104 |
+
"""
|
105 |
+
Arguments:
|
106 |
+
x: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None
|
107 |
+
else (total_seqlen, nheads, headdim)
|
108 |
+
cos, sin: (seqlen_rotary, rotary_dim / 2)
|
109 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
110 |
+
of 1st half and 2nd half (GPT-NeoX style).
|
111 |
+
inplace: if True, apply rotary embedding in-place.
|
112 |
+
seqlen_offsets: (batch_size,) or int. Each sequence in x is shifted by this amount.
|
113 |
+
Most commonly used in inference when we have KV cache.
|
114 |
+
cu_seqlens: (batch + 1,) or None
|
115 |
+
max_seqlen: int
|
116 |
+
Return:
|
117 |
+
out: (batch_size, seqlen, nheads, headdim) if cu_seqlens is None
|
118 |
+
else (total_seqlen, nheads, headdim)
|
119 |
+
rotary_dim must be <= headdim
|
120 |
+
Apply rotary embedding to the first rotary_dim of x.
|
121 |
+
"""
|
122 |
+
return ApplyRotaryEmb.apply(
|
123 |
+
x, cos, sin, interleaved, inplace, seqlen_offsets, cu_seqlens, max_seqlen
|
124 |
+
)
|
125 |
+
|
126 |
+
|
127 |
+
# For backward compatibility
|
128 |
+
apply_rotary_emb_func = apply_rotary_emb
|
129 |
+
|
130 |
+
|
131 |
+
def _apply_rotary_emb_qkv(
|
132 |
+
qkv,
|
133 |
+
cos,
|
134 |
+
sin,
|
135 |
+
cos_k=None,
|
136 |
+
sin_k=None,
|
137 |
+
interleaved=False,
|
138 |
+
inplace=False,
|
139 |
+
conjugate=False,
|
140 |
+
seqlen_offsets: Union[int, Tensor] = 0,
|
141 |
+
num_heads_q: Optional[int] = None,
|
142 |
+
):
|
143 |
+
apply_rotary_fn = partial(
|
144 |
+
apply_rotary,
|
145 |
+
interleaved=interleaved,
|
146 |
+
inplace=inplace,
|
147 |
+
conjugate=conjugate,
|
148 |
+
seqlen_offsets=seqlen_offsets
|
149 |
+
)
|
150 |
+
if cos_k is None and sin_k is None and qkv.is_contiguous():
|
151 |
+
# Call 1 kernel instead of 2 kernels
|
152 |
+
# We need qkv to be contiguous so that when we reshape to combine (3, nheads)
|
153 |
+
# dimensions, we get the same tensor
|
154 |
+
if qkv.dim() == 5:
|
155 |
+
batch, seqlen, three, nheads, headdim = qkv.shape
|
156 |
+
assert three == 3
|
157 |
+
# qk = rearrange(qkv[:, :, :2], "b s t h d -> b s (t h) d")
|
158 |
+
qk = qkv[:, :, :2].reshape(batch, seqlen, -1, headdim)
|
159 |
+
qk = apply_rotary_fn(qk, cos, sin)
|
160 |
+
else:
|
161 |
+
assert qkv.dim() == 4
|
162 |
+
assert num_heads_q is not None
|
163 |
+
num_heads_k = (qkv.shape[2] - num_heads_q) // 2
|
164 |
+
assert qkv.shape[2] == num_heads_q + 2 * num_heads_k
|
165 |
+
qk = qkv[:, :, :num_heads_q + num_heads_k]
|
166 |
+
qk = apply_rotary_fn(qk, cos, sin)
|
167 |
+
if not inplace:
|
168 |
+
if qkv.dim() == 5:
|
169 |
+
qkv = torch.cat([rearrange(qk, "b s (t h) d -> b s t h d", t=2), qkv[:, :, 2:]], dim=2)
|
170 |
+
else:
|
171 |
+
qkv = torch.cat([qk, qkv[:, :, num_heads_q + num_heads_k :]], dim=2)
|
172 |
+
else:
|
173 |
+
cos_k = cos if cos_k is None else cos_k
|
174 |
+
sin_k = sin if sin_k is None else sin_k
|
175 |
+
if qkv.dim() == 5:
|
176 |
+
batch, seqlen, three, nheads, headdim = qkv.shape
|
177 |
+
assert three == 3
|
178 |
+
q, k = qkv[:, :, 0], qkv[:, :, 1]
|
179 |
+
else:
|
180 |
+
assert qkv.dim() == 4
|
181 |
+
assert num_heads_q is not None
|
182 |
+
num_heads_k = (qkv.shape[2] - num_heads_q) // 2
|
183 |
+
assert qkv.shape[2] == num_heads_q + 2 * num_heads_k
|
184 |
+
q, k = qkv[:, :, :num_heads_q], qkv[:, :, num_heads_q : num_heads_q + num_heads_k]
|
185 |
+
q = apply_rotary_fn(q, cos, sin)
|
186 |
+
k = apply_rotary_fn(k, cos_k, sin_k)
|
187 |
+
if not inplace:
|
188 |
+
if qkv.dim() == 5:
|
189 |
+
qkv = torch.stack([q, k, qkv[:, :, 2]], dim=2)
|
190 |
+
else:
|
191 |
+
qkv = torch.cat([q, k, qkv[:, :, num_heads_q + num_heads_k:]], dim=2)
|
192 |
+
return qkv
|
193 |
+
|
194 |
+
|
195 |
+
class ApplyRotaryEmbQKV_(torch.autograd.Function):
|
196 |
+
@staticmethod
|
197 |
+
def forward(
|
198 |
+
ctx,
|
199 |
+
qkv,
|
200 |
+
cos,
|
201 |
+
sin,
|
202 |
+
cos_k=None,
|
203 |
+
sin_k=None,
|
204 |
+
interleaved=False,
|
205 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
206 |
+
num_heads_q: Optional[int] = None,
|
207 |
+
):
|
208 |
+
# apply_rotary_emb_qkv_inplace(
|
209 |
+
qkv = _apply_rotary_emb_qkv(
|
210 |
+
qkv, cos, sin, cos_k, sin_k, interleaved=interleaved, inplace=True,
|
211 |
+
seqlen_offsets=seqlen_offsets, num_heads_q=num_heads_q,
|
212 |
+
)
|
213 |
+
if isinstance(seqlen_offsets, int):
|
214 |
+
ctx.save_for_backward(cos, sin, cos_k, sin_k)
|
215 |
+
ctx.seqlen_offsets = seqlen_offsets
|
216 |
+
else:
|
217 |
+
ctx.save_for_backward(cos, sin, cos_k, sin_k, seqlen_offsets)
|
218 |
+
ctx.seqlen_offsets = None
|
219 |
+
ctx.interleaved = interleaved
|
220 |
+
ctx.num_heads_q = num_heads_q
|
221 |
+
return qkv
|
222 |
+
|
223 |
+
@staticmethod
|
224 |
+
def backward(ctx, dqkv):
|
225 |
+
seqlen_offsets = ctx.seqlen_offsets
|
226 |
+
if seqlen_offsets is None:
|
227 |
+
cos, sin, cos_k, sin_k, seqlen_offsets = ctx.saved_tensors
|
228 |
+
else:
|
229 |
+
cos, sin, cos_k, sin_k = ctx.saved_tensors
|
230 |
+
dqkv = _apply_rotary_emb_qkv(
|
231 |
+
dqkv, cos, sin, cos_k, sin_k, interleaved=ctx.interleaved, inplace=True,
|
232 |
+
seqlen_offsets=seqlen_offsets, num_heads_q=ctx.num_heads_q, conjugate=True,
|
233 |
+
)
|
234 |
+
return dqkv, None, None, None, None, None, None, None
|
235 |
+
|
236 |
+
|
237 |
+
def apply_rotary_emb_qkv_(
|
238 |
+
qkv,
|
239 |
+
cos,
|
240 |
+
sin,
|
241 |
+
cos_k=None,
|
242 |
+
sin_k=None,
|
243 |
+
interleaved=False,
|
244 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
245 |
+
num_heads_q: Optional[int] = None,
|
246 |
+
):
|
247 |
+
"""
|
248 |
+
Arguments:
|
249 |
+
qkv: (batch_size, seqlen, 3, nheads, headdim) or (batch_size, seqlen, num_heads_q + 2 * num_heads_k, headdim).
|
250 |
+
If qkv has shape (batch_size, seqlen, num_heads_q + 2 * num_heads_k, headdim) (e.g. MQA / GQA),
|
251 |
+
then num_heads_q must be provided.
|
252 |
+
cos, sin: (seqlen, rotary_dim / 2)
|
253 |
+
cos_k, sin_k: (seqlen, rotary_dim / 2), optional
|
254 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead of
|
255 |
+
1st half and 2nd half (GPT-NeoX style).
|
256 |
+
seqlen_offsets: (batch_size,) or int. Each sequence in Q and K is shifted by this amount.
|
257 |
+
Most commonly used in inference when we have KV cache.
|
258 |
+
Return:
|
259 |
+
qkv: (batch_size, seqlen, 3, nheads, headdim) or (batch_size, seqlen, num_heads_q + 2 * num_heads_k, headdim)
|
260 |
+
rotary_dim must be <= headdim
|
261 |
+
Apply rotary embedding *inplace* to the first rotary_dim of Q and K.
|
262 |
+
"""
|
263 |
+
return ApplyRotaryEmbQKV_.apply(
|
264 |
+
qkv, cos, sin, cos_k, sin_k, interleaved, seqlen_offsets, num_heads_q
|
265 |
+
)
|
266 |
+
|
267 |
+
|
268 |
+
class ApplyRotaryEmbKV_(torch.autograd.Function):
|
269 |
+
|
270 |
+
@staticmethod
|
271 |
+
def forward(ctx, kv, cos, sin, interleaved=False, seqlen_offsets: Union[int, torch.Tensor] = 0):
|
272 |
+
batch, seqlen, two, nheads, headdim = kv.shape
|
273 |
+
assert two == 2
|
274 |
+
k = kv[:, :, 0]
|
275 |
+
apply_rotary(
|
276 |
+
k, cos, sin, seqlen_offsets=seqlen_offsets, interleaved=interleaved, inplace=True
|
277 |
+
)
|
278 |
+
if isinstance(seqlen_offsets, int):
|
279 |
+
ctx.save_for_backward(cos, sin) # Can't save int with save_for_backward
|
280 |
+
ctx.seqlen_offsets = seqlen_offsets
|
281 |
+
else:
|
282 |
+
ctx.save_for_backward(cos, sin, seqlen_offsets)
|
283 |
+
ctx.seqlen_offsets = None
|
284 |
+
ctx.interleaved = interleaved
|
285 |
+
return kv
|
286 |
+
|
287 |
+
@staticmethod
|
288 |
+
def backward(ctx, dkv):
|
289 |
+
seqlen_offsets = ctx.seqlen_offsets
|
290 |
+
if seqlen_offsets is None:
|
291 |
+
cos, sin, seqlen_offsets = ctx.saved_tensors
|
292 |
+
else:
|
293 |
+
cos, sin = ctx.saved_tensors
|
294 |
+
apply_rotary(
|
295 |
+
dkv[:, :, 0],
|
296 |
+
cos,
|
297 |
+
sin,
|
298 |
+
seqlen_offsets=seqlen_offsets,
|
299 |
+
interleaved=ctx.interleaved,
|
300 |
+
inplace=True,
|
301 |
+
conjugate=True,
|
302 |
+
)
|
303 |
+
return dkv, None, None, None, None
|
304 |
+
|
305 |
+
|
306 |
+
apply_rotary_emb_kv_ = ApplyRotaryEmbKV_.apply
|
307 |
+
|
308 |
+
|
309 |
+
def apply_rotary_emb_kv_(
|
310 |
+
kv,
|
311 |
+
cos,
|
312 |
+
sin,
|
313 |
+
interleaved=False,
|
314 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
315 |
+
):
|
316 |
+
"""
|
317 |
+
Arguments:
|
318 |
+
kv: (batch_size, seqlen, 2, nheads, headdim)
|
319 |
+
cos, sin: (seqlen, rotary_dim / 2)
|
320 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead of
|
321 |
+
1st half and 2nd half (GPT-NeoX style).
|
322 |
+
seqlen_offsets: (batch_size,) or int. Each sequence in Q and K is shifted by this amount.
|
323 |
+
Most commonly used in inference when we have KV cache.
|
324 |
+
Return:
|
325 |
+
kv: (batch_size, seqlen, 2, nheads, headdim)
|
326 |
+
rotary_dim must be <= headdim
|
327 |
+
Apply rotary embedding *inplace* to the first rotary_dim of K.
|
328 |
+
"""
|
329 |
+
return ApplyRotaryEmbKV_.apply(kv, cos, sin, interleaved, seqlen_offsets)
|
330 |
+
|
331 |
+
|
332 |
+
class RotaryEmbedding(torch.nn.Module):
|
333 |
+
"""
|
334 |
+
The rotary position embeddings from RoFormer_ (Su et. al).
|
335 |
+
A crucial insight from the method is that the query and keys are
|
336 |
+
transformed by rotation matrices which depend on the relative positions.
|
337 |
+
|
338 |
+
Other implementations are available in the Rotary Transformer repo_ and in
|
339 |
+
GPT-NeoX_, GPT-NeoX was an inspiration
|
340 |
+
|
341 |
+
.. _RoFormer: https://arxiv.org/abs/2104.09864
|
342 |
+
.. _repo: https://github.com/ZhuiyiTechnology/roformer
|
343 |
+
.. _GPT-NeoX: https://github.com/EleutherAI/gpt-neox
|
344 |
+
|
345 |
+
If scale_base is not None, this implements XPos (Sun et al., https://arxiv.org/abs/2212.10554).
|
346 |
+
A recommended value for scale_base is 512: https://github.com/HazyResearch/flash-attention/issues/96
|
347 |
+
Reference: https://github.com/sunyt32/torchscale/blob/main/torchscale/component/xpos_relative_position.py
|
348 |
+
"""
|
349 |
+
|
350 |
+
def __init__(
|
351 |
+
self,
|
352 |
+
dim: int,
|
353 |
+
base=10000.0,
|
354 |
+
interleaved=False,
|
355 |
+
scale_base=None,
|
356 |
+
device=None,
|
357 |
+
):
|
358 |
+
"""
|
359 |
+
interleaved: if True, rotate pairs of even and odd dimensions (GPT-J style) instead
|
360 |
+
of 1st half and 2nd half (GPT-NeoX style).
|
361 |
+
"""
|
362 |
+
super().__init__()
|
363 |
+
self.dim = dim
|
364 |
+
self.base = float(base)
|
365 |
+
# Generate and save the inverse frequency buffer (non trainable)
|
366 |
+
inv_freq = self._compute_inv_freq(device)
|
367 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
368 |
+
self.interleaved = interleaved
|
369 |
+
self.scale_base = scale_base
|
370 |
+
scale = (
|
371 |
+
(torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
|
372 |
+
if scale_base is not None
|
373 |
+
else None
|
374 |
+
)
|
375 |
+
self.register_buffer("scale", scale, persistent=False)
|
376 |
+
|
377 |
+
self._seq_len_cached = 0
|
378 |
+
self._cos_cached = None
|
379 |
+
self._sin_cached = None
|
380 |
+
self._cos_k_cached = None
|
381 |
+
self._sin_k_cached = None
|
382 |
+
|
383 |
+
def _compute_inv_freq(self, device=None):
|
384 |
+
return 1.0 / (
|
385 |
+
self.base
|
386 |
+
** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim)
|
387 |
+
)
|
388 |
+
|
389 |
+
def _update_cos_sin_cache(self, seqlen, device=None, dtype=None):
|
390 |
+
# Reset the tables if the sequence length has changed,
|
391 |
+
# if we're on a new device (possibly due to tracing for instance),
|
392 |
+
# or if we're switching from inference mode to training
|
393 |
+
if (
|
394 |
+
seqlen > self._seq_len_cached
|
395 |
+
or self._cos_cached is None
|
396 |
+
or self._cos_cached.device != device
|
397 |
+
or self._cos_cached.dtype != dtype
|
398 |
+
or (self.training and self._cos_cached.is_inference())
|
399 |
+
):
|
400 |
+
self._seq_len_cached = seqlen
|
401 |
+
# We want fp32 here, not self.inv_freq.dtype, since the model could be loaded in bf16
|
402 |
+
# And the output of arange can be quite large, so bf16 would lose a lot of precision.
|
403 |
+
t = torch.arange(seqlen, device=device, dtype=torch.float32)
|
404 |
+
# We want fp32 here as well since inv_freq will be multiplied with t, and the output
|
405 |
+
# will be large. Having it in bf16 will lose a lot of precision and cause the
|
406 |
+
# cos & sin output to change significantly.
|
407 |
+
# We want to recompute self.inv_freq if it was not loaded in fp32
|
408 |
+
if self.inv_freq.dtype != torch.float32:
|
409 |
+
inv_freq = self._compute_inv_freq(device=device)
|
410 |
+
else:
|
411 |
+
inv_freq = self.inv_freq
|
412 |
+
# Don't do einsum, it converts fp32 to bf16 under AMP
|
413 |
+
# freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
414 |
+
freqs = torch.outer(t, inv_freq)
|
415 |
+
if self.scale is None:
|
416 |
+
self._cos_cached = torch.cos(freqs).to(dtype)
|
417 |
+
self._sin_cached = torch.sin(freqs).to(dtype)
|
418 |
+
else:
|
419 |
+
power = (
|
420 |
+
torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device)
|
421 |
+
- seqlen // 2
|
422 |
+
) / self.scale_base
|
423 |
+
scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
|
424 |
+
# We want the multiplication by scale to happen in fp32
|
425 |
+
self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
|
426 |
+
self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
|
427 |
+
self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
|
428 |
+
self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
|
429 |
+
|
430 |
+
def forward(
|
431 |
+
self,
|
432 |
+
qkv: torch.Tensor,
|
433 |
+
kv: Optional[torch.Tensor] = None,
|
434 |
+
seqlen_offset: Union[int, torch.Tensor] = 0,
|
435 |
+
max_seqlen: Optional[int] = None,
|
436 |
+
num_heads_q: Optional[int] = None,
|
437 |
+
) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]:
|
438 |
+
"""
|
439 |
+
qkv: (batch, seqlen, 3, nheads, headdim) or (batch, seqlen, num_heads_q + 2 * num_heads_k, headdim)
|
440 |
+
if kv is none, else it's just q of shape (batch, seqlen, nheads, headdim).
|
441 |
+
If qkv has shape (batch, seqlen, num_heads_q + 2 * num_heads_k, headdim) (e.g. MQA / GQA),
|
442 |
+
then num_heads_q must be provided.
|
443 |
+
kv: (batch, seqlen, 2, nheads, headdim)
|
444 |
+
seqlen_offset: (batch_size,) or int. Each sequence in x is shifted by this amount.
|
445 |
+
Most commonly used in inference when we have KV cache.
|
446 |
+
If it's a tensor of shape (batch_size,), then to update the cos / sin cache, one
|
447 |
+
should pass in max_seqlen, which will update the cos / sin cache up to that length.
|
448 |
+
Apply rotary embedding *inplace* to qkv and / or kv.
|
449 |
+
"""
|
450 |
+
seqlen = qkv.shape[1]
|
451 |
+
if max_seqlen is not None:
|
452 |
+
self._update_cos_sin_cache(max_seqlen, device=qkv.device, dtype=qkv.dtype)
|
453 |
+
elif isinstance(seqlen_offset, int):
|
454 |
+
self._update_cos_sin_cache(seqlen + seqlen_offset, device=qkv.device, dtype=qkv.dtype)
|
455 |
+
if kv is None:
|
456 |
+
return apply_rotary_emb_qkv_(
|
457 |
+
qkv,
|
458 |
+
self._cos_cached,
|
459 |
+
self._sin_cached,
|
460 |
+
self._cos_k_cached if self.scale is not None else None,
|
461 |
+
self._sin_k_cached if self.scale is not None else None,
|
462 |
+
interleaved=self.interleaved,
|
463 |
+
seqlen_offsets=seqlen_offset,
|
464 |
+
num_heads_q=num_heads_q,
|
465 |
+
)
|
466 |
+
else:
|
467 |
+
q = qkv
|
468 |
+
q = apply_rotary_emb_func(
|
469 |
+
q,
|
470 |
+
self._cos_cached,
|
471 |
+
self._sin_cached,
|
472 |
+
interleaved=self.interleaved,
|
473 |
+
inplace=True,
|
474 |
+
seqlen_offsets=seqlen_offset,
|
475 |
+
)
|
476 |
+
kv = apply_rotary_emb_kv_(
|
477 |
+
kv,
|
478 |
+
self._cos_cached if self.scale is None else self._cos_k_cached,
|
479 |
+
self._sin_cached if self.scale is None else self._sin_k_cached,
|
480 |
+
interleaved=self.interleaved,
|
481 |
+
seqlen_offsets=seqlen_offset,
|
482 |
+
)
|
483 |
+
return q, kv
|
torch-ext/flash_attn/ops/__init__.py
ADDED
File without changes
|
torch-ext/flash_attn/ops/activations.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copied from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/model/layers/activations.py
|
2 |
+
import math
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
# 1/sqrt(2*pi)-> 0.3989423
|
9 |
+
# 1/sqrt(2) -> 0.70710678
|
10 |
+
# sqrt(2/pi) -> 0.79788456
|
11 |
+
|
12 |
+
# this function is tanh approximation of gelu
|
13 |
+
# actual gelu is:
|
14 |
+
# x * 0.5 * (1.0 + torch.erf(x * 0.70710678))
|
15 |
+
@torch.jit.script
|
16 |
+
def bias_gelu(y, bias):
|
17 |
+
x = bias + y
|
18 |
+
return (x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))).to(dtype=y.dtype)
|
19 |
+
|
20 |
+
|
21 |
+
# gradient of tanh approximation of gelu
|
22 |
+
# gradient of actual gelu is:
|
23 |
+
# 0.5 * (1. + torch.erf(x * 0.70710678)) + 0.3989423 * x * torch.exp(-0.5 * x * x)
|
24 |
+
@torch.jit.script
|
25 |
+
def bias_gelu_back(g, y, bias):
|
26 |
+
"""Assume that y has shape (B, D) and bias has shape (D)"""
|
27 |
+
x = bias + y
|
28 |
+
tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
|
29 |
+
# sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
|
30 |
+
ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (
|
31 |
+
1 + tanh_out
|
32 |
+
)
|
33 |
+
grad_y = ff * g
|
34 |
+
return grad_y.to(dtype=y.dtype), grad_y.sum(dim=(0), dtype=bias.dtype)
|
35 |
+
|
36 |
+
|
37 |
+
class GeLUFunction(torch.autograd.Function):
|
38 |
+
@staticmethod
|
39 |
+
# bias is an optional argument
|
40 |
+
def forward(ctx, input, bias):
|
41 |
+
ctx.save_for_backward(input, bias)
|
42 |
+
return bias_gelu(input, bias)
|
43 |
+
|
44 |
+
@staticmethod
|
45 |
+
def backward(ctx, grad_output):
|
46 |
+
input, bias = ctx.saved_tensors
|
47 |
+
tmp = bias_gelu_back(grad_output, input, bias)
|
48 |
+
return tmp, tmp
|
49 |
+
|
50 |
+
|
51 |
+
bias_gelu_impl = GeLUFunction.apply
|
52 |
+
|
53 |
+
# this function is tanh approximation of gelu
|
54 |
+
# actual gelu is:
|
55 |
+
# x * 0.5 * (1.0 + torch.erf(x * 0.70710678))
|
56 |
+
@torch.jit.script
|
57 |
+
def gelu_fwd(x):
|
58 |
+
return (x * 0.5 * (1.0 + torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x)))).to(dtype=x.dtype)
|
59 |
+
|
60 |
+
|
61 |
+
# gradient of tanh approximation of gelu
|
62 |
+
# gradient of actual gelu is:
|
63 |
+
# 0.5 * (1. + torch.erf(x * 0.70710678)) + 0.3989423 * x * torch.exp(-0.5 * x * x)
|
64 |
+
@torch.jit.script
|
65 |
+
def gelu_bwd(g, x):
|
66 |
+
tanh_out = torch.tanh(0.79788456 * x * (1 + 0.044715 * x * x))
|
67 |
+
# sqrt(2/pi) * 3 * 0.044715 -> 0.1070322243
|
68 |
+
ff = 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (
|
69 |
+
1 + tanh_out
|
70 |
+
)
|
71 |
+
return (ff * g).to(dtype=x.dtype)
|
72 |
+
|
73 |
+
|
74 |
+
class FastGeLUFunction(torch.autograd.Function):
|
75 |
+
@staticmethod
|
76 |
+
# bias is an optional argument
|
77 |
+
def forward(ctx, input):
|
78 |
+
ctx.save_for_backward(input)
|
79 |
+
return gelu_fwd(input)
|
80 |
+
|
81 |
+
@staticmethod
|
82 |
+
def backward(ctx, grad_output):
|
83 |
+
(input,) = ctx.saved_tensors
|
84 |
+
tmp = gelu_bwd(grad_output, input)
|
85 |
+
return tmp
|
86 |
+
|
87 |
+
|
88 |
+
fast_gelu_impl = FastGeLUFunction.apply
|
89 |
+
|
90 |
+
|
91 |
+
@torch.jit.script
|
92 |
+
def relu_bwd(g, x):
|
93 |
+
return torch.where(x >= 0, g, 0.0).to(dtype=x.dtype)
|
94 |
+
|
95 |
+
|
96 |
+
@torch.jit.script
|
97 |
+
def sqrelu_fwd(x):
|
98 |
+
r = F.relu(x)
|
99 |
+
return (r * r).to(dtype=x.dtype)
|
100 |
+
|
101 |
+
|
102 |
+
@torch.jit.script
|
103 |
+
def sqrelu_bwd(g, x):
|
104 |
+
return (2.0 * g * F.relu(x)).to(dtype=x.dtype)
|
105 |
+
|
106 |
+
|
107 |
+
swiglu_fwd_codestring = """
|
108 |
+
template <typename T> T swiglu_fwd(T x, T y) {
|
109 |
+
return float(x) * float(y) / (1.0f + ::exp(-float(x)));
|
110 |
+
}
|
111 |
+
"""
|
112 |
+
swiglu_bwd_codestring = """
|
113 |
+
template <typename T> void swiglu_bwd(T x, T y, T g, T& dx, T& dy) {
|
114 |
+
float x_sigmoid = 1.0f / (1.0f + ::exp(-float(x)));
|
115 |
+
dx = x_sigmoid * (1 + float(x) * (1.0f - x_sigmoid)) * float(g) * float(y);
|
116 |
+
dy = float(x) * x_sigmoid * float(g);
|
117 |
+
}
|
118 |
+
"""
|
119 |
+
swiglu_fwd = torch.cuda.jiterator._create_jit_fn(swiglu_fwd_codestring)
|
120 |
+
swiglu_bwd = torch.cuda.jiterator._create_multi_output_jit_fn(swiglu_bwd_codestring, num_outputs=2)
|
121 |
+
|
122 |
+
|
123 |
+
class SwiGLUFunction(torch.autograd.Function):
|
124 |
+
|
125 |
+
@staticmethod
|
126 |
+
def forward(ctx, x, y):
|
127 |
+
ctx.save_for_backward(x, y)
|
128 |
+
return swiglu_fwd(x, y)
|
129 |
+
|
130 |
+
@staticmethod
|
131 |
+
def backward(ctx, dout):
|
132 |
+
x, y = ctx.saved_tensors
|
133 |
+
return swiglu_bwd(x, y, dout)
|
134 |
+
|
135 |
+
swiglu = SwiGLUFunction.apply
|
torch-ext/flash_attn/ops/fused_dense.py
ADDED
@@ -0,0 +1,688 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, Tri Dao.
|
2 |
+
# Inspired by https://github.com/NVIDIA/apex/blob/master/apex/fused_dense/fused_dense.py
|
3 |
+
# We make it work with pytorch amp and with bfloat16.
|
4 |
+
# The TensorParallel linear modules are inspired by https://github.com/NVIDIA/apex/blob/master/apex/transformer/tensor_parallel/layers.py
|
5 |
+
from functools import partial
|
6 |
+
from typing import Optional
|
7 |
+
|
8 |
+
# import fused_dense_cuda # from apex
|
9 |
+
import fused_dense_lib as fused_dense_cuda
|
10 |
+
import torch
|
11 |
+
import torch.nn as nn
|
12 |
+
import torch.nn.functional as F
|
13 |
+
from torch import Tensor
|
14 |
+
from torch.distributed import ProcessGroup
|
15 |
+
|
16 |
+
from flash_attn.utils.torch import custom_fwd, custom_bwd
|
17 |
+
from flash_attn.ops.activations import gelu_bwd, relu_bwd, sqrelu_bwd, sqrelu_fwd
|
18 |
+
from flash_attn.utils.distributed import (
|
19 |
+
all_gather_raw,
|
20 |
+
all_reduce,
|
21 |
+
all_reduce_raw,
|
22 |
+
reduce_scatter,
|
23 |
+
reduce_scatter_raw,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
class FusedDenseFunc(torch.autograd.Function):
|
28 |
+
@staticmethod
|
29 |
+
@custom_fwd
|
30 |
+
def forward(
|
31 |
+
ctx, x, weight, bias, return_residual=False, process_group=None, sequence_parallel=True
|
32 |
+
):
|
33 |
+
"""
|
34 |
+
If process_group is not None and sequence_parallel=True, we're doing Tensor Parallel
|
35 |
+
with sequence parallelism: we do an all_gather_raw of x before doing the matmul.
|
36 |
+
"""
|
37 |
+
ctx.compute_weight_gradient = weight.requires_grad
|
38 |
+
ctx.return_residual = return_residual
|
39 |
+
ctx.process_group = process_group
|
40 |
+
ctx.sequence_parallel = sequence_parallel
|
41 |
+
|
42 |
+
if torch.is_autocast_enabled():
|
43 |
+
x = x.to(dtype=torch.get_autocast_gpu_dtype())
|
44 |
+
x = x.contiguous()
|
45 |
+
if process_group is not None and sequence_parallel:
|
46 |
+
# We want to kick off the all_gather early, before weight dtype conversion
|
47 |
+
total_x, handle_x = all_gather_raw(x, process_group, async_op=True)
|
48 |
+
else:
|
49 |
+
total_x = x
|
50 |
+
|
51 |
+
if torch.is_autocast_enabled():
|
52 |
+
weight = weight.to(dtype=torch.get_autocast_gpu_dtype())
|
53 |
+
bias = bias.to(dtype=torch.get_autocast_gpu_dtype()) if bias is not None else None
|
54 |
+
weight = weight.contiguous()
|
55 |
+
if process_group is not None and sequence_parallel:
|
56 |
+
handle_x.wait()
|
57 |
+
batch_shape, n = total_x.shape[:-1], total_x.shape[-1]
|
58 |
+
batch_dim = batch_shape.numel()
|
59 |
+
# https://github.com/pytorch/pytorch/blob/5b51849b48a7dbccd297286cc0110def4706f9e7/aten/src/ATen/native/cuda/Blas.cpp#L174
|
60 |
+
if min(batch_dim, n, *weight.shape) > 65535 * 32:
|
61 |
+
raise RuntimeError("fused_dense only supports matrix dims <= 2M")
|
62 |
+
output = F.linear(total_x, weight, bias)
|
63 |
+
if ctx.compute_weight_gradient:
|
64 |
+
ctx.save_for_backward(x, weight)
|
65 |
+
else:
|
66 |
+
ctx.save_for_backward(weight)
|
67 |
+
return output if not return_residual else (output, x)
|
68 |
+
|
69 |
+
@staticmethod
|
70 |
+
@custom_bwd
|
71 |
+
def backward(ctx, grad_output, *args):
|
72 |
+
grad_output = grad_output.contiguous()
|
73 |
+
if ctx.return_residual:
|
74 |
+
(grad_input,) = args
|
75 |
+
grad_input = grad_input.contiguous()
|
76 |
+
process_group = ctx.process_group
|
77 |
+
sequence_parallel = ctx.sequence_parallel
|
78 |
+
if ctx.compute_weight_gradient:
|
79 |
+
x, weight = ctx.saved_tensors
|
80 |
+
if process_group is not None and sequence_parallel:
|
81 |
+
total_x, handle_x = all_gather_raw(x, process_group, async_op=True)
|
82 |
+
else:
|
83 |
+
total_x = x
|
84 |
+
else:
|
85 |
+
(weight,) = ctx.saved_tensors
|
86 |
+
total_x = None
|
87 |
+
batch_shape = grad_output.shape[:-1]
|
88 |
+
batch_dim = batch_shape.numel()
|
89 |
+
grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
|
90 |
+
if ctx.needs_input_grad[0]:
|
91 |
+
if not ctx.return_residual:
|
92 |
+
grad_input = F.linear(grad_output, weight.t())
|
93 |
+
else:
|
94 |
+
grad_input = torch.addmm(
|
95 |
+
grad_input.reshape(batch_dim, grad_input.shape[-1]), grad_output, weight
|
96 |
+
)
|
97 |
+
grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1])
|
98 |
+
if process_group is not None:
|
99 |
+
reduce_fn = reduce_scatter_raw if sequence_parallel else all_reduce_raw
|
100 |
+
grad_input, handle_grad_input = reduce_fn(grad_input, process_group, async_op=True)
|
101 |
+
else:
|
102 |
+
grad_input = None
|
103 |
+
if ctx.needs_input_grad[1]:
|
104 |
+
assert ctx.compute_weight_gradient
|
105 |
+
if process_group is not None and sequence_parallel:
|
106 |
+
handle_x.wait()
|
107 |
+
grad_weight, grad_bias = fused_dense_cuda.linear_bias_wgrad(
|
108 |
+
total_x.reshape(batch_dim, total_x.shape[-1]), grad_output, ctx.needs_input_grad[2]
|
109 |
+
)
|
110 |
+
else:
|
111 |
+
grad_weight = None
|
112 |
+
grad_bias = grad_output if ctx.needs_input_grad[2] else None
|
113 |
+
if process_group is not None and ctx.needs_input_grad[0]:
|
114 |
+
handle_grad_input.wait()
|
115 |
+
return grad_input, grad_weight, grad_bias, None, None, None
|
116 |
+
|
117 |
+
|
118 |
+
def fused_dense_func(
|
119 |
+
x: Tensor,
|
120 |
+
weight: Tensor,
|
121 |
+
bias: Optional[Tensor] = None,
|
122 |
+
return_residual: bool = False,
|
123 |
+
process_group: Optional[ProcessGroup] = None,
|
124 |
+
sequence_parallel: bool = True,
|
125 |
+
):
|
126 |
+
dtype_eligible = x.dtype in [torch.float16, torch.bfloat16] or (
|
127 |
+
x.dtype == torch.float32 and torch.is_autocast_enabled()
|
128 |
+
)
|
129 |
+
if x.is_cuda and weight.is_cuda and (bias is None or bias.is_cuda) and dtype_eligible:
|
130 |
+
return FusedDenseFunc.apply(
|
131 |
+
x, weight, bias, return_residual, process_group, sequence_parallel
|
132 |
+
)
|
133 |
+
else:
|
134 |
+
assert process_group is None
|
135 |
+
out = F.linear(x, weight, bias)
|
136 |
+
return out if not return_residual else (out, x)
|
137 |
+
|
138 |
+
|
139 |
+
class FusedDense(nn.Linear):
|
140 |
+
def __init__(
|
141 |
+
self,
|
142 |
+
in_features: int,
|
143 |
+
out_features: int,
|
144 |
+
bias: bool = True,
|
145 |
+
return_residual: bool = False,
|
146 |
+
device=None,
|
147 |
+
dtype=None,
|
148 |
+
) -> None:
|
149 |
+
super().__init__(in_features, out_features, bias=bias, device=device, dtype=dtype)
|
150 |
+
self.return_residual = return_residual
|
151 |
+
|
152 |
+
def forward(self, x, process_group=None):
|
153 |
+
"""
|
154 |
+
If process_group is not None, we're doing Tensor Parallel with sequence parallelism:
|
155 |
+
we do an all_gather of x before doing the matmul.
|
156 |
+
"""
|
157 |
+
return fused_dense_func(
|
158 |
+
x,
|
159 |
+
self.weight,
|
160 |
+
self.bias,
|
161 |
+
return_residual=self.return_residual,
|
162 |
+
process_group=process_group,
|
163 |
+
)
|
164 |
+
|
165 |
+
|
166 |
+
class ColumnParallelLinear(nn.Linear):
|
167 |
+
def __init__(
|
168 |
+
self,
|
169 |
+
in_features: int,
|
170 |
+
out_features: int,
|
171 |
+
process_group: ProcessGroup,
|
172 |
+
bias: bool = True,
|
173 |
+
sequence_parallel=True,
|
174 |
+
multiple_of=1,
|
175 |
+
device=None,
|
176 |
+
dtype=None,
|
177 |
+
) -> None:
|
178 |
+
world_size = torch.distributed.get_world_size(process_group)
|
179 |
+
if out_features % multiple_of:
|
180 |
+
raise ValueError(f"out_features ({out_features}) must be a multiple of {multiple_of}")
|
181 |
+
multiple = out_features // multiple_of
|
182 |
+
# We want to split @multiple across world_size, but it could be an uneven split
|
183 |
+
div = multiple // world_size
|
184 |
+
mod = multiple % world_size
|
185 |
+
# The first @mod ranks get @div + 1 copies, the rest get @div copies
|
186 |
+
local_multiple = div + int(torch.distributed.get_rank(process_group) < mod)
|
187 |
+
super().__init__(
|
188 |
+
in_features, local_multiple * multiple_of, bias=bias, device=device, dtype=dtype
|
189 |
+
)
|
190 |
+
self.process_group = process_group
|
191 |
+
self.sequence_parallel = sequence_parallel
|
192 |
+
|
193 |
+
def forward(self, x):
|
194 |
+
# If self.sequence_parallel is True, we're doing Tensor Parallel with sequence parallelism:
|
195 |
+
# we do an all_gather of x before doing the matmul.
|
196 |
+
# If not, then the input is already gathered.
|
197 |
+
return fused_dense_func(
|
198 |
+
x,
|
199 |
+
self.weight,
|
200 |
+
self.bias,
|
201 |
+
process_group=self.process_group,
|
202 |
+
sequence_parallel=self.sequence_parallel,
|
203 |
+
)
|
204 |
+
|
205 |
+
|
206 |
+
class RowParallelLinear(nn.Linear):
|
207 |
+
def __init__(
|
208 |
+
self,
|
209 |
+
in_features: int,
|
210 |
+
out_features: int,
|
211 |
+
process_group: ProcessGroup,
|
212 |
+
bias: bool = True,
|
213 |
+
sequence_parallel=True,
|
214 |
+
multiple_of=1,
|
215 |
+
device=None,
|
216 |
+
dtype=None,
|
217 |
+
) -> None:
|
218 |
+
world_size = torch.distributed.get_world_size(process_group)
|
219 |
+
rank = torch.distributed.get_rank(process_group)
|
220 |
+
if in_features % multiple_of:
|
221 |
+
raise ValueError(f"in_features ({in_features}) must be a multiple of {multiple_of}")
|
222 |
+
multiple = in_features // multiple_of
|
223 |
+
# We want to split @multiple across world_size, but it could be an uneven split
|
224 |
+
div = multiple // world_size
|
225 |
+
mod = multiple % world_size
|
226 |
+
# The first @mod ranks get @div + 1 copies, the rest get @div copies
|
227 |
+
local_multiple = div + int(torch.distributed.get_rank(process_group) < mod)
|
228 |
+
# Only rank 0 will have bias
|
229 |
+
super().__init__(
|
230 |
+
local_multiple * multiple_of,
|
231 |
+
out_features,
|
232 |
+
bias=bias and rank == 0,
|
233 |
+
device=device,
|
234 |
+
dtype=dtype,
|
235 |
+
)
|
236 |
+
self.process_group = process_group
|
237 |
+
self.sequence_parallel = sequence_parallel
|
238 |
+
|
239 |
+
def forward(self, x):
|
240 |
+
"""
|
241 |
+
We're doing Tensor Parallel with sequence parallelism: we do the matmul and then
|
242 |
+
a reduce_scatter of the result.
|
243 |
+
"""
|
244 |
+
out = fused_dense_func(x, self.weight, self.bias)
|
245 |
+
reduce_fn = reduce_scatter if self.sequence_parallel else all_reduce
|
246 |
+
return reduce_fn(out, self.process_group)
|
247 |
+
|
248 |
+
|
249 |
+
class FusedMLPFunc(torch.autograd.Function):
|
250 |
+
@staticmethod
|
251 |
+
@custom_fwd
|
252 |
+
def forward(
|
253 |
+
ctx,
|
254 |
+
x,
|
255 |
+
weight1,
|
256 |
+
bias1,
|
257 |
+
weight2,
|
258 |
+
bias2,
|
259 |
+
activation="gelu_approx",
|
260 |
+
save_pre_act=True,
|
261 |
+
return_residual=False,
|
262 |
+
checkpoint_lvl=0,
|
263 |
+
heuristic=0,
|
264 |
+
process_group=None,
|
265 |
+
sequence_parallel=True,
|
266 |
+
):
|
267 |
+
"""
|
268 |
+
If process_group is not None and sequence_parallel=True, we're doing Tensor Parallel
|
269 |
+
with sequence parallelism: we do an all_gather of x before doing the matmul.
|
270 |
+
If sequence_parallel=False, then the input is already gathered.
|
271 |
+
|
272 |
+
checkpoint_lvl:
|
273 |
+
0: no recomputation in the bwd
|
274 |
+
1: recompute gelu_out / relu_out in the bwd
|
275 |
+
2: recompute pre_act and gelu_out / relu_out in the bwd
|
276 |
+
"""
|
277 |
+
assert -1 <= heuristic <= 4
|
278 |
+
assert activation in ["gelu_approx", "relu", "sqrelu"]
|
279 |
+
if activation == "sqrelu":
|
280 |
+
assert heuristic == -1
|
281 |
+
if not save_pre_act:
|
282 |
+
checkpoint_lvl = 2
|
283 |
+
assert checkpoint_lvl in [0, 1, 2]
|
284 |
+
ctx.return_residual = return_residual
|
285 |
+
ctx.process_group = process_group
|
286 |
+
ctx.sequence_parallel = sequence_parallel
|
287 |
+
ctx.checkpoint_lvl = checkpoint_lvl
|
288 |
+
ctx.activation = activation
|
289 |
+
ctx.heuristic = heuristic
|
290 |
+
|
291 |
+
if torch.is_autocast_enabled():
|
292 |
+
x = x.to(dtype=torch.get_autocast_gpu_dtype())
|
293 |
+
x = x.contiguous()
|
294 |
+
if process_group is not None and sequence_parallel:
|
295 |
+
# We want to kick off the all_gather early, before weight dtype conversion
|
296 |
+
total_x, handle_x = all_gather_raw(x, process_group, async_op=True)
|
297 |
+
else:
|
298 |
+
total_x = x
|
299 |
+
|
300 |
+
if torch.is_autocast_enabled():
|
301 |
+
dtype = torch.get_autocast_gpu_dtype()
|
302 |
+
weight1, weight2 = [a.to(dtype=dtype) for a in [weight1, weight2]]
|
303 |
+
bias1 = bias1.to(dtype=dtype) if bias1 is not None else None
|
304 |
+
bias2 = bias2.to(dtype=dtype) if bias2 is not None else None
|
305 |
+
weight1 = weight1.contiguous()
|
306 |
+
bias1 = bias1.contiguous() if bias1 is not None else None
|
307 |
+
weight2 = weight2.contiguous()
|
308 |
+
bias2 = bias2.contiguous() if bias2 is not None else None
|
309 |
+
if process_group is not None and sequence_parallel:
|
310 |
+
handle_x.wait()
|
311 |
+
batch_shape, n = total_x.shape[:-1], total_x.shape[-1]
|
312 |
+
batch_dim = batch_shape.numel()
|
313 |
+
# https://github.com/pytorch/pytorch/blob/5b51849b48a7dbccd297286cc0110def4706f9e7/aten/src/ATen/native/cuda/Blas.cpp#L174
|
314 |
+
if min(batch_dim, n, *weight1.shape, *weight2.shape) > 65535 * 32:
|
315 |
+
raise RuntimeError("fused_dense only supports matrix dims <= 2M")
|
316 |
+
if heuristic == -1:
|
317 |
+
pre_act = F.linear(total_x, weight1, bias1)
|
318 |
+
activation_fn = (
|
319 |
+
partial(F.gelu, approximate="tanh")
|
320 |
+
if activation == "gelu_approx"
|
321 |
+
else (sqrelu_fwd if activation == "sqrelu" else F.relu)
|
322 |
+
)
|
323 |
+
with torch.jit.fuser("fuser2"):
|
324 |
+
output1 = activation_fn(pre_act)
|
325 |
+
# This is before adding bias1
|
326 |
+
# pre_act = F.linear(total_x.reshape(batch_dim, n), weight1)
|
327 |
+
# with torch.jit.fuser('fuser2'):
|
328 |
+
# output1 = bias_gelu(pre_act, bias1)
|
329 |
+
else:
|
330 |
+
is_gelu = activation == "gelu_approx"
|
331 |
+
output1, *rest = fused_dense_cuda.linear_act_forward(
|
332 |
+
total_x.reshape(batch_dim, n), weight1, bias1, is_gelu, save_pre_act, heuristic
|
333 |
+
)
|
334 |
+
if save_pre_act:
|
335 |
+
pre_act = rest[0]
|
336 |
+
output2 = F.linear(output1, weight2, bias2)
|
337 |
+
if checkpoint_lvl == 0 or (checkpoint_lvl == 1 and activation == "relu"):
|
338 |
+
# For RELU the pre_act is very small (just a bit-mask) so we just save it
|
339 |
+
ctx.save_for_backward(x, weight1, weight2, pre_act, output1)
|
340 |
+
elif checkpoint_lvl == 1:
|
341 |
+
ctx.save_for_backward(x, weight1, weight2, pre_act)
|
342 |
+
elif checkpoint_lvl == 2:
|
343 |
+
ctx.save_for_backward(x, weight1, weight2, bias1)
|
344 |
+
output2 = output2.reshape(*batch_shape, output2.shape[-1])
|
345 |
+
return output2 if not return_residual else (output2, x)
|
346 |
+
|
347 |
+
@staticmethod
|
348 |
+
@custom_bwd
|
349 |
+
def backward(ctx, grad_output, *args):
|
350 |
+
grad_output = grad_output.contiguous()
|
351 |
+
checkpoint_lvl = ctx.checkpoint_lvl
|
352 |
+
activation = ctx.activation
|
353 |
+
activation_fn = (
|
354 |
+
partial(F.gelu, approximate="tanh")
|
355 |
+
if activation == "gelu_approx"
|
356 |
+
else (sqrelu_fwd if activation == "sqrelu" else F.relu)
|
357 |
+
)
|
358 |
+
if ctx.return_residual:
|
359 |
+
(grad_input,) = args
|
360 |
+
grad_input = grad_input.contiguous()
|
361 |
+
process_group = ctx.process_group
|
362 |
+
sequence_parallel = ctx.sequence_parallel
|
363 |
+
x, weight1, weight2, *rest = ctx.saved_tensors
|
364 |
+
if process_group is None or not sequence_parallel:
|
365 |
+
total_x = x
|
366 |
+
batch_shape = grad_output.shape[:-1]
|
367 |
+
batch_dim = batch_shape.numel()
|
368 |
+
if checkpoint_lvl in [0, 1]:
|
369 |
+
if process_group is not None and sequence_parallel:
|
370 |
+
total_x, handle_x = all_gather_raw(x, process_group, async_op=True)
|
371 |
+
if checkpoint_lvl == 0 or (checkpoint_lvl == 1 and activation == "relu"):
|
372 |
+
pre_act, output1 = rest
|
373 |
+
elif checkpoint_lvl == 1:
|
374 |
+
(pre_act,) = rest
|
375 |
+
with torch.jit.fuser("fuser2"):
|
376 |
+
output1 = activation_fn(pre_act)
|
377 |
+
elif checkpoint_lvl == 2:
|
378 |
+
(bias1,) = rest
|
379 |
+
if process_group is not None and sequence_parallel:
|
380 |
+
total_x, _ = all_gather_raw(x, process_group)
|
381 |
+
if ctx.heuristic == -1:
|
382 |
+
pre_act = F.linear(total_x, weight1, bias1)
|
383 |
+
with torch.jit.fuser("fuser2"):
|
384 |
+
output1 = activation_fn(pre_act)
|
385 |
+
else:
|
386 |
+
output1, pre_act = fused_dense_cuda.linear_act_forward(
|
387 |
+
total_x.reshape(batch_dim, total_x.shape[-1]),
|
388 |
+
weight1,
|
389 |
+
bias1,
|
390 |
+
activation == "gelu_approx",
|
391 |
+
True,
|
392 |
+
ctx.heuristic,
|
393 |
+
)
|
394 |
+
|
395 |
+
grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
|
396 |
+
output1 = output1.reshape(batch_dim, output1.shape[-1])
|
397 |
+
pre_act = pre_act.reshape(batch_dim, pre_act.shape[-1])
|
398 |
+
if ctx.needs_input_grad[3]:
|
399 |
+
grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(
|
400 |
+
output1, grad_output, ctx.needs_input_grad[4]
|
401 |
+
)
|
402 |
+
else:
|
403 |
+
grad_weight2 = None
|
404 |
+
grad_bias2 = grad_output if ctx.needs_input_grad[4] else None
|
405 |
+
if ctx.heuristic == -1:
|
406 |
+
# grad_pre_act = matmul_dgelu(grad_output, weight2, pre_act)
|
407 |
+
grad_output1 = F.linear(grad_output, weight2.t())
|
408 |
+
activation_grad_fn = (
|
409 |
+
gelu_bwd
|
410 |
+
if activation == "gelu_approx"
|
411 |
+
else (sqrelu_bwd if activation == "sqrelu" else relu_bwd)
|
412 |
+
)
|
413 |
+
with torch.jit.fuser("fuser2"):
|
414 |
+
grad_pre_act = activation_grad_fn(grad_output1, pre_act)
|
415 |
+
else:
|
416 |
+
# The cublasLt epilogue has to compute both gelu/relu grad and bias grad, we can't
|
417 |
+
# just compute gelu/relu grad
|
418 |
+
grad_pre_act, grad_bias1 = fused_dense_cuda.bias_act_linear_dgrad_bgrad(
|
419 |
+
weight2, grad_output, pre_act, activation == "gelu_approx", ctx.heuristic
|
420 |
+
)
|
421 |
+
if not ctx.needs_input_grad[2]:
|
422 |
+
grad_bias1 = None
|
423 |
+
if ctx.needs_input_grad[0]:
|
424 |
+
if not ctx.return_residual:
|
425 |
+
grad_input = F.linear(grad_pre_act, weight1.t())
|
426 |
+
else:
|
427 |
+
grad_input = torch.addmm(
|
428 |
+
grad_input.reshape(batch_dim, grad_input.shape[-1]), grad_pre_act, weight1
|
429 |
+
)
|
430 |
+
grad_input = grad_input.reshape(*batch_shape, grad_input.shape[-1])
|
431 |
+
if process_group is not None:
|
432 |
+
reduce_fn = reduce_scatter_raw if sequence_parallel else all_reduce_raw
|
433 |
+
grad_input, handle_grad_input = reduce_fn(grad_input, process_group, async_op=True)
|
434 |
+
else:
|
435 |
+
grad_input = None
|
436 |
+
if ctx.heuristic == -1:
|
437 |
+
if ctx.needs_input_grad[1]:
|
438 |
+
if process_group is not None and sequence_parallel and checkpoint_lvl != 2:
|
439 |
+
handle_x.wait()
|
440 |
+
grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_wgrad(
|
441 |
+
total_x.reshape(batch_dim, total_x.shape[-1]),
|
442 |
+
grad_pre_act,
|
443 |
+
ctx.needs_input_grad[2],
|
444 |
+
)
|
445 |
+
else:
|
446 |
+
grad_weight1 = None
|
447 |
+
grad_bias1 = grad_pre_act if ctx.needs_input_grad[2] else None
|
448 |
+
else:
|
449 |
+
if ctx.needs_input_grad[1]:
|
450 |
+
if process_group is not None and sequence_parallel and checkpoint_lvl != 2:
|
451 |
+
handle_x.wait()
|
452 |
+
grad_weight1 = F.linear(
|
453 |
+
grad_pre_act.t(), total_x.reshape(batch_dim, total_x.shape[-1]).t()
|
454 |
+
)
|
455 |
+
else:
|
456 |
+
grad_weight1 = None
|
457 |
+
if process_group is not None and ctx.needs_input_grad[0]:
|
458 |
+
handle_grad_input.wait()
|
459 |
+
return (
|
460 |
+
grad_input,
|
461 |
+
grad_weight1,
|
462 |
+
grad_bias1,
|
463 |
+
grad_weight2,
|
464 |
+
grad_bias2,
|
465 |
+
None,
|
466 |
+
None,
|
467 |
+
None,
|
468 |
+
None,
|
469 |
+
None,
|
470 |
+
None,
|
471 |
+
None,
|
472 |
+
)
|
473 |
+
|
474 |
+
|
475 |
+
def fused_mlp_func(
|
476 |
+
x: Tensor,
|
477 |
+
weight1: Tensor,
|
478 |
+
weight2: Tensor,
|
479 |
+
bias1: Optional[Tensor] = None,
|
480 |
+
bias2: Optional[Tensor] = None,
|
481 |
+
activation: str = "gelu_approx",
|
482 |
+
save_pre_act: bool = True,
|
483 |
+
return_residual: bool = False,
|
484 |
+
checkpoint_lvl: int = 0,
|
485 |
+
heuristic: int = 0,
|
486 |
+
process_group: Optional[ProcessGroup] = None,
|
487 |
+
sequence_parallel: bool = True,
|
488 |
+
):
|
489 |
+
assert activation in ["gelu_approx", "relu", "sqrelu"]
|
490 |
+
dtype_eligible = x.dtype in [torch.float16, torch.bfloat16] or (
|
491 |
+
x.dtype == torch.float32 and torch.is_autocast_enabled()
|
492 |
+
)
|
493 |
+
# If we save pre-activation, dimension must be divisible by 128 (relu) or 8 (gelu)
|
494 |
+
dim_eligible = not save_pre_act or (x.shape[-1] % (128 if activation == "relu" else 8) == 0)
|
495 |
+
if (
|
496 |
+
x.is_cuda
|
497 |
+
and weight1.is_cuda
|
498 |
+
and weight2.is_cuda
|
499 |
+
and (bias1 is None or bias1.is_cuda)
|
500 |
+
and (bias2 is None or bias2.is_cuda)
|
501 |
+
and dtype_eligible
|
502 |
+
and dim_eligible
|
503 |
+
):
|
504 |
+
return FusedMLPFunc.apply(
|
505 |
+
x,
|
506 |
+
weight1,
|
507 |
+
bias1,
|
508 |
+
weight2,
|
509 |
+
bias2,
|
510 |
+
activation,
|
511 |
+
save_pre_act,
|
512 |
+
return_residual,
|
513 |
+
checkpoint_lvl,
|
514 |
+
heuristic,
|
515 |
+
process_group,
|
516 |
+
sequence_parallel,
|
517 |
+
)
|
518 |
+
else:
|
519 |
+
assert process_group is None
|
520 |
+
pre_act = F.linear(x, weight1, bias1)
|
521 |
+
activation_fn = (
|
522 |
+
partial(F.gelu, approximate="tanh")
|
523 |
+
if activation == "gelu_approx"
|
524 |
+
else partial(F.relu, inplace=True)
|
525 |
+
)
|
526 |
+
output1 = activation_fn(pre_act)
|
527 |
+
output2 = F.linear(output1, weight2, bias2)
|
528 |
+
return output2 if not return_residual else (output2, x)
|
529 |
+
|
530 |
+
|
531 |
+
class FusedMLP(nn.Module):
|
532 |
+
def __init__(
|
533 |
+
self,
|
534 |
+
in_features,
|
535 |
+
hidden_features=None,
|
536 |
+
out_features=None,
|
537 |
+
bias1=True,
|
538 |
+
bias2=True,
|
539 |
+
activation="gelu_approx",
|
540 |
+
return_residual=False,
|
541 |
+
checkpoint_lvl=0,
|
542 |
+
heuristic="auto",
|
543 |
+
device=None,
|
544 |
+
dtype=None,
|
545 |
+
):
|
546 |
+
"""
|
547 |
+
If process_group is not None, we're doing Tensor Parallel with sequence parallelism:
|
548 |
+
we do an all_gather of x before doing the matmul, gelu, then matmul.
|
549 |
+
Finally we do a reduce_scatter of the output.
|
550 |
+
|
551 |
+
checkpoint_lvl (increasing lvl means slower but more memory saving):
|
552 |
+
0: no recomputation in the bwd
|
553 |
+
1: recompute gelu_out in the bwd
|
554 |
+
2: recompute pre_act and gelu_out in the bwd
|
555 |
+
heuristic:
|
556 |
+
-1: don't fuse gemm + gelu (separate kernel)
|
557 |
+
0..4: use this heuristic for the algo section in the fused gemm + gelu
|
558 |
+
'auto': heuristic will be picked automatically:
|
559 |
+
For CUDA >= 11.8, we set heuristic=0 for both fp16 and bf16 for best perf.
|
560 |
+
For CUDA <= 11.7, we set heuristic=1 for fp16 and heuristic=-1 for bf16.
|
561 |
+
For H100, we set heuristic=-1 for both fp16 and bf16 as the fused cuBlasLt implementation
|
562 |
+
is slower than the unfused version.
|
563 |
+
return_residual: whether to return the input x along with the output. This is for
|
564 |
+
performance reason: for post-norm architecture, returning the input allows us
|
565 |
+
to fuse the backward of nn.Linear with the residual connection.
|
566 |
+
"""
|
567 |
+
assert checkpoint_lvl in [0, 1, 2]
|
568 |
+
assert activation in ["gelu_approx", "relu", "sqrelu"]
|
569 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
570 |
+
super().__init__()
|
571 |
+
out_features = out_features or in_features
|
572 |
+
hidden_features = hidden_features or in_features * 4
|
573 |
+
self.activation = activation
|
574 |
+
self.return_residual = return_residual
|
575 |
+
self.checkpoint_lvl = checkpoint_lvl
|
576 |
+
self.heuristic = heuristic if activation != "sqrelu" else -1
|
577 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1, **factory_kwargs)
|
578 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs)
|
579 |
+
|
580 |
+
def forward(self, x, process_group=None):
|
581 |
+
dtype = x.dtype if not torch.is_autocast_enabled() else torch.get_autocast_gpu_dtype()
|
582 |
+
if self.heuristic == "auto":
|
583 |
+
if self.activation == "gelu_approx":
|
584 |
+
if torch.cuda.get_device_capability("cuda") == (9, 0):
|
585 |
+
heuristic = -1
|
586 |
+
else:
|
587 |
+
cuda_ver = tuple(map(int, torch.version.cuda.split(".")))
|
588 |
+
heuristic = 0 if cuda_ver >= (11, 8) else (1 if dtype == torch.float16 else -1)
|
589 |
+
else:
|
590 |
+
heuristic = 0
|
591 |
+
else:
|
592 |
+
heuristic = self.heuristic
|
593 |
+
out = fused_mlp_func(
|
594 |
+
x,
|
595 |
+
self.fc1.weight,
|
596 |
+
self.fc2.weight,
|
597 |
+
self.fc1.bias,
|
598 |
+
self.fc2.bias,
|
599 |
+
activation=self.activation,
|
600 |
+
save_pre_act=self.training,
|
601 |
+
return_residual=self.return_residual,
|
602 |
+
checkpoint_lvl=self.checkpoint_lvl,
|
603 |
+
heuristic=heuristic,
|
604 |
+
process_group=process_group,
|
605 |
+
)
|
606 |
+
if self.return_residual:
|
607 |
+
out, x = out
|
608 |
+
if process_group is not None:
|
609 |
+
out = reduce_scatter(out, process_group)
|
610 |
+
return out if not self.return_residual else (out, x)
|
611 |
+
|
612 |
+
|
613 |
+
class ParallelFusedMLP(nn.Module):
|
614 |
+
def __init__(
|
615 |
+
self,
|
616 |
+
in_features,
|
617 |
+
hidden_features=None,
|
618 |
+
out_features=None,
|
619 |
+
activation="gelu_approx",
|
620 |
+
process_group: ProcessGroup = None,
|
621 |
+
bias1=True,
|
622 |
+
bias2=True,
|
623 |
+
sequence_parallel=True,
|
624 |
+
checkpoint_lvl=0,
|
625 |
+
heuristic="auto",
|
626 |
+
device=None,
|
627 |
+
dtype=None,
|
628 |
+
):
|
629 |
+
"""
|
630 |
+
process_group is required. We're doing Tensor Parallel with sequence parallelism:
|
631 |
+
we do an all_gather of x before doing the matmul, gelu, then matmul.
|
632 |
+
Finally we do a reduce_scatter of the output.
|
633 |
+
|
634 |
+
checkpoint_lvl (increasing lvl means slower but more memory saving):
|
635 |
+
0: no recomputation in the bwd
|
636 |
+
1: recompute gelu_out in the bwd
|
637 |
+
2: recompute pre_act and gelu_out in the bwd
|
638 |
+
heuristic:
|
639 |
+
-1: don't fuse gemm + gelu (separate kernel)
|
640 |
+
0..4: use this heuristic for the algo section in the fused gemm + gelu
|
641 |
+
'auto': heuristic will be picked automatically:
|
642 |
+
For CUDA >= 11.8, we set heuristic=0 for both fp16 and bf16 for best perf.
|
643 |
+
For CUDA <= 11.7, we set heuristic=1 for fp16 and heuristic=-1 for bf16.
|
644 |
+
"""
|
645 |
+
assert checkpoint_lvl in [0, 1, 2]
|
646 |
+
assert activation in ["gelu_approx", "relu", "sqrelu"]
|
647 |
+
assert process_group is not None
|
648 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
649 |
+
super().__init__()
|
650 |
+
out_features = out_features or in_features
|
651 |
+
hidden_features = hidden_features or in_features * 4
|
652 |
+
self.activation = activation
|
653 |
+
self.process_group = process_group
|
654 |
+
self.sequence_parallel = sequence_parallel
|
655 |
+
self.checkpoint_lvl = checkpoint_lvl
|
656 |
+
self.heuristic = heuristic if activation != "sqrelu" else -1
|
657 |
+
self.fc1 = ColumnParallelLinear(
|
658 |
+
in_features, hidden_features, process_group, bias=bias1, **factory_kwargs
|
659 |
+
)
|
660 |
+
self.fc2 = RowParallelLinear(
|
661 |
+
hidden_features, out_features, process_group, bias=bias2, **factory_kwargs
|
662 |
+
)
|
663 |
+
|
664 |
+
def forward(self, x):
|
665 |
+
dtype = x.dtype if not torch.is_autocast_enabled() else torch.get_autocast_gpu_dtype()
|
666 |
+
if self.heuristic == "auto":
|
667 |
+
if self.activation == "gelu_approx":
|
668 |
+
cuda_ver = tuple(map(int, torch.version.cuda.split(".")))
|
669 |
+
heuristic = 0 if cuda_ver >= (11, 8) else (1 if dtype == torch.float16 else -1)
|
670 |
+
else:
|
671 |
+
heuristic = 0
|
672 |
+
else:
|
673 |
+
heuristic = self.heuristic
|
674 |
+
out = fused_mlp_func(
|
675 |
+
x,
|
676 |
+
self.fc1.weight,
|
677 |
+
self.fc2.weight,
|
678 |
+
self.fc1.bias,
|
679 |
+
self.fc2.bias,
|
680 |
+
activation=self.activation,
|
681 |
+
save_pre_act=self.training,
|
682 |
+
checkpoint_lvl=self.checkpoint_lvl,
|
683 |
+
heuristic=heuristic,
|
684 |
+
process_group=self.process_group,
|
685 |
+
sequence_parallel=self.sequence_parallel,
|
686 |
+
)
|
687 |
+
reduce_fn = reduce_scatter if self.sequence_parallel else all_reduce
|
688 |
+
return reduce_fn(out, self.process_group)
|
torch-ext/flash_attn/ops/layer_norm.py
ADDED
@@ -0,0 +1,800 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, Tri Dao.
|
2 |
+
# Adapted from https://github.com/NVIDIA/apex/blob/master/apex/contrib/layer_norm/layer_norm.py
|
3 |
+
|
4 |
+
import dropout_layer_norm
|
5 |
+
import torch
|
6 |
+
from torch.nn import init
|
7 |
+
|
8 |
+
|
9 |
+
def maybe_align(x, alignment_in_bytes=16):
|
10 |
+
"""Assume that x already has last dim divisible by alignment_in_bytes"""
|
11 |
+
# TD [2023-07-04] I'm not 100% sure that clone will align the memory
|
12 |
+
# https://discuss.pytorch.org/t/how-to-ensure-that-tensor-data-ptr-is-aligned-to-16-bytes/183440
|
13 |
+
return x if x.data_ptr() % alignment_in_bytes == 0 else x.clone()
|
14 |
+
|
15 |
+
|
16 |
+
def _dropout_add_layer_norm_forward(
|
17 |
+
x0,
|
18 |
+
residual,
|
19 |
+
gamma,
|
20 |
+
beta,
|
21 |
+
rowscale,
|
22 |
+
colscale,
|
23 |
+
dropout_p,
|
24 |
+
epsilon,
|
25 |
+
residual_in_fp32=False,
|
26 |
+
is_rms_norm=False,
|
27 |
+
):
|
28 |
+
"""Assume that arguments are contiguous and aligned to 16 bytes"""
|
29 |
+
hidden_size = gamma.numel()
|
30 |
+
x0mat = x0.view((-1, hidden_size))
|
31 |
+
residualmat = residual.view((-1, hidden_size)) if residual is not None else None
|
32 |
+
rowscale = rowscale.view(-1) if rowscale is not None else None
|
33 |
+
zmat, xmat, dmask, mu, rsigma = dropout_layer_norm.dropout_add_ln_fwd(
|
34 |
+
x0mat,
|
35 |
+
residualmat,
|
36 |
+
gamma,
|
37 |
+
beta,
|
38 |
+
rowscale,
|
39 |
+
colscale,
|
40 |
+
None,
|
41 |
+
None,
|
42 |
+
dropout_p,
|
43 |
+
epsilon,
|
44 |
+
1.0,
|
45 |
+
0,
|
46 |
+
None,
|
47 |
+
residual_in_fp32,
|
48 |
+
is_rms_norm,
|
49 |
+
)
|
50 |
+
# dmask is None if dropout_p == 0.0
|
51 |
+
# xmat is None if dropout_p == 0.0 and residual is None and residual_dtype != input_dtype
|
52 |
+
return zmat, xmat if xmat is not None else x0mat, dmask, mu, rsigma
|
53 |
+
|
54 |
+
|
55 |
+
def _dropout_add_layer_norm_backward(
|
56 |
+
dz,
|
57 |
+
dx,
|
58 |
+
x,
|
59 |
+
x0,
|
60 |
+
dmask,
|
61 |
+
mu,
|
62 |
+
rsigma,
|
63 |
+
gamma,
|
64 |
+
rowscale,
|
65 |
+
colscale,
|
66 |
+
dropout_p,
|
67 |
+
has_residual,
|
68 |
+
is_rms_norm=False,
|
69 |
+
):
|
70 |
+
"""Assume that arguments are contiguous and aligned to 16 bytes
|
71 |
+
dx == None means that it was a post-norm architecture
|
72 |
+
(x = drop(x0) + residual was not returned in the fwd).
|
73 |
+
x0 must not be None if we have colscale.
|
74 |
+
"""
|
75 |
+
hidden_size = gamma.numel()
|
76 |
+
xmat = x.view((-1, hidden_size))
|
77 |
+
dzmat = dz.view(xmat.shape)
|
78 |
+
dxmat = dx.view(xmat.shape) if dx is not None else None
|
79 |
+
x0mat = x0.view((-1, hidden_size)) if x0 is not None else None
|
80 |
+
rowscale = rowscale.view(-1) if rowscale is not None else None
|
81 |
+
if colscale is not None:
|
82 |
+
assert x0 is not None, "x0 is required to compute the gradient of colscale"
|
83 |
+
dx0mat, dresidualmat, dgamma, dbeta, _, _, *rest = dropout_layer_norm.dropout_add_ln_bwd(
|
84 |
+
dzmat,
|
85 |
+
dxmat,
|
86 |
+
xmat,
|
87 |
+
x0mat,
|
88 |
+
dmask,
|
89 |
+
mu,
|
90 |
+
rsigma,
|
91 |
+
gamma,
|
92 |
+
rowscale,
|
93 |
+
colscale,
|
94 |
+
None,
|
95 |
+
None,
|
96 |
+
dropout_p,
|
97 |
+
1.0,
|
98 |
+
0,
|
99 |
+
has_residual,
|
100 |
+
is_rms_norm,
|
101 |
+
)
|
102 |
+
# dresidualmat is None if not has_residual
|
103 |
+
if colscale is None:
|
104 |
+
return dx0mat, dresidualmat, dgamma, dbeta
|
105 |
+
else:
|
106 |
+
dcolscale = rest[0]
|
107 |
+
return dx0mat, dresidualmat, dgamma, dbeta, dcolscale
|
108 |
+
|
109 |
+
|
110 |
+
def _dropout_add_layer_norm_subset_forward(
|
111 |
+
x0,
|
112 |
+
residual,
|
113 |
+
gamma,
|
114 |
+
beta,
|
115 |
+
colscale,
|
116 |
+
x0_subset,
|
117 |
+
out_subset,
|
118 |
+
dropout_p,
|
119 |
+
epsilon,
|
120 |
+
rowscale_const,
|
121 |
+
out_numrows,
|
122 |
+
residual_in_fp32=False,
|
123 |
+
is_rms_norm=False,
|
124 |
+
):
|
125 |
+
"""Assume that arguments are contiguous and aligned to 16 bytes"""
|
126 |
+
hidden_size = gamma.numel()
|
127 |
+
x0mat = x0.view((-1, hidden_size))
|
128 |
+
residualmat = residual.view((-1, hidden_size)) if residual is not None else None
|
129 |
+
x0_subset = x0_subset.view(-1) if x0_subset is not None else None
|
130 |
+
out_subset = out_subset.view(-1) if out_subset is not None else None
|
131 |
+
zmat, xmat, dmask, mu, rsigma = dropout_layer_norm.dropout_add_ln_fwd(
|
132 |
+
x0mat,
|
133 |
+
residualmat,
|
134 |
+
gamma,
|
135 |
+
beta,
|
136 |
+
None,
|
137 |
+
colscale,
|
138 |
+
x0_subset,
|
139 |
+
out_subset,
|
140 |
+
dropout_p,
|
141 |
+
epsilon,
|
142 |
+
rowscale_const,
|
143 |
+
out_numrows,
|
144 |
+
None,
|
145 |
+
residual_in_fp32,
|
146 |
+
is_rms_norm,
|
147 |
+
)
|
148 |
+
# dmask is None if dropout_p == 0.0
|
149 |
+
# xmat is None if dropout_p == 0.0 and residual is None and residual_dtype != input_dtype
|
150 |
+
return zmat, xmat if xmat is not None else x0mat, dmask, mu, rsigma
|
151 |
+
|
152 |
+
|
153 |
+
def _dropout_add_layer_norm_subset_backward(
|
154 |
+
dz,
|
155 |
+
dx,
|
156 |
+
x,
|
157 |
+
x0,
|
158 |
+
dmask,
|
159 |
+
mu,
|
160 |
+
rsigma,
|
161 |
+
gamma,
|
162 |
+
colscale,
|
163 |
+
x0_subset,
|
164 |
+
out_subset,
|
165 |
+
dropout_p,
|
166 |
+
rowscale_const,
|
167 |
+
x0_numrows,
|
168 |
+
has_residual,
|
169 |
+
is_rms_norm=False,
|
170 |
+
):
|
171 |
+
"""Assume that arguments are contiguous and aligned to 16 bytes
|
172 |
+
dx == None means that it was a post-norm architecture
|
173 |
+
(x = drop(x0) + residual was not returned in the fwd).
|
174 |
+
x0 must not be None if we have colscale.
|
175 |
+
"""
|
176 |
+
hidden_size = gamma.numel()
|
177 |
+
xmat = x.view((-1, hidden_size))
|
178 |
+
dzmat = dz.view(-1, hidden_size)
|
179 |
+
dxmat = dx.view(xmat.shape) if dx is not None else None
|
180 |
+
x0mat = x0.view((-1, hidden_size)) if x0 is not None else None
|
181 |
+
x0_subset = x0_subset.view(-1) if x0_subset is not None else None
|
182 |
+
out_subset = out_subset.view(-1) if out_subset is not None else None
|
183 |
+
if colscale is not None:
|
184 |
+
assert x0 is not None, "x0 is required to compute the gradient of colscale"
|
185 |
+
dx0mat, dresidualmat, dgamma, dbeta, _, _, *rest = dropout_layer_norm.dropout_add_ln_bwd(
|
186 |
+
dzmat,
|
187 |
+
dxmat,
|
188 |
+
xmat,
|
189 |
+
x0mat,
|
190 |
+
dmask,
|
191 |
+
mu,
|
192 |
+
rsigma,
|
193 |
+
gamma,
|
194 |
+
None,
|
195 |
+
colscale,
|
196 |
+
x0_subset,
|
197 |
+
out_subset,
|
198 |
+
dropout_p,
|
199 |
+
rowscale_const,
|
200 |
+
x0_numrows,
|
201 |
+
has_residual,
|
202 |
+
is_rms_norm,
|
203 |
+
)
|
204 |
+
# dresidualmat is None if not has_residual
|
205 |
+
if colscale is None:
|
206 |
+
return dx0mat, dresidualmat, dgamma, dbeta
|
207 |
+
else:
|
208 |
+
dcolscale = rest[0]
|
209 |
+
return dx0mat, dresidualmat, dgamma, dbeta, dcolscale
|
210 |
+
|
211 |
+
|
212 |
+
def _dropout_add_layer_norm_parallel_residual_forward(
|
213 |
+
x0,
|
214 |
+
x1,
|
215 |
+
residual,
|
216 |
+
gamma0,
|
217 |
+
beta0,
|
218 |
+
gamma1,
|
219 |
+
beta1,
|
220 |
+
dropout_p,
|
221 |
+
epsilon,
|
222 |
+
residual_in_fp32=False,
|
223 |
+
is_rms_norm=False,
|
224 |
+
):
|
225 |
+
"""Assume that arguments are contiguous and aligned to 16 bytes"""
|
226 |
+
hidden_size = gamma0.numel()
|
227 |
+
x0mat = x0.view((-1, hidden_size))
|
228 |
+
x1mat = x1.view((-1, hidden_size)) if x1 is not None else None
|
229 |
+
residualmat = residual.view((-1, hidden_size)) if residual is not None else None
|
230 |
+
(
|
231 |
+
z0mat,
|
232 |
+
z1mat,
|
233 |
+
xmat,
|
234 |
+
dmask0,
|
235 |
+
dmask1,
|
236 |
+
mu,
|
237 |
+
rsigma,
|
238 |
+
) = dropout_layer_norm.dropout_add_ln_parallel_residual_fwd(
|
239 |
+
x0mat,
|
240 |
+
x1mat,
|
241 |
+
residualmat,
|
242 |
+
gamma0,
|
243 |
+
beta0,
|
244 |
+
gamma1,
|
245 |
+
beta1,
|
246 |
+
dropout_p,
|
247 |
+
epsilon,
|
248 |
+
None,
|
249 |
+
residual_in_fp32,
|
250 |
+
is_rms_norm,
|
251 |
+
)
|
252 |
+
# dmask0 and dmask1 are None if dropout_p == 0.0
|
253 |
+
# xmat is None if dropout_p == 0.0 and residual is None and residual_dtype != input_dtype
|
254 |
+
return z0mat, z1mat, xmat if xmat is not None else x0mat, dmask0, dmask1, mu, rsigma
|
255 |
+
|
256 |
+
|
257 |
+
def _dropout_add_layer_norm_parallel_residual_backward(
|
258 |
+
dz0,
|
259 |
+
dz1,
|
260 |
+
dx,
|
261 |
+
x,
|
262 |
+
dmask0,
|
263 |
+
dmask1,
|
264 |
+
mu,
|
265 |
+
rsigma,
|
266 |
+
gamma0,
|
267 |
+
gamma1,
|
268 |
+
dropout_p,
|
269 |
+
has_x1,
|
270 |
+
has_residual,
|
271 |
+
is_rms_norm=False,
|
272 |
+
):
|
273 |
+
"""Assume that arguments are contiguous and aligned to 16 bytes
|
274 |
+
dx == None means that it was a post-norm architecture
|
275 |
+
(x = drop(x0) + residual was not returned in the fwd).
|
276 |
+
"""
|
277 |
+
hidden_size = gamma0.numel()
|
278 |
+
xmat = x.view((-1, hidden_size))
|
279 |
+
dz0mat = dz0.view(xmat.shape)
|
280 |
+
dz1mat = dz1.view(xmat.shape) if dz1 is not None else None
|
281 |
+
dxmat = dx.view(xmat.shape) if dx is not None else None
|
282 |
+
(
|
283 |
+
dx0mat,
|
284 |
+
dx1mat,
|
285 |
+
dresidualmat,
|
286 |
+
dgamma0,
|
287 |
+
dbeta0,
|
288 |
+
dgamma1,
|
289 |
+
dbeta1,
|
290 |
+
*rest,
|
291 |
+
) = dropout_layer_norm.dropout_add_ln_parallel_residual_bwd(
|
292 |
+
dz0mat,
|
293 |
+
dz1mat,
|
294 |
+
dxmat,
|
295 |
+
xmat,
|
296 |
+
dmask0,
|
297 |
+
dmask1,
|
298 |
+
mu,
|
299 |
+
rsigma,
|
300 |
+
gamma0,
|
301 |
+
gamma1,
|
302 |
+
dropout_p,
|
303 |
+
has_x1,
|
304 |
+
has_residual,
|
305 |
+
is_rms_norm,
|
306 |
+
)
|
307 |
+
# dresidualmat is None if not has_residual
|
308 |
+
return dx0mat, dx1mat, dresidualmat, dgamma0, dbeta0, dgamma1, dbeta1
|
309 |
+
|
310 |
+
|
311 |
+
class DropoutAddLayerNormFn(torch.autograd.Function):
|
312 |
+
@staticmethod
|
313 |
+
def forward(
|
314 |
+
ctx,
|
315 |
+
x0,
|
316 |
+
residual,
|
317 |
+
gamma,
|
318 |
+
beta,
|
319 |
+
rowscale,
|
320 |
+
colscale,
|
321 |
+
dropout_p,
|
322 |
+
epsilon,
|
323 |
+
residual_in_fp32=False,
|
324 |
+
prenorm=False,
|
325 |
+
is_rms_norm=False,
|
326 |
+
return_dmask=False,
|
327 |
+
):
|
328 |
+
x0 = maybe_align(x0.contiguous(), 16)
|
329 |
+
residual = maybe_align(residual.contiguous(), 16) if residual is not None else None
|
330 |
+
gamma = maybe_align(gamma.contiguous(), 16)
|
331 |
+
beta = maybe_align(beta.contiguous(), 16) if beta is not None else None
|
332 |
+
rowscale = maybe_align(rowscale.contiguous(), 16) if rowscale is not None else None
|
333 |
+
colscale = maybe_align(colscale.contiguous(), 16) if colscale is not None else None
|
334 |
+
zmat, xmat, dmask, mu, rsigma = _dropout_add_layer_norm_forward(
|
335 |
+
x0,
|
336 |
+
residual,
|
337 |
+
gamma,
|
338 |
+
beta,
|
339 |
+
rowscale,
|
340 |
+
colscale,
|
341 |
+
dropout_p,
|
342 |
+
epsilon,
|
343 |
+
residual_in_fp32,
|
344 |
+
is_rms_norm,
|
345 |
+
)
|
346 |
+
# Only need to save x0 if we need to compute gradient wrt colscale
|
347 |
+
x0_saved = x0 if colscale is not None else None
|
348 |
+
ctx.save_for_backward(
|
349 |
+
xmat.view(x0.shape), x0_saved, dmask, gamma, mu, rsigma, rowscale, colscale
|
350 |
+
)
|
351 |
+
ctx.prenorm = prenorm
|
352 |
+
ctx.dropout_p = dropout_p
|
353 |
+
ctx.has_residual = residual is not None
|
354 |
+
ctx.is_rms_norm = is_rms_norm
|
355 |
+
ctx.has_beta = beta is not None
|
356 |
+
if not return_dmask:
|
357 |
+
return (
|
358 |
+
zmat.view(x0.shape) if not prenorm else (zmat.view(x0.shape), xmat.view(x0.shape))
|
359 |
+
)
|
360 |
+
else:
|
361 |
+
dmask = (
|
362 |
+
dmask.view(x0.shape)
|
363 |
+
if dropout_p > 0.0
|
364 |
+
else torch.ones(x0.shape, dtype=torch.uint8, device=x0.device)
|
365 |
+
)
|
366 |
+
ctx.mark_non_differentiable(dmask)
|
367 |
+
return (
|
368 |
+
(zmat.view(x0.shape), dmask)
|
369 |
+
if not prenorm
|
370 |
+
else (zmat.view(x0.shape), xmat.view(x0.shape), dmask)
|
371 |
+
)
|
372 |
+
|
373 |
+
@staticmethod
|
374 |
+
def backward(ctx, dz, *args):
|
375 |
+
# assert dz.is_contiguous()
|
376 |
+
dz = maybe_align(dz.contiguous(), 16) # this happens!
|
377 |
+
dx = maybe_align(args[0].contiguous(), 16) if ctx.prenorm else None
|
378 |
+
x, x0, dmask, gamma, mu, rsigma, rowscale, colscale = ctx.saved_tensors
|
379 |
+
# x0 is None if colscale is None
|
380 |
+
dropout_p = ctx.dropout_p
|
381 |
+
has_residual = ctx.has_residual
|
382 |
+
dx0mat, dresidualmat, dgamma, dbeta, *rest = _dropout_add_layer_norm_backward(
|
383 |
+
dz,
|
384 |
+
dx,
|
385 |
+
x,
|
386 |
+
x0,
|
387 |
+
dmask,
|
388 |
+
mu,
|
389 |
+
rsigma,
|
390 |
+
gamma,
|
391 |
+
rowscale,
|
392 |
+
colscale,
|
393 |
+
dropout_p,
|
394 |
+
has_residual,
|
395 |
+
ctx.is_rms_norm,
|
396 |
+
)
|
397 |
+
dx0 = dx0mat.view(x.shape)
|
398 |
+
dresidual = dresidualmat.view(x.shape) if dresidualmat is not None else None
|
399 |
+
dcolscale = rest[0] if colscale is not None else None
|
400 |
+
return (
|
401 |
+
dx0,
|
402 |
+
dresidual,
|
403 |
+
dgamma,
|
404 |
+
dbeta if ctx.has_beta else None,
|
405 |
+
None,
|
406 |
+
dcolscale,
|
407 |
+
None,
|
408 |
+
None,
|
409 |
+
None,
|
410 |
+
None,
|
411 |
+
None,
|
412 |
+
None,
|
413 |
+
)
|
414 |
+
|
415 |
+
|
416 |
+
class DropoutAddLayerNormSubsetFn(torch.autograd.Function):
|
417 |
+
@staticmethod
|
418 |
+
def forward(
|
419 |
+
ctx,
|
420 |
+
x0,
|
421 |
+
residual,
|
422 |
+
gamma,
|
423 |
+
beta,
|
424 |
+
colscale,
|
425 |
+
x0_subset,
|
426 |
+
out_subset,
|
427 |
+
dropout_p,
|
428 |
+
epsilon,
|
429 |
+
rowscale_const,
|
430 |
+
out_numrows,
|
431 |
+
residual_in_fp32=False,
|
432 |
+
prenorm=False,
|
433 |
+
is_rms_norm=False,
|
434 |
+
return_dmask=False,
|
435 |
+
):
|
436 |
+
x0 = maybe_align(x0.contiguous(), 16)
|
437 |
+
residual = maybe_align(residual.contiguous(), 16) if residual is not None else None
|
438 |
+
gamma = maybe_align(gamma.contiguous(), 16)
|
439 |
+
beta = maybe_align(beta.contiguous(), 16) if beta is not None else None
|
440 |
+
colscale = maybe_align(colscale.contiguous(), 16) if colscale is not None else None
|
441 |
+
zmat, xmat, dmask, mu, rsigma = _dropout_add_layer_norm_subset_forward(
|
442 |
+
x0,
|
443 |
+
residual,
|
444 |
+
gamma,
|
445 |
+
beta,
|
446 |
+
colscale,
|
447 |
+
x0_subset,
|
448 |
+
out_subset,
|
449 |
+
dropout_p,
|
450 |
+
epsilon,
|
451 |
+
rowscale_const,
|
452 |
+
out_numrows,
|
453 |
+
residual_in_fp32,
|
454 |
+
is_rms_norm,
|
455 |
+
)
|
456 |
+
# Only need to save x0 if we need to compute gradient wrt colscale
|
457 |
+
x0_saved = x0 if colscale is not None else None
|
458 |
+
x_shape = (-1, *x0.shape[1:])
|
459 |
+
ctx.save_for_backward(
|
460 |
+
xmat.view(x_shape), x0_saved, dmask, gamma, mu, rsigma, colscale, x0_subset, out_subset
|
461 |
+
)
|
462 |
+
ctx.prenorm = prenorm
|
463 |
+
ctx.dropout_p = dropout_p
|
464 |
+
ctx.rowscale_const = rowscale_const
|
465 |
+
ctx.x0_numrows = x0.shape[:-1].numel()
|
466 |
+
ctx.has_residual = residual is not None
|
467 |
+
ctx.is_rms_norm = is_rms_norm
|
468 |
+
ctx.has_beta = beta is not None
|
469 |
+
z_shape = (-1, *x0.shape[1:])
|
470 |
+
if not return_dmask:
|
471 |
+
return zmat.view(z_shape) if not prenorm else (zmat.view(z_shape), xmat.view(x0.shape))
|
472 |
+
else:
|
473 |
+
z = zmat.view(z_shape)
|
474 |
+
dmask = (
|
475 |
+
dmask.view(x0.shape)
|
476 |
+
if dropout_p > 0.0
|
477 |
+
else torch.ones(x0.shape, dtype=torch.uint8, device=x0.device)
|
478 |
+
)
|
479 |
+
ctx.mark_non_differentiable(dmask)
|
480 |
+
return (z, dmask) if not prenorm else (z, xmat.view(x_shape), dmask)
|
481 |
+
|
482 |
+
@staticmethod
|
483 |
+
def backward(ctx, dz, *args):
|
484 |
+
# assert dz.is_contiguous()
|
485 |
+
dz = maybe_align(dz.contiguous(), 16) # this happens!
|
486 |
+
dx = maybe_align(args[0].contiguous(), 16) if ctx.prenorm else None
|
487 |
+
x, x0, dmask, gamma, mu, rsigma, colscale, x0_subset, out_subset = ctx.saved_tensors
|
488 |
+
# x0 is None if colscale is None
|
489 |
+
dropout_p = ctx.dropout_p
|
490 |
+
has_residual = ctx.has_residual
|
491 |
+
dx0mat, dresidualmat, dgamma, dbeta, *rest = _dropout_add_layer_norm_subset_backward(
|
492 |
+
dz,
|
493 |
+
dx,
|
494 |
+
x,
|
495 |
+
x0,
|
496 |
+
dmask,
|
497 |
+
mu,
|
498 |
+
rsigma,
|
499 |
+
gamma,
|
500 |
+
colscale,
|
501 |
+
x0_subset,
|
502 |
+
out_subset,
|
503 |
+
dropout_p,
|
504 |
+
ctx.rowscale_const,
|
505 |
+
ctx.x0_numrows,
|
506 |
+
has_residual,
|
507 |
+
ctx.is_rms_norm,
|
508 |
+
)
|
509 |
+
dx0 = dx0mat.view(-1, *x.shape[1:])
|
510 |
+
dresidual = dresidualmat.view(x.shape) if dresidualmat is not None else None
|
511 |
+
dcolscale = rest[0] if colscale is not None else None
|
512 |
+
return (
|
513 |
+
dx0,
|
514 |
+
dresidual,
|
515 |
+
dgamma,
|
516 |
+
dbeta if ctx.has_beta else None,
|
517 |
+
dcolscale,
|
518 |
+
None,
|
519 |
+
None,
|
520 |
+
None,
|
521 |
+
None,
|
522 |
+
None,
|
523 |
+
None,
|
524 |
+
None,
|
525 |
+
None,
|
526 |
+
None,
|
527 |
+
None,
|
528 |
+
)
|
529 |
+
|
530 |
+
|
531 |
+
class DropoutAddLayerNormParallelResidualFn(torch.autograd.Function):
|
532 |
+
@staticmethod
|
533 |
+
def forward(
|
534 |
+
ctx,
|
535 |
+
x0,
|
536 |
+
x1,
|
537 |
+
residual,
|
538 |
+
gamma0,
|
539 |
+
beta0,
|
540 |
+
gamma1,
|
541 |
+
beta1,
|
542 |
+
dropout_p,
|
543 |
+
epsilon,
|
544 |
+
residual_in_fp32=False,
|
545 |
+
prenorm=False,
|
546 |
+
is_rms_norm=False,
|
547 |
+
return_dmask=False,
|
548 |
+
):
|
549 |
+
x0 = maybe_align(x0.contiguous(), 16)
|
550 |
+
x1 = maybe_align(x1.contiguous(), 16) if x1 is not None else None
|
551 |
+
residual = maybe_align(residual.contiguous(), 16) if residual is not None else None
|
552 |
+
gamma0 = maybe_align(gamma0.contiguous(), 16)
|
553 |
+
beta0 = maybe_align(beta0.contiguous(), 16) if beta0 is not None else None
|
554 |
+
gamma1 = maybe_align(gamma1.contiguous(), 16) if gamma1 is not None else None
|
555 |
+
beta1 = maybe_align(beta1.contiguous(), 16) if beta1 is not None else None
|
556 |
+
(
|
557 |
+
z0mat,
|
558 |
+
z1mat,
|
559 |
+
xmat,
|
560 |
+
dmask0,
|
561 |
+
dmask1,
|
562 |
+
mu,
|
563 |
+
rsigma,
|
564 |
+
) = _dropout_add_layer_norm_parallel_residual_forward(
|
565 |
+
x0,
|
566 |
+
x1,
|
567 |
+
residual,
|
568 |
+
gamma0,
|
569 |
+
beta0,
|
570 |
+
gamma1,
|
571 |
+
beta1,
|
572 |
+
dropout_p,
|
573 |
+
epsilon,
|
574 |
+
residual_in_fp32,
|
575 |
+
is_rms_norm,
|
576 |
+
)
|
577 |
+
ctx.save_for_backward(xmat.view(x0.shape), dmask0, dmask1, gamma0, gamma1, mu, rsigma)
|
578 |
+
ctx.prenorm = prenorm
|
579 |
+
ctx.dropout_p = dropout_p
|
580 |
+
ctx.has_x1 = x1 is not None
|
581 |
+
ctx.has_residual = residual is not None
|
582 |
+
ctx.is_rms_norm = is_rms_norm
|
583 |
+
ctx.has_beta = beta0 is not None
|
584 |
+
z = (z0mat.view(x0.shape), z1mat.view(x0.shape) if z1mat is not None else None)
|
585 |
+
if not return_dmask:
|
586 |
+
return z if not prenorm else (*z, xmat.view(x0.shape))
|
587 |
+
else:
|
588 |
+
dmask0 = (
|
589 |
+
dmask0.view(x0.shape)
|
590 |
+
if dropout_p > 0.0
|
591 |
+
else torch.ones(x0.shape, dtype=torch.uint8, device=x0.device)
|
592 |
+
)
|
593 |
+
dmask1 = (
|
594 |
+
dmask1.view(x0.shape)
|
595 |
+
if dropout_p > 0.0 and x1 is not None
|
596 |
+
else torch.ones(x0.shape, dtype=torch.uint8, device=x0.device)
|
597 |
+
)
|
598 |
+
ctx.mark_non_differentiable(dmask0)
|
599 |
+
ctx.mark_non_differentiable(dmask1)
|
600 |
+
return (
|
601 |
+
(*z, dmask0, dmask1) if not prenorm else (*z, xmat.view(x0.shape), dmask0, dmask1)
|
602 |
+
)
|
603 |
+
|
604 |
+
@staticmethod
|
605 |
+
def backward(ctx, dz0, dz1, *args):
|
606 |
+
dz0 = maybe_align(dz0.contiguous(), 16) # this happens!
|
607 |
+
dz1 = maybe_align(dz1.contiguous(), 16) if dz1 is not None else None
|
608 |
+
dx = maybe_align(args[0].contiguous(), 16) if ctx.prenorm else None
|
609 |
+
x, dmask0, dmask1, gamma0, gamma1, mu, rsigma = ctx.saved_tensors
|
610 |
+
dropout_p = ctx.dropout_p
|
611 |
+
has_x1 = ctx.has_x1
|
612 |
+
has_residual = ctx.has_residual
|
613 |
+
(
|
614 |
+
dx0mat,
|
615 |
+
dx1mat,
|
616 |
+
dresidualmat,
|
617 |
+
dgamma0,
|
618 |
+
dbeta0,
|
619 |
+
dgamma1,
|
620 |
+
dbeta1,
|
621 |
+
) = _dropout_add_layer_norm_parallel_residual_backward(
|
622 |
+
dz0,
|
623 |
+
dz1,
|
624 |
+
dx,
|
625 |
+
x,
|
626 |
+
dmask0,
|
627 |
+
dmask1,
|
628 |
+
mu,
|
629 |
+
rsigma,
|
630 |
+
gamma0,
|
631 |
+
gamma1,
|
632 |
+
dropout_p,
|
633 |
+
has_x1,
|
634 |
+
has_residual,
|
635 |
+
ctx.is_rms_norm,
|
636 |
+
)
|
637 |
+
dx0 = dx0mat.view(x.shape)
|
638 |
+
dx1 = dx1mat.view(x.shape) if dx1mat is not None else None
|
639 |
+
dresidual = dresidualmat.view(x.shape) if dresidualmat is not None else None
|
640 |
+
return (
|
641 |
+
dx0,
|
642 |
+
dx1,
|
643 |
+
dresidual,
|
644 |
+
dgamma0,
|
645 |
+
dbeta0 if ctx.has_beta else None,
|
646 |
+
dgamma1,
|
647 |
+
dbeta1 if ctx.has_beta else None,
|
648 |
+
None,
|
649 |
+
None,
|
650 |
+
None,
|
651 |
+
None,
|
652 |
+
None,
|
653 |
+
None,
|
654 |
+
)
|
655 |
+
|
656 |
+
|
657 |
+
def layer_norm(x, weight, bias, epsilon):
|
658 |
+
return DropoutAddLayerNormFn.apply(x, None, weight, bias, None, None, 0.0, epsilon, False)
|
659 |
+
|
660 |
+
|
661 |
+
def dropout_add_layer_norm(
|
662 |
+
x0,
|
663 |
+
residual,
|
664 |
+
weight,
|
665 |
+
bias,
|
666 |
+
dropout_p,
|
667 |
+
epsilon,
|
668 |
+
rowscale=None,
|
669 |
+
layerscale=None,
|
670 |
+
prenorm=False,
|
671 |
+
residual_in_fp32=False,
|
672 |
+
return_dropout_mask=False,
|
673 |
+
):
|
674 |
+
"""residual_in_fp32 only has an effect if residual is None.
|
675 |
+
Otherwise residual dtype is residual.dtype.
|
676 |
+
"""
|
677 |
+
return DropoutAddLayerNormFn.apply(
|
678 |
+
x0,
|
679 |
+
residual,
|
680 |
+
weight,
|
681 |
+
bias,
|
682 |
+
rowscale,
|
683 |
+
layerscale,
|
684 |
+
dropout_p,
|
685 |
+
epsilon,
|
686 |
+
residual_in_fp32,
|
687 |
+
prenorm,
|
688 |
+
False,
|
689 |
+
return_dropout_mask,
|
690 |
+
)
|
691 |
+
|
692 |
+
|
693 |
+
def dropout_add_layer_norm_subset(
|
694 |
+
x0,
|
695 |
+
residual,
|
696 |
+
weight,
|
697 |
+
bias,
|
698 |
+
dropout_p,
|
699 |
+
epsilon,
|
700 |
+
layerscale=None,
|
701 |
+
x0_subset=None,
|
702 |
+
out_subset=None,
|
703 |
+
rowscale_const=1.0,
|
704 |
+
out_numrows=0,
|
705 |
+
prenorm=False,
|
706 |
+
residual_in_fp32=False,
|
707 |
+
return_dropout_mask=False,
|
708 |
+
):
|
709 |
+
"""residual_in_fp32 only has an effect if residual is None.
|
710 |
+
Otherwise residual dtype is residual.dtype.
|
711 |
+
"""
|
712 |
+
return DropoutAddLayerNormSubsetFn.apply(
|
713 |
+
x0,
|
714 |
+
residual,
|
715 |
+
weight,
|
716 |
+
bias,
|
717 |
+
layerscale,
|
718 |
+
x0_subset,
|
719 |
+
out_subset,
|
720 |
+
dropout_p,
|
721 |
+
epsilon,
|
722 |
+
rowscale_const,
|
723 |
+
out_numrows,
|
724 |
+
residual_in_fp32,
|
725 |
+
prenorm,
|
726 |
+
False,
|
727 |
+
return_dropout_mask,
|
728 |
+
)
|
729 |
+
|
730 |
+
|
731 |
+
def dropout_add_layer_norm_parallel_residual(
|
732 |
+
x0,
|
733 |
+
x1,
|
734 |
+
residual,
|
735 |
+
weight0,
|
736 |
+
bias0,
|
737 |
+
weight1,
|
738 |
+
bias1,
|
739 |
+
dropout_p,
|
740 |
+
epsilon,
|
741 |
+
prenorm=False,
|
742 |
+
residual_in_fp32=False,
|
743 |
+
return_dropout_mask=False,
|
744 |
+
):
|
745 |
+
"""residual_in_fp32 only has an effect if residual is None.
|
746 |
+
Otherwise residual dtype is residual.dtype.
|
747 |
+
"""
|
748 |
+
return DropoutAddLayerNormParallelResidualFn.apply(
|
749 |
+
x0,
|
750 |
+
x1,
|
751 |
+
residual,
|
752 |
+
weight0,
|
753 |
+
bias0,
|
754 |
+
weight1,
|
755 |
+
bias1,
|
756 |
+
dropout_p,
|
757 |
+
epsilon,
|
758 |
+
residual_in_fp32,
|
759 |
+
prenorm,
|
760 |
+
False,
|
761 |
+
return_dropout_mask,
|
762 |
+
)
|
763 |
+
|
764 |
+
|
765 |
+
class DropoutAddLayerNorm(torch.nn.Module):
|
766 |
+
def __init__(
|
767 |
+
self,
|
768 |
+
hidden_size,
|
769 |
+
prenorm=False,
|
770 |
+
p=0.0,
|
771 |
+
eps=1e-5,
|
772 |
+
residual_in_fp32=False,
|
773 |
+
device=None,
|
774 |
+
dtype=None,
|
775 |
+
):
|
776 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
777 |
+
super().__init__()
|
778 |
+
self.prenorm = prenorm
|
779 |
+
self.p = p
|
780 |
+
self.eps = eps
|
781 |
+
self.residual_in_fp32 = residual_in_fp32
|
782 |
+
self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
|
783 |
+
self.bias = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
|
784 |
+
self.reset_parameters()
|
785 |
+
|
786 |
+
def reset_parameters(self):
|
787 |
+
init.ones_(self.weight)
|
788 |
+
init.zeros_(self.bias)
|
789 |
+
|
790 |
+
def forward(self, x0, residual=None):
|
791 |
+
return dropout_add_layer_norm(
|
792 |
+
x0,
|
793 |
+
residual,
|
794 |
+
self.weight,
|
795 |
+
self.bias,
|
796 |
+
self.p if self.training else 0.0,
|
797 |
+
self.eps,
|
798 |
+
prenorm=self.prenorm,
|
799 |
+
residual_in_fp32=self.residual_in_fp32,
|
800 |
+
)
|
torch-ext/flash_attn/ops/rms_norm.py
ADDED
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2022, Tri Dao.
|
2 |
+
# Adapted from https://github.com/NVIDIA/apex/blob/master/apex/contrib/layer_norm/layer_norm.py
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch.nn import init
|
6 |
+
|
7 |
+
from flash_attn.ops.layer_norm import (
|
8 |
+
DropoutAddLayerNormFn,
|
9 |
+
DropoutAddLayerNormParallelResidualFn,
|
10 |
+
DropoutAddLayerNormSubsetFn,
|
11 |
+
)
|
12 |
+
|
13 |
+
|
14 |
+
def rms_norm(x, weight, epsilon):
|
15 |
+
return DropoutAddLayerNormFn.apply(
|
16 |
+
x, None, weight, None, None, None, 0.0, epsilon, False, False, True
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
def dropout_add_rms_norm(
|
21 |
+
x0,
|
22 |
+
residual,
|
23 |
+
weight,
|
24 |
+
bias,
|
25 |
+
dropout_p,
|
26 |
+
epsilon,
|
27 |
+
rowscale=None,
|
28 |
+
layerscale=None,
|
29 |
+
prenorm=False,
|
30 |
+
residual_in_fp32=False,
|
31 |
+
return_dropout_mask=False,
|
32 |
+
):
|
33 |
+
"""residual_in_fp32 only has an effect if residual is None.
|
34 |
+
Otherwise residual dtype is residual.dtype.
|
35 |
+
"""
|
36 |
+
return DropoutAddLayerNormFn.apply(
|
37 |
+
x0,
|
38 |
+
residual,
|
39 |
+
weight,
|
40 |
+
bias,
|
41 |
+
rowscale,
|
42 |
+
layerscale,
|
43 |
+
dropout_p,
|
44 |
+
epsilon,
|
45 |
+
residual_in_fp32,
|
46 |
+
prenorm,
|
47 |
+
True,
|
48 |
+
return_dropout_mask,
|
49 |
+
)
|
50 |
+
|
51 |
+
|
52 |
+
def dropout_add_rms_norm_subset(
|
53 |
+
x0,
|
54 |
+
residual,
|
55 |
+
weight,
|
56 |
+
bias,
|
57 |
+
dropout_p,
|
58 |
+
epsilon,
|
59 |
+
layerscale=None,
|
60 |
+
x0_subset=None,
|
61 |
+
out_subset=None,
|
62 |
+
rowscale_const=1.0,
|
63 |
+
out_numrows=0,
|
64 |
+
prenorm=False,
|
65 |
+
residual_in_fp32=False,
|
66 |
+
return_dropout_mask=False,
|
67 |
+
):
|
68 |
+
"""residual_in_fp32 only has an effect if residual is None.
|
69 |
+
Otherwise residual dtype is residual.dtype.
|
70 |
+
"""
|
71 |
+
return DropoutAddLayerNormSubsetFn.apply(
|
72 |
+
x0,
|
73 |
+
residual,
|
74 |
+
weight,
|
75 |
+
bias,
|
76 |
+
layerscale,
|
77 |
+
x0_subset,
|
78 |
+
out_subset,
|
79 |
+
dropout_p,
|
80 |
+
epsilon,
|
81 |
+
rowscale_const,
|
82 |
+
out_numrows,
|
83 |
+
residual_in_fp32,
|
84 |
+
prenorm,
|
85 |
+
True,
|
86 |
+
return_dropout_mask,
|
87 |
+
)
|
88 |
+
|
89 |
+
|
90 |
+
def dropout_add_rms_norm_parallel_residual(
|
91 |
+
x0,
|
92 |
+
x1,
|
93 |
+
residual,
|
94 |
+
weight0,
|
95 |
+
bias0,
|
96 |
+
weight1,
|
97 |
+
bias1,
|
98 |
+
dropout_p,
|
99 |
+
epsilon,
|
100 |
+
prenorm=False,
|
101 |
+
residual_in_fp32=False,
|
102 |
+
return_dropout_mask=False,
|
103 |
+
):
|
104 |
+
"""residual_in_fp32 only has an effect if residual is None.
|
105 |
+
Otherwise residual dtype is residual.dtype.
|
106 |
+
"""
|
107 |
+
return DropoutAddLayerNormParallelResidualFn.apply(
|
108 |
+
x0,
|
109 |
+
x1,
|
110 |
+
residual,
|
111 |
+
weight0,
|
112 |
+
bias0,
|
113 |
+
weight1,
|
114 |
+
bias1,
|
115 |
+
dropout_p,
|
116 |
+
epsilon,
|
117 |
+
residual_in_fp32,
|
118 |
+
prenorm,
|
119 |
+
True,
|
120 |
+
return_dropout_mask,
|
121 |
+
)
|
122 |
+
|
123 |
+
|
124 |
+
class RMSNorm(torch.nn.Module):
|
125 |
+
def __init__(self, hidden_size, eps=1e-5, device=None, dtype=None):
|
126 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
127 |
+
super().__init__()
|
128 |
+
self.eps = eps
|
129 |
+
self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
|
130 |
+
self.register_parameter("bias", None)
|
131 |
+
self.reset_parameters()
|
132 |
+
|
133 |
+
def reset_parameters(self):
|
134 |
+
init.ones_(self.weight)
|
135 |
+
|
136 |
+
def forward(self, x):
|
137 |
+
return rms_norm(x, self.weight, self.eps)
|
138 |
+
|
139 |
+
|
140 |
+
class DropoutAddRMSNorm(torch.nn.Module):
|
141 |
+
def __init__(
|
142 |
+
self,
|
143 |
+
hidden_size,
|
144 |
+
prenorm=False,
|
145 |
+
p=0.0,
|
146 |
+
eps=1e-5,
|
147 |
+
residual_in_fp32=False,
|
148 |
+
device=None,
|
149 |
+
dtype=None,
|
150 |
+
):
|
151 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
152 |
+
super().__init__()
|
153 |
+
self.prenorm = prenorm
|
154 |
+
self.p = p
|
155 |
+
self.eps = eps
|
156 |
+
self.residual_in_fp32 = residual_in_fp32
|
157 |
+
self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
|
158 |
+
self.register_parameter("bias", None)
|
159 |
+
self.reset_parameters()
|
160 |
+
|
161 |
+
def reset_parameters(self):
|
162 |
+
init.ones_(self.weight)
|
163 |
+
|
164 |
+
def forward(self, x0, residual=None):
|
165 |
+
return dropout_add_rms_norm(
|
166 |
+
x0,
|
167 |
+
residual,
|
168 |
+
self.weight,
|
169 |
+
None,
|
170 |
+
self.p if self.training else 0.0,
|
171 |
+
self.eps,
|
172 |
+
prenorm=self.prenorm,
|
173 |
+
residual_in_fp32=self.residual_in_fp32,
|
174 |
+
)
|
torch-ext/flash_attn/ops/triton/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
torch-ext/flash_attn/ops/triton/cross_entropy.py
ADDED
@@ -0,0 +1,330 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2023, Tri Dao.
|
2 |
+
|
3 |
+
from typing import Tuple, Optional, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
import triton
|
9 |
+
import triton.language as tl
|
10 |
+
|
11 |
+
# `all_gather_into_tensor` and `reduce_scatter_tensor` are new placeholders for
|
12 |
+
# `_all_gather_base` and `_reduce_scatter_base`. They require the most recent
|
13 |
+
# version of PyTorch. The following 2 lines are for backward compatibility with
|
14 |
+
# older PyTorch.
|
15 |
+
if "all_gather_into_tensor" not in dir(torch.distributed):
|
16 |
+
torch.distributed.all_gather_into_tensor = torch.distributed._all_gather_base
|
17 |
+
|
18 |
+
|
19 |
+
@triton.heuristics(
|
20 |
+
{
|
21 |
+
"HAS_SMOOTHING": lambda args: args["smoothing"] > 0.0,
|
22 |
+
}
|
23 |
+
)
|
24 |
+
@triton.jit
|
25 |
+
def cross_entropy_fwd_kernel(
|
26 |
+
loss_ptr, # data ptrs
|
27 |
+
lse_ptr,
|
28 |
+
z_loss_ptr,
|
29 |
+
logits_ptr,
|
30 |
+
labels_ptr,
|
31 |
+
smoothing,
|
32 |
+
logit_scale,
|
33 |
+
lse_square_scale,
|
34 |
+
ignore_index,
|
35 |
+
total_classes,
|
36 |
+
class_start_idx, # Useful for tensor parallel when each rank only has a subset of classes
|
37 |
+
n_cols, # shapes
|
38 |
+
logits_row_stride, # strides
|
39 |
+
BLOCK_SIZE: tl.constexpr,
|
40 |
+
HAS_SMOOTHING: tl.constexpr,
|
41 |
+
# if SPLIT (e.g. tensor parallel), don't include the LSE in the loss since it's not the final LSE
|
42 |
+
SPLIT: tl.constexpr,
|
43 |
+
PRECOMPUTED_LSE: tl.constexpr, # If LSE is already computed (also no smoothing and logit_scale == 1.0)
|
44 |
+
):
|
45 |
+
row_idx = tl.program_id(0)
|
46 |
+
logits_ptr = logits_ptr + row_idx * logits_row_stride.to(tl.int64)
|
47 |
+
sum_logits = 0.0 # For smoothing
|
48 |
+
if not PRECOMPUTED_LSE:
|
49 |
+
# Statistics for online softmax
|
50 |
+
m_i = -float("inf")
|
51 |
+
l_i = 0.0
|
52 |
+
for col_offset in range(0, n_cols, BLOCK_SIZE):
|
53 |
+
cols = col_offset + tl.arange(0, BLOCK_SIZE)
|
54 |
+
logits = tl.load(logits_ptr + cols, mask=cols < n_cols, other=-float("inf")).to(
|
55 |
+
tl.float32
|
56 |
+
) * logit_scale
|
57 |
+
if HAS_SMOOTHING:
|
58 |
+
sum_logits += tl.sum(tl.where(cols < n_cols, logits, 0.0))
|
59 |
+
m_i_new = tl.maximum(m_i, tl.max(logits))
|
60 |
+
l_i = tl.exp(m_i - m_i_new) * l_i + tl.sum(tl.exp(logits - m_i_new))
|
61 |
+
m_i = m_i_new
|
62 |
+
lse = tl.log(l_i) + m_i
|
63 |
+
tl.store(lse_ptr + row_idx, lse)
|
64 |
+
else:
|
65 |
+
lse = tl.load(lse_ptr + row_idx)
|
66 |
+
label_idx = tl.load(labels_ptr + row_idx)
|
67 |
+
if label_idx == ignore_index:
|
68 |
+
loss = 0.0
|
69 |
+
z_loss = 0.0
|
70 |
+
else:
|
71 |
+
label_idx -= class_start_idx
|
72 |
+
if label_idx >= 0 and label_idx < n_cols:
|
73 |
+
logits_label = tl.load(logits_ptr + label_idx) * logit_scale
|
74 |
+
if HAS_SMOOTHING:
|
75 |
+
loss = (
|
76 |
+
(lse if not SPLIT else 0.0)
|
77 |
+
- smoothing * sum_logits / total_classes
|
78 |
+
- (1 - smoothing) * logits_label
|
79 |
+
)
|
80 |
+
else:
|
81 |
+
loss = (lse if not SPLIT else 0.0) - logits_label
|
82 |
+
else:
|
83 |
+
# If label is out of bounds, we set the CE loss to 0.0. But we still want the smoothing loss
|
84 |
+
if HAS_SMOOTHING:
|
85 |
+
loss = smoothing * ((lse if not SPLIT else 0.0) - sum_logits / total_classes)
|
86 |
+
else:
|
87 |
+
loss = 0.0
|
88 |
+
if not SPLIT:
|
89 |
+
z_loss = lse_square_scale * lse * lse
|
90 |
+
loss += z_loss
|
91 |
+
else:
|
92 |
+
z_loss = 0.0
|
93 |
+
tl.store(loss_ptr + row_idx, loss)
|
94 |
+
if not SPLIT:
|
95 |
+
tl.store(z_loss_ptr + row_idx, z_loss)
|
96 |
+
|
97 |
+
|
98 |
+
@triton.heuristics(
|
99 |
+
{
|
100 |
+
"HAS_SMOOTHING": lambda args: args["smoothing"] > 0.0,
|
101 |
+
}
|
102 |
+
)
|
103 |
+
@triton.jit
|
104 |
+
def cross_entropy_bwd_kernel(
|
105 |
+
dlogits_ptr, # data ptrs
|
106 |
+
dloss_ptr,
|
107 |
+
logits_ptr,
|
108 |
+
lse_ptr,
|
109 |
+
labels_ptr,
|
110 |
+
smoothing,
|
111 |
+
logit_scale,
|
112 |
+
lse_square_scale,
|
113 |
+
ignore_index,
|
114 |
+
total_classes,
|
115 |
+
class_start_idx, # Useful for tensor parallel when each rank only has a subset of classes
|
116 |
+
n_cols, # shapes
|
117 |
+
logits_row_stride, # strides
|
118 |
+
dlogits_row_stride,
|
119 |
+
dloss_row_stride,
|
120 |
+
BLOCK_SIZE: tl.constexpr,
|
121 |
+
HAS_SMOOTHING: tl.constexpr,
|
122 |
+
):
|
123 |
+
row_idx = tl.program_id(0)
|
124 |
+
col_block_idx = tl.program_id(1)
|
125 |
+
logits_ptr = logits_ptr + row_idx * logits_row_stride.to(tl.int64)
|
126 |
+
dlogits_ptr = dlogits_ptr + row_idx * dlogits_row_stride.to(tl.int64)
|
127 |
+
col_offsets = col_block_idx * BLOCK_SIZE + tl.arange(0, BLOCK_SIZE)
|
128 |
+
label_idx = tl.load(labels_ptr + row_idx)
|
129 |
+
if label_idx != ignore_index:
|
130 |
+
dloss = tl.load(dloss_ptr + row_idx * dloss_row_stride)
|
131 |
+
else:
|
132 |
+
dloss = 0.0
|
133 |
+
logits = tl.load(logits_ptr + col_offsets, mask=col_offsets < n_cols, other=-float("inf")).to(
|
134 |
+
tl.float32
|
135 |
+
) * logit_scale
|
136 |
+
lse = tl.load(lse_ptr + row_idx)
|
137 |
+
probs = tl.exp(logits - lse)
|
138 |
+
probs += 2.0 * lse_square_scale * lse * probs
|
139 |
+
label_idx -= class_start_idx
|
140 |
+
if HAS_SMOOTHING:
|
141 |
+
smooth_positive = 1.0 - smoothing
|
142 |
+
smooth_negative = smoothing / total_classes
|
143 |
+
probs = tl.where(col_offsets == label_idx, probs - smooth_positive, probs) - smooth_negative
|
144 |
+
else:
|
145 |
+
probs = tl.where(col_offsets == label_idx, probs - 1.0, probs)
|
146 |
+
tl.store(dlogits_ptr + col_offsets, (dloss * logit_scale) * probs, mask=col_offsets < n_cols)
|
147 |
+
|
148 |
+
|
149 |
+
class CrossEntropyLoss(torch.autograd.Function):
|
150 |
+
|
151 |
+
@staticmethod
|
152 |
+
def forward(
|
153 |
+
ctx,
|
154 |
+
logits,
|
155 |
+
labels,
|
156 |
+
precomputed_lse=None,
|
157 |
+
smoothing=0.0,
|
158 |
+
logit_scale=1.0,
|
159 |
+
lse_square_scale=0.0,
|
160 |
+
ignore_index=-100,
|
161 |
+
inplace_backward=False,
|
162 |
+
process_group=None,
|
163 |
+
):
|
164 |
+
# For some reason Triton generates wrong code when labels has dtype long and its address
|
165 |
+
# is not aligned to 16 bytes. The ld.global.b64 seems to load the wrong label index.
|
166 |
+
if labels.dtype == torch.long and labels.data_ptr() % 16 != 0:
|
167 |
+
labels = F.pad(labels, (0, 1))[..., :-1]
|
168 |
+
assert labels.data_ptr() % 16 == 0
|
169 |
+
assert logit_scale > 0.0
|
170 |
+
n_rows, n_cols = logits.shape
|
171 |
+
assert labels.shape == (n_rows,)
|
172 |
+
world_size = 1 if process_group is None else torch.distributed.get_world_size(process_group)
|
173 |
+
total_classes = world_size * n_cols
|
174 |
+
rank = 0 if process_group is None else torch.distributed.get_rank(process_group)
|
175 |
+
class_start_idx = rank * n_cols
|
176 |
+
use_precomputed_lse = precomputed_lse is not None and logit_scale == 1.0 and smoothing == 0.0
|
177 |
+
|
178 |
+
if logits.stride(-1) != 1:
|
179 |
+
logits = logits.contiguous()
|
180 |
+
MAX_BLOCK_SIZE = 16 * 1024
|
181 |
+
BLOCK_SIZE = min(triton.next_power_of_2(n_cols), MAX_BLOCK_SIZE)
|
182 |
+
num_warps = (
|
183 |
+
4
|
184 |
+
if BLOCK_SIZE < 2048
|
185 |
+
else (8 if BLOCK_SIZE < 8192 else (16 if BLOCK_SIZE < 128 * 1024 else 32))
|
186 |
+
)
|
187 |
+
losses = torch.empty(n_rows, dtype=torch.float, device=logits.device)
|
188 |
+
if use_precomputed_lse:
|
189 |
+
assert precomputed_lse.shape == (n_rows,)
|
190 |
+
lse = precomputed_lse.contiguous()
|
191 |
+
else:
|
192 |
+
lse = torch.empty(n_rows, dtype=torch.float, device=logits.device)
|
193 |
+
z_losses = torch.empty(n_rows, dtype=torch.float, device=logits.device)
|
194 |
+
# Need this, otherwise Triton tries to launch from cuda:0 and we get
|
195 |
+
# ValueError: Pointer argument (at 0) cannot be accessed from Triton (cpu tensor?)
|
196 |
+
with torch.cuda.device(logits.device.index):
|
197 |
+
cross_entropy_fwd_kernel[(n_rows,)](
|
198 |
+
losses, # data ptrs
|
199 |
+
lse,
|
200 |
+
z_losses,
|
201 |
+
logits,
|
202 |
+
labels,
|
203 |
+
smoothing,
|
204 |
+
logit_scale,
|
205 |
+
lse_square_scale,
|
206 |
+
ignore_index,
|
207 |
+
total_classes,
|
208 |
+
class_start_idx,
|
209 |
+
n_cols, # shapes
|
210 |
+
logits.stride(0), # strides
|
211 |
+
BLOCK_SIZE=BLOCK_SIZE, # constants
|
212 |
+
SPLIT=world_size > 1,
|
213 |
+
PRECOMPUTED_LSE=use_precomputed_lse,
|
214 |
+
num_warps=num_warps,
|
215 |
+
)
|
216 |
+
|
217 |
+
if world_size > 1:
|
218 |
+
# If there's no smoothing, if labels are in the vocab of this partition, losses contains
|
219 |
+
# - predicted logit, and 0 otherwise.
|
220 |
+
# If there's smoothing=0.1, for labels in the vocab of this partition, losses contains
|
221 |
+
# -0.9 * predicted logit - 0.1 * sum logit / total_classes.
|
222 |
+
# For labels not in the vocab of this partition, losses contains
|
223 |
+
# -0.1 * sum logit / total_classes.
|
224 |
+
if world_size > 1:
|
225 |
+
lse_allgather = torch.empty(world_size, n_rows, dtype=lse.dtype, device=lse.device)
|
226 |
+
torch.distributed.all_gather_into_tensor(lse_allgather, lse, group=process_group)
|
227 |
+
handle_losses = torch.distributed.all_reduce(
|
228 |
+
losses, op=torch.distributed.ReduceOp.SUM, group=process_group, async_op=True
|
229 |
+
)
|
230 |
+
lse = torch.logsumexp(lse_allgather, dim=0)
|
231 |
+
handle_losses.wait()
|
232 |
+
# After the allreduce, if there's no smoothing, the total losses are - predicted_logit,
|
233 |
+
# we just have to add the (global) lse.
|
234 |
+
# If there's smoothing=0.1, the total losses are
|
235 |
+
# -0.9 * predicted_logit - 0.1 * sum logit / total_classes.
|
236 |
+
# Again, we just have to add the (global) lse.
|
237 |
+
losses += lse
|
238 |
+
if lse_square_scale != 0.0:
|
239 |
+
z_losses = lse_square_scale * lse.square()
|
240 |
+
z_losses.masked_fill_(labels == ignore_index, 0.0)
|
241 |
+
losses += z_losses
|
242 |
+
else:
|
243 |
+
z_losses = torch.zeros_like(losses)
|
244 |
+
losses.masked_fill_(labels == ignore_index, 0.0)
|
245 |
+
|
246 |
+
ctx.save_for_backward(logits, lse, labels)
|
247 |
+
ctx.mark_non_differentiable(z_losses)
|
248 |
+
ctx.smoothing = smoothing
|
249 |
+
ctx.logit_scale = logit_scale
|
250 |
+
ctx.lse_square_scale = lse_square_scale
|
251 |
+
ctx.ignore_index = ignore_index
|
252 |
+
ctx.total_classes = total_classes
|
253 |
+
ctx.class_start_idx = class_start_idx
|
254 |
+
ctx.inplace_backward = inplace_backward
|
255 |
+
return losses, z_losses
|
256 |
+
|
257 |
+
@staticmethod
|
258 |
+
def backward(ctx, grad_losses, grad_z_losses):
|
259 |
+
del grad_z_losses # z_losses are only for logging.
|
260 |
+
|
261 |
+
logits, lse, labels = ctx.saved_tensors
|
262 |
+
dlogits = logits if ctx.inplace_backward else torch.empty_like(logits)
|
263 |
+
n_rows, n_cols = logits.shape
|
264 |
+
BLOCK_SIZE = min(triton.next_power_of_2(n_cols), 4 * 1024)
|
265 |
+
num_warps = 4 if BLOCK_SIZE < 2048 else (8 if BLOCK_SIZE < 8192 else 16)
|
266 |
+
grid = lambda META: (n_rows, triton.cdiv(n_cols, META["BLOCK_SIZE"])) # noqa
|
267 |
+
# Need this, otherwise Triton tries to launch from cuda:0 and we get
|
268 |
+
# ValueError: Pointer argument (at 0) cannot be accessed from Triton (cpu tensor?)
|
269 |
+
with torch.cuda.device(logits.device.index):
|
270 |
+
cross_entropy_bwd_kernel[grid](
|
271 |
+
dlogits, # data ptrs
|
272 |
+
grad_losses,
|
273 |
+
logits,
|
274 |
+
lse,
|
275 |
+
labels,
|
276 |
+
ctx.smoothing,
|
277 |
+
ctx.logit_scale,
|
278 |
+
ctx.lse_square_scale,
|
279 |
+
ctx.ignore_index,
|
280 |
+
ctx.total_classes,
|
281 |
+
ctx.class_start_idx,
|
282 |
+
n_cols, # shapes
|
283 |
+
logits.stride(0), # strides
|
284 |
+
dlogits.stride(0),
|
285 |
+
grad_losses.stride(0),
|
286 |
+
BLOCK_SIZE=BLOCK_SIZE, # constants
|
287 |
+
num_warps=num_warps,
|
288 |
+
)
|
289 |
+
return dlogits, None, None, None, None, None, None, None, None, None
|
290 |
+
|
291 |
+
|
292 |
+
def cross_entropy_loss(
|
293 |
+
logits: torch.Tensor,
|
294 |
+
labels: torch.Tensor,
|
295 |
+
precomputed_lse: Optional[torch.Tensor] = None,
|
296 |
+
label_smoothing: float = 0.0,
|
297 |
+
logit_scale: float = 1.0,
|
298 |
+
lse_square_scale: float = 0.0,
|
299 |
+
ignore_index=-100,
|
300 |
+
inplace_backward: bool = False,
|
301 |
+
process_group=None,
|
302 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
303 |
+
"""
|
304 |
+
Arguments:
|
305 |
+
logits: (batch, vocab_size)
|
306 |
+
labels: (batch,)
|
307 |
+
label_smoothing: float
|
308 |
+
logit_scale: float. Multiply logits by this scale before calculating the loss.
|
309 |
+
lse_square_scale: float. If > 0, we add lse_square_scale * lse(logits) ^ 2 to the loss.
|
310 |
+
This is also referred to as "z-loss".
|
311 |
+
ignore_index: int. If labels == ignore_index, the loss is set to 0.0.
|
312 |
+
inplace_backward: bool. If True, we do the backward pass in-place by modifying the logits.
|
313 |
+
This saves memory.
|
314 |
+
process_group: if not None, we're doing Tensor Parallel: each process is responsible for
|
315 |
+
one part of the vocab. The loss will be aggregated across processes.
|
316 |
+
Returns:
|
317 |
+
losses: (batch,), float
|
318 |
+
z_losses: (batch,), float
|
319 |
+
"""
|
320 |
+
return CrossEntropyLoss.apply(
|
321 |
+
logits,
|
322 |
+
labels,
|
323 |
+
precomputed_lse,
|
324 |
+
label_smoothing,
|
325 |
+
logit_scale,
|
326 |
+
lse_square_scale,
|
327 |
+
ignore_index,
|
328 |
+
inplace_backward,
|
329 |
+
process_group,
|
330 |
+
)
|
torch-ext/flash_attn/ops/triton/k_activations.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/facebookresearch/xformers/blob/main/xformers/triton/k_activations.py
|
2 |
+
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the BSD license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
|
7 |
+
import math
|
8 |
+
from enum import Enum
|
9 |
+
from typing import Optional
|
10 |
+
|
11 |
+
import triton
|
12 |
+
import triton.language as tl
|
13 |
+
|
14 |
+
_sqrt2pi = math.sqrt(2.0 / math.pi)
|
15 |
+
_sqrt1_2 = math.sqrt(1.0 / 2)
|
16 |
+
_gaussian_pdf_normalization = 1.0 / math.sqrt(2 * math.pi)
|
17 |
+
|
18 |
+
|
19 |
+
class Activation(str, Enum):
|
20 |
+
SquaredReLU = "squared_relu"
|
21 |
+
GeLU = "gelu"
|
22 |
+
GeLUApprox = "gelu_approx"
|
23 |
+
LeakyReLU = "leaky_relu"
|
24 |
+
ReLU = "relu"
|
25 |
+
|
26 |
+
|
27 |
+
def get_triton_activation_kernel(activation: Optional[Activation]):
|
28 |
+
return (
|
29 |
+
{
|
30 |
+
Activation.ReLU: relu,
|
31 |
+
Activation.LeakyReLU: leaky_relu,
|
32 |
+
Activation.GeLU: gelu,
|
33 |
+
Activation.GeLUApprox: gelu_approx,
|
34 |
+
Activation.SquaredReLU: squared_relu,
|
35 |
+
}[activation]
|
36 |
+
if activation
|
37 |
+
else None
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
def get_triton_activation_bwd_kernel(activation: Optional[Activation]):
|
42 |
+
return (
|
43 |
+
{
|
44 |
+
Activation.ReLU: relu_grad,
|
45 |
+
Activation.LeakyReLU: leaky_relu_grad,
|
46 |
+
Activation.GeLU: gelu_grad,
|
47 |
+
Activation.GeLUApprox: gelu_approx_grad,
|
48 |
+
Activation.SquaredReLU: squared_relu_grad,
|
49 |
+
}[activation]
|
50 |
+
if activation
|
51 |
+
else None
|
52 |
+
)
|
53 |
+
|
54 |
+
|
55 |
+
@triton.jit
|
56 |
+
def tanh(x):
|
57 |
+
# Tanh is just a scaled sigmoid
|
58 |
+
return 2 * tl.sigmoid(2 * x) - 1
|
59 |
+
|
60 |
+
|
61 |
+
@triton.jit
|
62 |
+
def cosh(x):
|
63 |
+
exp_x = tl.exp(x)
|
64 |
+
return (exp_x + 1.0 / exp_x) * 0.5
|
65 |
+
|
66 |
+
|
67 |
+
# a Triton implementation of the most used activations
|
68 |
+
# See for instance http://arxiv.org/abs/1606.08415 for an overview
|
69 |
+
|
70 |
+
# ReLU
|
71 |
+
@triton.jit
|
72 |
+
def relu(x):
|
73 |
+
"""
|
74 |
+
ReLU_ activation function
|
75 |
+
|
76 |
+
.. _ReLU: https://pytorch.org/docs/stable/generated/torch.nn.ReLU.html
|
77 |
+
"""
|
78 |
+
zero = 0.0
|
79 |
+
return tl.where(x >= 0, x, zero.to(x.dtype))
|
80 |
+
|
81 |
+
|
82 |
+
@triton.jit
|
83 |
+
def relu_grad(x):
|
84 |
+
# ReLU is different from other activations
|
85 |
+
# in that it does not require the input to retrospectively compute its gradient
|
86 |
+
# here the input is the downstream gradient, and we return the upstream gradient directly
|
87 |
+
zero = 0.0
|
88 |
+
one = 1.0
|
89 |
+
return tl.where(x >= 0, one.to(x.dtype), zero.to(x.dtype))
|
90 |
+
|
91 |
+
|
92 |
+
@triton.jit
|
93 |
+
def squared_relu(x):
|
94 |
+
"""
|
95 |
+
Squared ReLU activation, as proposed in the Primer_ paper.
|
96 |
+
|
97 |
+
.. _Primer: https://arxiv.org/abs/2109.08668
|
98 |
+
"""
|
99 |
+
x_ = relu(x)
|
100 |
+
return (x_ * x_).to(x.dtype)
|
101 |
+
|
102 |
+
|
103 |
+
@triton.jit
|
104 |
+
def squared_relu_grad(x):
|
105 |
+
return tl.where(x >= 0, 2.0 * x, 0.0)
|
106 |
+
|
107 |
+
|
108 |
+
# Leaky ReLU
|
109 |
+
@triton.jit
|
110 |
+
def leaky_relu(x):
|
111 |
+
"""
|
112 |
+
LeakyReLU_ activation
|
113 |
+
|
114 |
+
.. _LeakyReLU: https://pytorch.org/docs/stable/generated/torch.nn.LeakyReLU.html
|
115 |
+
"""
|
116 |
+
scale = 0.01 + 0.0
|
117 |
+
scale = scale.to(x.dtype)
|
118 |
+
return tl.where(x >= 0, x, scale * x)
|
119 |
+
|
120 |
+
|
121 |
+
@triton.jit
|
122 |
+
def leaky_relu_grad(x):
|
123 |
+
min_grad = 0.01
|
124 |
+
max_grad = 1
|
125 |
+
|
126 |
+
min_grad = min_grad.to(x.dtype)
|
127 |
+
max_grad = max_grad.to(x.dtype)
|
128 |
+
|
129 |
+
return tl.where(x >= 0, max_grad, min_grad)
|
130 |
+
|
131 |
+
|
132 |
+
@triton.jit
|
133 |
+
def gelu(x):
|
134 |
+
"""Gaussian Error Linear Unit (GELU)"""
|
135 |
+
return x * 0.5 * (1.0 + tl.libdevice.erf(x * _sqrt1_2))
|
136 |
+
|
137 |
+
|
138 |
+
@triton.jit
|
139 |
+
def gelu_grad(x):
|
140 |
+
cdf = 0.5 * (1.0 + tl.libdevice.erf(x * _sqrt1_2))
|
141 |
+
pdf = tl.exp(-0.5 * x * x) * _gaussian_pdf_normalization
|
142 |
+
return cdf + x * pdf
|
143 |
+
|
144 |
+
|
145 |
+
@triton.jit
|
146 |
+
def gelu_approx(x):
|
147 |
+
"""
|
148 |
+
GeLU_ activation - Gaussian error linear unit, with tanh approximation
|
149 |
+
|
150 |
+
.. _GeLU: https://arxiv.org/pdf/1606.08415.pdf
|
151 |
+
"""
|
152 |
+
return 0.5 * x * (1.0 + tanh(_sqrt2pi * x * (1.0 + 0.044715 * x * x)))
|
153 |
+
|
154 |
+
|
155 |
+
@triton.jit
|
156 |
+
def gelu_approx_grad(x):
|
157 |
+
# CREDITS: Fast implementation proposed in
|
158 |
+
# https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/fused_bias_gelu.py#L30
|
159 |
+
tanh_out = tanh(0.79788456 * x * (1 + 0.044715 * x * x))
|
160 |
+
return 0.5 * x * ((1 - tanh_out * tanh_out) * (0.79788456 + 0.1070322243 * x * x)) + 0.5 * (
|
161 |
+
1 + tanh_out
|
162 |
+
)
|
torch-ext/flash_attn/ops/triton/layer_norm.py
ADDED
@@ -0,0 +1,1252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2024, Tri Dao.
|
2 |
+
# Implement dropout + residual + layer_norm / rms_norm.
|
3 |
+
|
4 |
+
# Based on the Triton LayerNorm tutorial: https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
|
5 |
+
# For the backward pass, we keep weight_grad and bias_grad in registers and accumulate.
|
6 |
+
# This is faster for dimensions up to 8k, but after that it's much slower due to register spilling.
|
7 |
+
# The models we train have hidden dim up to 8k anyway (e.g. Llama 70B), so this is fine.
|
8 |
+
|
9 |
+
import math
|
10 |
+
from typing import Optional, List
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn.functional as F
|
14 |
+
from torch import Tensor
|
15 |
+
|
16 |
+
import triton
|
17 |
+
import triton.language as tl
|
18 |
+
|
19 |
+
from flash_attn.utils.torch import custom_fwd, custom_bwd
|
20 |
+
from flash_attn.utils.library import triton_op
|
21 |
+
|
22 |
+
|
23 |
+
def maybe_contiguous_lastdim(x):
|
24 |
+
return x.contiguous() if x is not None and x.stride(-1) != 1 else x
|
25 |
+
|
26 |
+
|
27 |
+
def maybe_contiguous(x):
|
28 |
+
return x.contiguous() if x is not None else None
|
29 |
+
|
30 |
+
|
31 |
+
def triton_autotune_configs():
|
32 |
+
# Return configs with a valid warp count for the current device
|
33 |
+
configs = []
|
34 |
+
# Maximum threads per block is architecture-dependent in theory, but in reality all are 1024
|
35 |
+
max_threads_per_block = 1024
|
36 |
+
# Default to warp size 32 if not defined by device
|
37 |
+
warp_size = getattr(torch.cuda.get_device_properties(torch.cuda.current_device()), "warp_size", 32)
|
38 |
+
# Autotune for warp counts which are powers of 2 and do not exceed thread per block limit
|
39 |
+
return [triton.Config({}, num_warps=warp_count) for warp_count in [1, 2, 4, 8, 16, 32]
|
40 |
+
if warp_count * warp_size <= max_threads_per_block]
|
41 |
+
# return [triton.Config({}, num_warps=8)]
|
42 |
+
|
43 |
+
|
44 |
+
def layer_norm_ref(
|
45 |
+
x,
|
46 |
+
weight,
|
47 |
+
bias,
|
48 |
+
residual=None,
|
49 |
+
x1=None,
|
50 |
+
weight1=None,
|
51 |
+
bias1=None,
|
52 |
+
eps=1e-6,
|
53 |
+
dropout_p=0.0,
|
54 |
+
rowscale=None,
|
55 |
+
prenorm=False,
|
56 |
+
zero_centered_weight=False,
|
57 |
+
dropout_mask=None,
|
58 |
+
dropout_mask1=None,
|
59 |
+
upcast=False,
|
60 |
+
):
|
61 |
+
dtype = x.dtype
|
62 |
+
if upcast:
|
63 |
+
x = x.float()
|
64 |
+
weight = weight.float()
|
65 |
+
bias = bias.float() if bias is not None else None
|
66 |
+
residual = residual.float() if residual is not None else residual
|
67 |
+
x1 = x1.float() if x1 is not None else None
|
68 |
+
weight1 = weight1.float() if weight1 is not None else None
|
69 |
+
bias1 = bias1.float() if bias1 is not None else None
|
70 |
+
if zero_centered_weight:
|
71 |
+
weight = weight + 1.0
|
72 |
+
if weight1 is not None:
|
73 |
+
weight1 = weight1 + 1.0
|
74 |
+
if x1 is not None:
|
75 |
+
assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
|
76 |
+
if rowscale is not None:
|
77 |
+
x = x * rowscale[..., None]
|
78 |
+
if dropout_p > 0.0:
|
79 |
+
if dropout_mask is not None:
|
80 |
+
x = x.masked_fill(~dropout_mask, 0.0) / (1.0 - dropout_p)
|
81 |
+
else:
|
82 |
+
x = F.dropout(x, p=dropout_p)
|
83 |
+
if x1 is not None:
|
84 |
+
if dropout_mask1 is not None:
|
85 |
+
x1 = x1.masked_fill(~dropout_mask1, 0.0) / (1.0 - dropout_p)
|
86 |
+
else:
|
87 |
+
x1 = F.dropout(x1, p=dropout_p)
|
88 |
+
if x1 is not None:
|
89 |
+
x = x + x1
|
90 |
+
if residual is not None:
|
91 |
+
x = (x + residual).to(x.dtype)
|
92 |
+
out = F.layer_norm(x.to(weight.dtype), x.shape[-1:], weight=weight, bias=bias, eps=eps).to(
|
93 |
+
dtype
|
94 |
+
)
|
95 |
+
if weight1 is None:
|
96 |
+
return out if not prenorm else (out, x)
|
97 |
+
else:
|
98 |
+
out1 = F.layer_norm(
|
99 |
+
x.to(weight1.dtype), x.shape[-1:], weight=weight1, bias=bias1, eps=eps
|
100 |
+
).to(dtype)
|
101 |
+
return (out, out1) if not prenorm else (out, out1, x)
|
102 |
+
|
103 |
+
|
104 |
+
def rms_norm_ref(
|
105 |
+
x,
|
106 |
+
weight,
|
107 |
+
bias,
|
108 |
+
residual=None,
|
109 |
+
x1=None,
|
110 |
+
weight1=None,
|
111 |
+
bias1=None,
|
112 |
+
eps=1e-6,
|
113 |
+
dropout_p=0.0,
|
114 |
+
rowscale=None,
|
115 |
+
prenorm=False,
|
116 |
+
zero_centered_weight=False,
|
117 |
+
dropout_mask=None,
|
118 |
+
dropout_mask1=None,
|
119 |
+
upcast=False,
|
120 |
+
):
|
121 |
+
dtype = x.dtype
|
122 |
+
if upcast:
|
123 |
+
x = x.float()
|
124 |
+
weight = weight.float()
|
125 |
+
bias = bias.float() if bias is not None else None
|
126 |
+
residual = residual.float() if residual is not None else residual
|
127 |
+
x1 = x1.float() if x1 is not None else None
|
128 |
+
weight1 = weight1.float() if weight1 is not None else None
|
129 |
+
bias1 = bias1.float() if bias1 is not None else None
|
130 |
+
if zero_centered_weight:
|
131 |
+
weight = weight + 1.0
|
132 |
+
if weight1 is not None:
|
133 |
+
weight1 = weight1 + 1.0
|
134 |
+
if x1 is not None:
|
135 |
+
assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
|
136 |
+
if rowscale is not None:
|
137 |
+
x = x * rowscale[..., None]
|
138 |
+
if dropout_p > 0.0:
|
139 |
+
if dropout_mask is not None:
|
140 |
+
x = x.masked_fill(~dropout_mask, 0.0) / (1.0 - dropout_p)
|
141 |
+
else:
|
142 |
+
x = F.dropout(x, p=dropout_p)
|
143 |
+
if x1 is not None:
|
144 |
+
if dropout_mask1 is not None:
|
145 |
+
x1 = x1.masked_fill(~dropout_mask1, 0.0) / (1.0 - dropout_p)
|
146 |
+
else:
|
147 |
+
x1 = F.dropout(x1, p=dropout_p)
|
148 |
+
if x1 is not None:
|
149 |
+
x = x + x1
|
150 |
+
if residual is not None:
|
151 |
+
x = (x + residual).to(x.dtype)
|
152 |
+
rstd = 1 / torch.sqrt((x.square()).mean(dim=-1, keepdim=True) + eps)
|
153 |
+
out = ((x * rstd * weight) + bias if bias is not None else (x * rstd * weight)).to(dtype)
|
154 |
+
if weight1 is None:
|
155 |
+
return out if not prenorm else (out, x)
|
156 |
+
else:
|
157 |
+
out1 = ((x * rstd * weight1) + bias1 if bias1 is not None else (x * rstd * weight1)).to(
|
158 |
+
dtype
|
159 |
+
)
|
160 |
+
return (out, out1) if not prenorm else (out, out1, x)
|
161 |
+
|
162 |
+
|
163 |
+
@triton.autotune(
|
164 |
+
configs=triton_autotune_configs(),
|
165 |
+
key=["N", "HAS_RESIDUAL", "STORE_RESIDUAL_OUT", "IS_RMS_NORM", "HAS_BIAS", "HAS_X1", "HAS_W1", "HAS_B1"],
|
166 |
+
)
|
167 |
+
# torch compile doesn't like triton.heuristics, so we set these manually when calling the kernel
|
168 |
+
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
|
169 |
+
# @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None})
|
170 |
+
# @triton.heuristics({"HAS_X1": lambda args: args["X1"] is not None})
|
171 |
+
# @triton.heuristics({"HAS_W1": lambda args: args["W1"] is not None})
|
172 |
+
# @triton.heuristics({"HAS_B1": lambda args: args["B1"] is not None})
|
173 |
+
@triton.jit
|
174 |
+
def _layer_norm_fwd_1pass_kernel(
|
175 |
+
X, # pointer to the input
|
176 |
+
Y, # pointer to the output
|
177 |
+
W, # pointer to the weights
|
178 |
+
B, # pointer to the biases
|
179 |
+
RESIDUAL, # pointer to the residual
|
180 |
+
X1,
|
181 |
+
W1,
|
182 |
+
B1,
|
183 |
+
Y1,
|
184 |
+
RESIDUAL_OUT, # pointer to the residual
|
185 |
+
ROWSCALE,
|
186 |
+
SEEDS, # Dropout seeds for each row
|
187 |
+
DROPOUT_MASK,
|
188 |
+
DROPOUT_MASK1,
|
189 |
+
Mean, # pointer to the mean
|
190 |
+
Rstd, # pointer to the 1/std
|
191 |
+
stride_x_row, # how much to increase the pointer when moving by 1 row
|
192 |
+
stride_y_row,
|
193 |
+
stride_res_row,
|
194 |
+
stride_res_out_row,
|
195 |
+
stride_x1_row,
|
196 |
+
stride_y1_row,
|
197 |
+
M, # number of rows in X
|
198 |
+
N, # number of columns in X
|
199 |
+
eps, # epsilon to avoid division by zero
|
200 |
+
dropout_p, # Dropout probability
|
201 |
+
zero_centered_weight, # If true, add 1.0 to the weight
|
202 |
+
IS_RMS_NORM: tl.constexpr,
|
203 |
+
BLOCK_N: tl.constexpr,
|
204 |
+
HAS_RESIDUAL: tl.constexpr,
|
205 |
+
STORE_RESIDUAL_OUT: tl.constexpr,
|
206 |
+
HAS_BIAS: tl.constexpr,
|
207 |
+
HAS_DROPOUT: tl.constexpr,
|
208 |
+
STORE_DROPOUT_MASK: tl.constexpr,
|
209 |
+
HAS_ROWSCALE: tl.constexpr,
|
210 |
+
HAS_X1: tl.constexpr,
|
211 |
+
HAS_W1: tl.constexpr,
|
212 |
+
HAS_B1: tl.constexpr,
|
213 |
+
):
|
214 |
+
# Map the program id to the row of X and Y it should compute.
|
215 |
+
row = tl.program_id(0)
|
216 |
+
X += row * stride_x_row
|
217 |
+
Y += row * stride_y_row
|
218 |
+
if HAS_RESIDUAL:
|
219 |
+
RESIDUAL += row * stride_res_row
|
220 |
+
if STORE_RESIDUAL_OUT:
|
221 |
+
RESIDUAL_OUT += row * stride_res_out_row
|
222 |
+
if HAS_X1:
|
223 |
+
X1 += row * stride_x1_row
|
224 |
+
if HAS_W1:
|
225 |
+
Y1 += row * stride_y1_row
|
226 |
+
# Compute mean and variance
|
227 |
+
cols = tl.arange(0, BLOCK_N)
|
228 |
+
x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
|
229 |
+
if HAS_ROWSCALE:
|
230 |
+
rowscale = tl.load(ROWSCALE + row).to(tl.float32)
|
231 |
+
x *= rowscale
|
232 |
+
if HAS_DROPOUT:
|
233 |
+
# Compute dropout mask
|
234 |
+
# 7 rounds is good enough, and reduces register pressure
|
235 |
+
keep_mask = tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
|
236 |
+
x = tl.where(keep_mask, x / (1.0 - dropout_p), 0.0)
|
237 |
+
if STORE_DROPOUT_MASK:
|
238 |
+
tl.store(DROPOUT_MASK + row * N + cols, keep_mask, mask=cols < N)
|
239 |
+
if HAS_X1:
|
240 |
+
x1 = tl.load(X1 + cols, mask=cols < N, other=0.0).to(tl.float32)
|
241 |
+
if HAS_ROWSCALE:
|
242 |
+
rowscale = tl.load(ROWSCALE + M + row).to(tl.float32)
|
243 |
+
x1 *= rowscale
|
244 |
+
if HAS_DROPOUT:
|
245 |
+
# Compute dropout mask
|
246 |
+
# 7 rounds is good enough, and reduces register pressure
|
247 |
+
keep_mask = (
|
248 |
+
tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
|
249 |
+
)
|
250 |
+
x1 = tl.where(keep_mask, x1 / (1.0 - dropout_p), 0.0)
|
251 |
+
if STORE_DROPOUT_MASK:
|
252 |
+
tl.store(DROPOUT_MASK1 + row * N + cols, keep_mask, mask=cols < N)
|
253 |
+
x += x1
|
254 |
+
if HAS_RESIDUAL:
|
255 |
+
residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.0).to(tl.float32)
|
256 |
+
x += residual
|
257 |
+
if STORE_RESIDUAL_OUT:
|
258 |
+
tl.store(RESIDUAL_OUT + cols, x, mask=cols < N)
|
259 |
+
if not IS_RMS_NORM:
|
260 |
+
mean = tl.sum(x, axis=0) / N
|
261 |
+
tl.store(Mean + row, mean)
|
262 |
+
xbar = tl.where(cols < N, x - mean, 0.0)
|
263 |
+
var = tl.sum(xbar * xbar, axis=0) / N
|
264 |
+
else:
|
265 |
+
xbar = tl.where(cols < N, x, 0.0)
|
266 |
+
var = tl.sum(xbar * xbar, axis=0) / N
|
267 |
+
rstd = 1 / tl.sqrt(var + eps)
|
268 |
+
tl.store(Rstd + row, rstd)
|
269 |
+
# Normalize and apply linear transformation
|
270 |
+
mask = cols < N
|
271 |
+
w = tl.load(W + cols, mask=mask).to(tl.float32)
|
272 |
+
if zero_centered_weight:
|
273 |
+
w += 1.0
|
274 |
+
if HAS_BIAS:
|
275 |
+
b = tl.load(B + cols, mask=mask).to(tl.float32)
|
276 |
+
x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
|
277 |
+
y = x_hat * w + b if HAS_BIAS else x_hat * w
|
278 |
+
# Write output
|
279 |
+
tl.store(Y + cols, y, mask=mask)
|
280 |
+
if HAS_W1:
|
281 |
+
w1 = tl.load(W1 + cols, mask=mask).to(tl.float32)
|
282 |
+
if zero_centered_weight:
|
283 |
+
w1 += 1.0
|
284 |
+
if HAS_B1:
|
285 |
+
b1 = tl.load(B1 + cols, mask=mask).to(tl.float32)
|
286 |
+
y1 = x_hat * w1 + b1 if HAS_B1 else x_hat * w1
|
287 |
+
tl.store(Y1 + cols, y1, mask=mask)
|
288 |
+
|
289 |
+
|
290 |
+
def _layer_norm_fwd(
|
291 |
+
x: Tensor,
|
292 |
+
weight: Tensor,
|
293 |
+
bias: Tensor,
|
294 |
+
eps: float,
|
295 |
+
residual: Optional[Tensor] = None,
|
296 |
+
x1: Optional[Tensor] = None,
|
297 |
+
weight1: Optional[Tensor] = None,
|
298 |
+
bias1: Optional[Tensor] = None,
|
299 |
+
dropout_p: float = 0.0,
|
300 |
+
rowscale: Optional[Tensor] = None,
|
301 |
+
out_dtype: Optional[torch.dtype] = None,
|
302 |
+
residual_dtype: Optional[torch.dtype] = None,
|
303 |
+
zero_centered_weight: bool = False,
|
304 |
+
is_rms_norm: bool = False,
|
305 |
+
return_dropout_mask: bool = False,
|
306 |
+
out: Optional[Tensor] = None,
|
307 |
+
residual_out: Optional[Tensor] = None
|
308 |
+
) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor):
|
309 |
+
# Need to wrap to handle the case where residual_out is a alias of x, which makes torch.library
|
310 |
+
# and torch.compile unhappy. Also allocate memory for out and residual_out if they are None
|
311 |
+
# so that _layer_norm_fwd_impl doesn't have to return them.
|
312 |
+
if out is None:
|
313 |
+
out = torch.empty_like(x, dtype=x.dtype if out_dtype is None else out_dtype)
|
314 |
+
if residual is not None:
|
315 |
+
residual_dtype = residual.dtype
|
316 |
+
if residual_out is None and (
|
317 |
+
residual is not None
|
318 |
+
or (residual_dtype is not None and residual_dtype != x.dtype)
|
319 |
+
or dropout_p > 0.0
|
320 |
+
or rowscale is not None
|
321 |
+
or x1 is not None
|
322 |
+
):
|
323 |
+
residual_out = torch.empty_like(
|
324 |
+
x, dtype=residual_dtype if residual_dtype is not None else x.dtype
|
325 |
+
)
|
326 |
+
else:
|
327 |
+
residual_out = None
|
328 |
+
y1, mean, rstd, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd_impl(
|
329 |
+
x,
|
330 |
+
weight,
|
331 |
+
bias,
|
332 |
+
eps,
|
333 |
+
out,
|
334 |
+
residual=residual,
|
335 |
+
x1=x1,
|
336 |
+
weight1=weight1,
|
337 |
+
bias1=bias1,
|
338 |
+
dropout_p=dropout_p,
|
339 |
+
rowscale=rowscale,
|
340 |
+
zero_centered_weight=zero_centered_weight,
|
341 |
+
is_rms_norm=is_rms_norm,
|
342 |
+
return_dropout_mask=return_dropout_mask,
|
343 |
+
residual_out=residual_out,
|
344 |
+
)
|
345 |
+
# residual_out is None if residual is None and residual_dtype == input_dtype and dropout_p == 0.0
|
346 |
+
if residual_out is None:
|
347 |
+
residual_out = x
|
348 |
+
return out, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1
|
349 |
+
|
350 |
+
|
351 |
+
# [2025-04-28] torch.library.triton_op ignores the schema argument, but here we need the schema
|
352 |
+
# since we're returning a tuple of tensors
|
353 |
+
@triton_op("flash_attn::layer_norm_fwd_impl", mutates_args={"out", "residual_out"},
|
354 |
+
schema="(Tensor x, Tensor weight, Tensor bias, float eps, Tensor(a!) out, Tensor? residual, Tensor? x1, Tensor? weight1, Tensor? bias1, float dropout_p, Tensor? rowscale, bool zero_centered_weight, bool is_rms_norm, bool return_dropout_mask, Tensor(a!)? residual_out) -> (Tensor y1, Tensor mean, Tensor rstd, Tensor seeds, Tensor dropout_mask, Tensor dropout_mask1)")
|
355 |
+
def _layer_norm_fwd_impl(
|
356 |
+
x: Tensor,
|
357 |
+
weight: Tensor,
|
358 |
+
bias: Tensor,
|
359 |
+
eps: float,
|
360 |
+
out: Tensor,
|
361 |
+
residual: Optional[Tensor] = None,
|
362 |
+
x1: Optional[Tensor] = None,
|
363 |
+
weight1: Optional[Tensor] = None,
|
364 |
+
bias1: Optional[Tensor] = None,
|
365 |
+
dropout_p: float = 0.0,
|
366 |
+
rowscale: Optional[Tensor] = None,
|
367 |
+
zero_centered_weight: bool = False,
|
368 |
+
is_rms_norm: bool = False,
|
369 |
+
return_dropout_mask: bool = False,
|
370 |
+
residual_out: Optional[Tensor] = None
|
371 |
+
) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor):
|
372 |
+
M, N = x.shape
|
373 |
+
assert x.stride(-1) == 1
|
374 |
+
if residual is not None:
|
375 |
+
assert residual.stride(-1) == 1
|
376 |
+
assert residual.shape == (M, N)
|
377 |
+
assert weight.shape == (N,)
|
378 |
+
assert weight.stride(-1) == 1
|
379 |
+
if bias is not None:
|
380 |
+
assert bias.stride(-1) == 1
|
381 |
+
assert bias.shape == (N,)
|
382 |
+
if x1 is not None:
|
383 |
+
assert x1.shape == x.shape
|
384 |
+
assert rowscale is None
|
385 |
+
assert x1.stride(-1) == 1
|
386 |
+
if weight1 is not None:
|
387 |
+
assert weight1.shape == (N,)
|
388 |
+
assert weight1.stride(-1) == 1
|
389 |
+
if bias1 is not None:
|
390 |
+
assert bias1.shape == (N,)
|
391 |
+
assert bias1.stride(-1) == 1
|
392 |
+
if rowscale is not None:
|
393 |
+
assert rowscale.is_contiguous()
|
394 |
+
assert rowscale.shape == (M,)
|
395 |
+
assert out.shape == x.shape
|
396 |
+
assert out.stride(-1) == 1
|
397 |
+
if residual_out is not None:
|
398 |
+
assert residual_out.shape == x.shape
|
399 |
+
assert residual_out.stride(-1) == 1
|
400 |
+
if weight1 is not None:
|
401 |
+
y1 = torch.empty_like(out)
|
402 |
+
assert y1.stride(-1) == 1
|
403 |
+
else:
|
404 |
+
y1 = None
|
405 |
+
mean = torch.empty((M,), dtype=torch.float32, device=x.device) if not is_rms_norm else None
|
406 |
+
rstd = torch.empty((M,), dtype=torch.float32, device=x.device)
|
407 |
+
if dropout_p > 0.0:
|
408 |
+
seeds = torch.randint(
|
409 |
+
2**32, (M if x1 is None else 2 * M,), device=x.device, dtype=torch.int64
|
410 |
+
)
|
411 |
+
else:
|
412 |
+
seeds = None
|
413 |
+
if return_dropout_mask and dropout_p > 0.0:
|
414 |
+
dropout_mask = torch.empty(M, N, device=x.device, dtype=torch.bool)
|
415 |
+
if x1 is not None:
|
416 |
+
dropout_mask1 = torch.empty(M, N, device=x.device, dtype=torch.bool)
|
417 |
+
else:
|
418 |
+
dropout_mask1 = None
|
419 |
+
else:
|
420 |
+
dropout_mask, dropout_mask1 = None, None
|
421 |
+
# Less than 64KB per feature: enqueue fused kernel
|
422 |
+
MAX_FUSED_SIZE = 65536 // x.element_size()
|
423 |
+
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
424 |
+
if N > BLOCK_N:
|
425 |
+
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
426 |
+
with torch.cuda.device(x.device.index):
|
427 |
+
torch.library.wrap_triton(_layer_norm_fwd_1pass_kernel)[(M,)](
|
428 |
+
x,
|
429 |
+
out,
|
430 |
+
weight,
|
431 |
+
bias,
|
432 |
+
residual,
|
433 |
+
x1,
|
434 |
+
weight1,
|
435 |
+
bias1,
|
436 |
+
y1,
|
437 |
+
residual_out,
|
438 |
+
rowscale,
|
439 |
+
seeds,
|
440 |
+
dropout_mask,
|
441 |
+
dropout_mask1,
|
442 |
+
mean,
|
443 |
+
rstd,
|
444 |
+
x.stride(0),
|
445 |
+
out.stride(0),
|
446 |
+
residual.stride(0) if residual is not None else 0,
|
447 |
+
residual_out.stride(0) if residual_out is not None else 0,
|
448 |
+
x1.stride(0) if x1 is not None else 0,
|
449 |
+
y1.stride(0) if y1 is not None else 0,
|
450 |
+
M,
|
451 |
+
N,
|
452 |
+
eps,
|
453 |
+
dropout_p,
|
454 |
+
# Passing bool make torch inductor very unhappy since it then tries to compare to int_max
|
455 |
+
int(zero_centered_weight),
|
456 |
+
is_rms_norm,
|
457 |
+
BLOCK_N,
|
458 |
+
residual is not None,
|
459 |
+
residual_out is not None,
|
460 |
+
bias is not None,
|
461 |
+
dropout_p > 0.0,
|
462 |
+
dropout_mask is not None,
|
463 |
+
rowscale is not None,
|
464 |
+
HAS_X1=x1 is not None,
|
465 |
+
HAS_W1=weight1 is not None,
|
466 |
+
HAS_B1=bias1 is not None,
|
467 |
+
)
|
468 |
+
return y1, mean, rstd, seeds, dropout_mask, dropout_mask1
|
469 |
+
|
470 |
+
|
471 |
+
@triton.autotune(
|
472 |
+
configs=triton_autotune_configs(),
|
473 |
+
key=["N", "HAS_DRESIDUAL", "STORE_DRESIDUAL", "IS_RMS_NORM", "HAS_BIAS", "HAS_DROPOUT"],
|
474 |
+
)
|
475 |
+
# torch compile doesn't like triton.heuristics, so we set these manually when calling the kernel
|
476 |
+
# @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
|
477 |
+
# @triton.heuristics({"HAS_DRESIDUAL": lambda args: args["DRESIDUAL"] is not None})
|
478 |
+
# @triton.heuristics({"STORE_DRESIDUAL": lambda args: args["DRESIDUAL_IN"] is not None})
|
479 |
+
# @triton.heuristics({"HAS_ROWSCALE": lambda args: args["ROWSCALE"] is not None})
|
480 |
+
# @triton.heuristics({"HAS_DY1": lambda args: args["DY1"] is not None})
|
481 |
+
# @triton.heuristics({"HAS_DX1": lambda args: args["DX1"] is not None})
|
482 |
+
# @triton.heuristics({"HAS_B1": lambda args: args["DB1"] is not None})
|
483 |
+
# @triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None})
|
484 |
+
@triton.jit
|
485 |
+
def _layer_norm_bwd_kernel(
|
486 |
+
X, # pointer to the input
|
487 |
+
W, # pointer to the weights
|
488 |
+
B, # pointer to the biases
|
489 |
+
Y, # pointer to the output to be recomputed
|
490 |
+
DY, # pointer to the output gradient
|
491 |
+
DX, # pointer to the input gradient
|
492 |
+
DW, # pointer to the partial sum of weights gradient
|
493 |
+
DB, # pointer to the partial sum of biases gradient
|
494 |
+
DRESIDUAL,
|
495 |
+
W1,
|
496 |
+
DY1,
|
497 |
+
DX1,
|
498 |
+
DW1,
|
499 |
+
DB1,
|
500 |
+
DRESIDUAL_IN,
|
501 |
+
ROWSCALE,
|
502 |
+
SEEDS,
|
503 |
+
Mean, # pointer to the mean
|
504 |
+
Rstd, # pointer to the 1/std
|
505 |
+
stride_x_row, # how much to increase the pointer when moving by 1 row
|
506 |
+
stride_y_row,
|
507 |
+
stride_dy_row,
|
508 |
+
stride_dx_row,
|
509 |
+
stride_dres_row,
|
510 |
+
stride_dy1_row,
|
511 |
+
stride_dx1_row,
|
512 |
+
stride_dres_in_row,
|
513 |
+
M, # number of rows in X
|
514 |
+
N, # number of columns in X
|
515 |
+
eps, # epsilon to avoid division by zero
|
516 |
+
dropout_p,
|
517 |
+
zero_centered_weight,
|
518 |
+
rows_per_program,
|
519 |
+
IS_RMS_NORM: tl.constexpr,
|
520 |
+
BLOCK_N: tl.constexpr,
|
521 |
+
HAS_DRESIDUAL: tl.constexpr,
|
522 |
+
STORE_DRESIDUAL: tl.constexpr,
|
523 |
+
HAS_BIAS: tl.constexpr,
|
524 |
+
HAS_DROPOUT: tl.constexpr,
|
525 |
+
HAS_ROWSCALE: tl.constexpr,
|
526 |
+
HAS_DY1: tl.constexpr,
|
527 |
+
HAS_DX1: tl.constexpr,
|
528 |
+
HAS_B1: tl.constexpr,
|
529 |
+
RECOMPUTE_OUTPUT: tl.constexpr,
|
530 |
+
):
|
531 |
+
# Map the program id to the elements of X, DX, and DY it should compute.
|
532 |
+
row_block_id = tl.program_id(0)
|
533 |
+
row_start = row_block_id * rows_per_program
|
534 |
+
# Do not early exit if row_start >= M, because we need to write DW and DB
|
535 |
+
cols = tl.arange(0, BLOCK_N)
|
536 |
+
mask = cols < N
|
537 |
+
X += row_start * stride_x_row
|
538 |
+
if HAS_DRESIDUAL:
|
539 |
+
DRESIDUAL += row_start * stride_dres_row
|
540 |
+
if STORE_DRESIDUAL:
|
541 |
+
DRESIDUAL_IN += row_start * stride_dres_in_row
|
542 |
+
DY += row_start * stride_dy_row
|
543 |
+
DX += row_start * stride_dx_row
|
544 |
+
if HAS_DY1:
|
545 |
+
DY1 += row_start * stride_dy1_row
|
546 |
+
if HAS_DX1:
|
547 |
+
DX1 += row_start * stride_dx1_row
|
548 |
+
if RECOMPUTE_OUTPUT:
|
549 |
+
Y += row_start * stride_y_row
|
550 |
+
w = tl.load(W + cols, mask=mask).to(tl.float32)
|
551 |
+
if zero_centered_weight:
|
552 |
+
w += 1.0
|
553 |
+
if RECOMPUTE_OUTPUT and HAS_BIAS:
|
554 |
+
b = tl.load(B + cols, mask=mask, other=0.0).to(tl.float32)
|
555 |
+
if HAS_DY1:
|
556 |
+
w1 = tl.load(W1 + cols, mask=mask).to(tl.float32)
|
557 |
+
if zero_centered_weight:
|
558 |
+
w1 += 1.0
|
559 |
+
dw = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
560 |
+
if HAS_BIAS:
|
561 |
+
db = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
562 |
+
if HAS_DY1:
|
563 |
+
dw1 = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
564 |
+
if HAS_B1:
|
565 |
+
db1 = tl.zeros((BLOCK_N,), dtype=tl.float32)
|
566 |
+
row_end = min((row_block_id + 1) * rows_per_program, M)
|
567 |
+
for row in range(row_start, row_end):
|
568 |
+
# Load data to SRAM
|
569 |
+
x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
|
570 |
+
dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
|
571 |
+
if HAS_DY1:
|
572 |
+
dy1 = tl.load(DY1 + cols, mask=mask, other=0).to(tl.float32)
|
573 |
+
if not IS_RMS_NORM:
|
574 |
+
mean = tl.load(Mean + row)
|
575 |
+
rstd = tl.load(Rstd + row)
|
576 |
+
# Compute dx
|
577 |
+
xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
|
578 |
+
xhat = tl.where(mask, xhat, 0.0)
|
579 |
+
if RECOMPUTE_OUTPUT:
|
580 |
+
y = xhat * w + b if HAS_BIAS else xhat * w
|
581 |
+
tl.store(Y + cols, y, mask=mask)
|
582 |
+
wdy = w * dy
|
583 |
+
dw += dy * xhat
|
584 |
+
if HAS_BIAS:
|
585 |
+
db += dy
|
586 |
+
if HAS_DY1:
|
587 |
+
wdy += w1 * dy1
|
588 |
+
dw1 += dy1 * xhat
|
589 |
+
if HAS_B1:
|
590 |
+
db1 += dy1
|
591 |
+
if not IS_RMS_NORM:
|
592 |
+
c1 = tl.sum(xhat * wdy, axis=0) / N
|
593 |
+
c2 = tl.sum(wdy, axis=0) / N
|
594 |
+
dx = (wdy - (xhat * c1 + c2)) * rstd
|
595 |
+
else:
|
596 |
+
c1 = tl.sum(xhat * wdy, axis=0) / N
|
597 |
+
dx = (wdy - xhat * c1) * rstd
|
598 |
+
if HAS_DRESIDUAL:
|
599 |
+
dres = tl.load(DRESIDUAL + cols, mask=mask, other=0).to(tl.float32)
|
600 |
+
dx += dres
|
601 |
+
# Write dx
|
602 |
+
if STORE_DRESIDUAL:
|
603 |
+
tl.store(DRESIDUAL_IN + cols, dx, mask=mask)
|
604 |
+
if HAS_DX1:
|
605 |
+
if HAS_DROPOUT:
|
606 |
+
keep_mask = (
|
607 |
+
tl.rand(tl.load(SEEDS + M + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
|
608 |
+
)
|
609 |
+
dx1 = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0)
|
610 |
+
else:
|
611 |
+
dx1 = dx
|
612 |
+
tl.store(DX1 + cols, dx1, mask=mask)
|
613 |
+
if HAS_DROPOUT:
|
614 |
+
keep_mask = tl.rand(tl.load(SEEDS + row).to(tl.uint32), cols, n_rounds=7) > dropout_p
|
615 |
+
dx = tl.where(keep_mask, dx / (1.0 - dropout_p), 0.0)
|
616 |
+
if HAS_ROWSCALE:
|
617 |
+
rowscale = tl.load(ROWSCALE + row).to(tl.float32)
|
618 |
+
dx *= rowscale
|
619 |
+
tl.store(DX + cols, dx, mask=mask)
|
620 |
+
|
621 |
+
X += stride_x_row
|
622 |
+
if HAS_DRESIDUAL:
|
623 |
+
DRESIDUAL += stride_dres_row
|
624 |
+
if STORE_DRESIDUAL:
|
625 |
+
DRESIDUAL_IN += stride_dres_in_row
|
626 |
+
if RECOMPUTE_OUTPUT:
|
627 |
+
Y += stride_y_row
|
628 |
+
DY += stride_dy_row
|
629 |
+
DX += stride_dx_row
|
630 |
+
if HAS_DY1:
|
631 |
+
DY1 += stride_dy1_row
|
632 |
+
if HAS_DX1:
|
633 |
+
DX1 += stride_dx1_row
|
634 |
+
tl.store(DW + row_block_id * N + cols, dw, mask=mask)
|
635 |
+
if HAS_BIAS:
|
636 |
+
tl.store(DB + row_block_id * N + cols, db, mask=mask)
|
637 |
+
if HAS_DY1:
|
638 |
+
tl.store(DW1 + row_block_id * N + cols, dw1, mask=mask)
|
639 |
+
if HAS_B1:
|
640 |
+
tl.store(DB1 + row_block_id * N + cols, db1, mask=mask)
|
641 |
+
|
642 |
+
|
643 |
+
def _layer_norm_bwd(
|
644 |
+
dy: Tensor,
|
645 |
+
x: Tensor,
|
646 |
+
weight: Tensor,
|
647 |
+
bias: Tensor,
|
648 |
+
eps: float,
|
649 |
+
mean: Tensor,
|
650 |
+
rstd: Tensor,
|
651 |
+
dresidual: Optional[Tensor] = None,
|
652 |
+
dy1: Optional[Tensor] = None,
|
653 |
+
weight1: Optional[Tensor] = None,
|
654 |
+
bias1: Optional[Tensor] = None,
|
655 |
+
seeds: Optional[Tensor] = None,
|
656 |
+
dropout_p: float = 0.0,
|
657 |
+
rowscale: Optional[Tensor] = None,
|
658 |
+
has_residual: bool = False,
|
659 |
+
has_x1: bool = False,
|
660 |
+
zero_centered_weight: bool = False,
|
661 |
+
is_rms_norm: bool = False,
|
662 |
+
x_dtype: Optional[torch.dtype] = None,
|
663 |
+
recompute_output: bool = False,
|
664 |
+
) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor):
|
665 |
+
# Need to wrap to handle the case where dresidual_in or dx1 are aliases of x,
|
666 |
+
# which makes torch.library unhappy
|
667 |
+
dx, dw, db, dresidual_in, dx1, dw1, db1, y = _layer_norm_bwd_impl(
|
668 |
+
dy,
|
669 |
+
x,
|
670 |
+
weight,
|
671 |
+
bias,
|
672 |
+
eps,
|
673 |
+
mean,
|
674 |
+
rstd,
|
675 |
+
dresidual,
|
676 |
+
dy1,
|
677 |
+
weight1,
|
678 |
+
bias1,
|
679 |
+
seeds,
|
680 |
+
dropout_p,
|
681 |
+
rowscale,
|
682 |
+
has_residual,
|
683 |
+
has_x1,
|
684 |
+
zero_centered_weight,
|
685 |
+
is_rms_norm,
|
686 |
+
x_dtype=x_dtype,
|
687 |
+
recompute_output=recompute_output,
|
688 |
+
)
|
689 |
+
# Don't need to compute dresidual_in separately in this case
|
690 |
+
if has_residual and dx.dtype == x.dtype and dropout_p == 0.0 and rowscale is None:
|
691 |
+
dresidual_in = dx
|
692 |
+
if has_x1 and dropout_p == 0.0:
|
693 |
+
dx1 = dx
|
694 |
+
return dx, dw, db, dresidual_in, dx1, dw1, db1, y
|
695 |
+
|
696 |
+
|
697 |
+
|
698 |
+
@triton_op("flash_attn::layer_norm_bwd_impl", mutates_args={},
|
699 |
+
schema="(Tensor dy, Tensor x, Tensor weight, Tensor bias, float eps, Tensor mean, Tensor rstd, Tensor? dresidual, Tensor? dy1, Tensor? weight1, Tensor? bias1, Tensor? seeds, float dropout_p, Tensor? rowscale, bool has_residual, bool has_x1, bool zero_centered_weight, bool is_rms_norm, ScalarType? x_dtype, bool recompute_output) -> (Tensor dx, Tensor dw, Tensor db, Tensor dresidual_in, Tensor dx1, Tensor dw1, Tensor db1, Tensor y)",
|
700 |
+
allow_decomposition=False, # Don't let torch.compile trace inside
|
701 |
+
)
|
702 |
+
def _layer_norm_bwd_impl(
|
703 |
+
dy: Tensor,
|
704 |
+
x: Tensor,
|
705 |
+
weight: Tensor,
|
706 |
+
bias: Tensor,
|
707 |
+
eps: float,
|
708 |
+
mean: Tensor,
|
709 |
+
rstd: Tensor,
|
710 |
+
dresidual: Optional[Tensor] = None,
|
711 |
+
dy1: Optional[Tensor] = None,
|
712 |
+
weight1: Optional[Tensor] = None,
|
713 |
+
bias1: Optional[Tensor] = None,
|
714 |
+
seeds: Optional[Tensor] = None,
|
715 |
+
dropout_p: float = 0.0,
|
716 |
+
rowscale: Optional[Tensor] = None,
|
717 |
+
has_residual: bool = False,
|
718 |
+
has_x1: bool = False,
|
719 |
+
zero_centered_weight: bool = False,
|
720 |
+
is_rms_norm: bool = False,
|
721 |
+
x_dtype: Optional[torch.dtype] = None,
|
722 |
+
recompute_output: bool = False,
|
723 |
+
) -> (Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor, Tensor):
|
724 |
+
M, N = x.shape
|
725 |
+
assert x.stride(-1) == 1
|
726 |
+
dy = maybe_contiguous_lastdim(dy)
|
727 |
+
assert dy.stride(-1) == 1
|
728 |
+
assert dy.shape == (M, N)
|
729 |
+
if dresidual is not None:
|
730 |
+
dresidual = maybe_contiguous_lastdim(dresidual)
|
731 |
+
assert dresidual.stride(-1) == 1
|
732 |
+
assert dresidual.shape == (M, N)
|
733 |
+
assert weight.shape == (N,)
|
734 |
+
assert weight.stride(-1) == 1
|
735 |
+
if bias is not None:
|
736 |
+
assert bias.stride(-1) == 1
|
737 |
+
assert bias.shape == (N,)
|
738 |
+
if dy1 is not None:
|
739 |
+
dy1 = maybe_contiguous_lastdim(dy1)
|
740 |
+
assert weight1 is not None
|
741 |
+
assert dy1.shape == dy.shape
|
742 |
+
assert dy1.stride(-1) == 1
|
743 |
+
if weight1 is not None:
|
744 |
+
assert weight1.shape == (N,)
|
745 |
+
assert weight1.stride(-1) == 1
|
746 |
+
if bias1 is not None:
|
747 |
+
assert bias1.shape == (N,)
|
748 |
+
assert bias1.stride(-1) == 1
|
749 |
+
if seeds is not None:
|
750 |
+
assert seeds.is_contiguous()
|
751 |
+
assert seeds.shape == (M if not has_x1 else M * 2,)
|
752 |
+
if rowscale is not None:
|
753 |
+
assert rowscale.is_contiguous()
|
754 |
+
assert rowscale.shape == (M,)
|
755 |
+
# allocate output
|
756 |
+
dx = (
|
757 |
+
torch.empty_like(x)
|
758 |
+
if x_dtype is None
|
759 |
+
else torch.empty(M, N, dtype=x_dtype, device=x.device)
|
760 |
+
)
|
761 |
+
dresidual_in = (
|
762 |
+
torch.empty_like(x)
|
763 |
+
if has_residual
|
764 |
+
and (dx.dtype != x.dtype or dropout_p > 0.0 or rowscale is not None or has_x1)
|
765 |
+
else None
|
766 |
+
)
|
767 |
+
dx1 = torch.empty_like(dx) if (has_x1 and dropout_p > 0.0) else None
|
768 |
+
y = torch.empty(M, N, dtype=dy.dtype, device=dy.device) if recompute_output else None
|
769 |
+
if recompute_output:
|
770 |
+
assert weight1 is None, "recompute_output is not supported with parallel LayerNorm"
|
771 |
+
|
772 |
+
# Less than 64KB per feature: enqueue fused kernel
|
773 |
+
MAX_FUSED_SIZE = 65536 // x.element_size()
|
774 |
+
BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
|
775 |
+
if N > BLOCK_N:
|
776 |
+
raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
|
777 |
+
# Increasing the multiple (e.g. 8) will allow more thread blocks to be launched and hide the
|
778 |
+
# latency of the gmem reads/writes, but will increase the time of summing up dw / db.
|
779 |
+
sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count * 8
|
780 |
+
_dw = torch.empty((sm_count, N), dtype=torch.float32, device=weight.device)
|
781 |
+
_db = (
|
782 |
+
torch.empty((sm_count, N), dtype=torch.float32, device=bias.device)
|
783 |
+
if bias is not None
|
784 |
+
else None
|
785 |
+
)
|
786 |
+
_dw1 = torch.empty_like(_dw) if weight1 is not None else None
|
787 |
+
_db1 = torch.empty_like(_db) if bias1 is not None else None
|
788 |
+
rows_per_program = math.ceil(M / sm_count)
|
789 |
+
grid = (sm_count,)
|
790 |
+
with torch.cuda.device(x.device.index):
|
791 |
+
torch.library.wrap_triton(_layer_norm_bwd_kernel)[grid](
|
792 |
+
x,
|
793 |
+
weight,
|
794 |
+
bias,
|
795 |
+
y,
|
796 |
+
dy,
|
797 |
+
dx,
|
798 |
+
_dw,
|
799 |
+
_db,
|
800 |
+
dresidual,
|
801 |
+
weight1,
|
802 |
+
dy1,
|
803 |
+
dx1,
|
804 |
+
_dw1,
|
805 |
+
_db1,
|
806 |
+
dresidual_in,
|
807 |
+
rowscale,
|
808 |
+
seeds,
|
809 |
+
mean,
|
810 |
+
rstd,
|
811 |
+
x.stride(0),
|
812 |
+
0 if not recompute_output else y.stride(0),
|
813 |
+
dy.stride(0),
|
814 |
+
dx.stride(0),
|
815 |
+
dresidual.stride(0) if dresidual is not None else 0,
|
816 |
+
dy1.stride(0) if dy1 is not None else 0,
|
817 |
+
dx1.stride(0) if dx1 is not None else 0,
|
818 |
+
dresidual_in.stride(0) if dresidual_in is not None else 0,
|
819 |
+
M,
|
820 |
+
N,
|
821 |
+
eps,
|
822 |
+
dropout_p,
|
823 |
+
# Passing bool make torch inductor very unhappy since it then tries to compare to int_max
|
824 |
+
int(zero_centered_weight),
|
825 |
+
rows_per_program,
|
826 |
+
is_rms_norm,
|
827 |
+
BLOCK_N,
|
828 |
+
dresidual is not None,
|
829 |
+
dresidual_in is not None,
|
830 |
+
bias is not None,
|
831 |
+
dropout_p > 0.0,
|
832 |
+
HAS_ROWSCALE=rowscale is not None,
|
833 |
+
HAS_DY1=dy1 is not None,
|
834 |
+
HAS_DX1=dx1 is not None,
|
835 |
+
HAS_B1=bias1 is not None,
|
836 |
+
RECOMPUTE_OUTPUT=y is not None,
|
837 |
+
)
|
838 |
+
dw = _dw.sum(0).to(weight.dtype)
|
839 |
+
db = _db.sum(0).to(bias.dtype) if bias is not None else None
|
840 |
+
dw1 = _dw1.sum(0).to(weight1.dtype) if weight1 is not None else None
|
841 |
+
db1 = _db1.sum(0).to(bias1.dtype) if bias1 is not None else None
|
842 |
+
# dresidual_in and dx1 could be None, the wrapper will handle assigning them from dx
|
843 |
+
return dx, dw, db, dresidual_in, dx1, dw1, db1, y
|
844 |
+
|
845 |
+
|
846 |
+
class LayerNormFn(torch.autograd.Function):
|
847 |
+
|
848 |
+
@staticmethod
|
849 |
+
def forward(
|
850 |
+
ctx,
|
851 |
+
x,
|
852 |
+
weight,
|
853 |
+
bias,
|
854 |
+
residual=None,
|
855 |
+
x1=None,
|
856 |
+
weight1=None,
|
857 |
+
bias1=None,
|
858 |
+
eps=1e-6,
|
859 |
+
dropout_p=0.0,
|
860 |
+
rowscale=None,
|
861 |
+
prenorm=False,
|
862 |
+
residual_in_fp32=False,
|
863 |
+
zero_centered_weight=False,
|
864 |
+
is_rms_norm=False,
|
865 |
+
return_dropout_mask=False,
|
866 |
+
out_dtype=None,
|
867 |
+
out=None,
|
868 |
+
residual_out=None
|
869 |
+
):
|
870 |
+
x_shape_og = x.shape
|
871 |
+
# reshape input data into 2D tensor
|
872 |
+
x = maybe_contiguous_lastdim(x.reshape(-1, x.shape[-1]))
|
873 |
+
if residual is not None:
|
874 |
+
assert residual.shape == x_shape_og
|
875 |
+
residual = maybe_contiguous_lastdim(residual.reshape(-1, residual.shape[-1]))
|
876 |
+
if x1 is not None:
|
877 |
+
assert x1.shape == x_shape_og
|
878 |
+
assert rowscale is None, "rowscale is not supported with parallel LayerNorm"
|
879 |
+
x1 = maybe_contiguous_lastdim(x1.reshape(-1, x1.shape[-1]))
|
880 |
+
weight = weight.contiguous()
|
881 |
+
bias = maybe_contiguous(bias)
|
882 |
+
weight1 = maybe_contiguous(weight1)
|
883 |
+
bias1 = maybe_contiguous(bias1)
|
884 |
+
if rowscale is not None:
|
885 |
+
rowscale = rowscale.reshape(-1).contiguous()
|
886 |
+
residual_dtype = (
|
887 |
+
residual.dtype
|
888 |
+
if residual is not None
|
889 |
+
else (torch.float32 if residual_in_fp32 else None)
|
890 |
+
)
|
891 |
+
if out is not None:
|
892 |
+
out = out.reshape(-1, out.shape[-1])
|
893 |
+
if residual_out is not None:
|
894 |
+
residual_out = residual_out.reshape(-1, residual_out.shape[-1])
|
895 |
+
y, y1, mean, rstd, residual_out, seeds, dropout_mask, dropout_mask1 = _layer_norm_fwd(
|
896 |
+
x,
|
897 |
+
weight,
|
898 |
+
bias,
|
899 |
+
eps,
|
900 |
+
residual,
|
901 |
+
x1,
|
902 |
+
weight1,
|
903 |
+
bias1,
|
904 |
+
dropout_p=dropout_p,
|
905 |
+
rowscale=rowscale,
|
906 |
+
out_dtype=out_dtype,
|
907 |
+
residual_dtype=residual_dtype,
|
908 |
+
zero_centered_weight=zero_centered_weight,
|
909 |
+
is_rms_norm=is_rms_norm,
|
910 |
+
return_dropout_mask=return_dropout_mask,
|
911 |
+
out=out,
|
912 |
+
residual_out=residual_out,
|
913 |
+
)
|
914 |
+
ctx.save_for_backward(
|
915 |
+
residual_out, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd
|
916 |
+
)
|
917 |
+
ctx.x_shape_og = x_shape_og
|
918 |
+
ctx.eps = eps
|
919 |
+
ctx.dropout_p = dropout_p
|
920 |
+
ctx.is_rms_norm = is_rms_norm
|
921 |
+
ctx.has_residual = residual is not None
|
922 |
+
ctx.has_x1 = x1 is not None
|
923 |
+
ctx.prenorm = prenorm
|
924 |
+
ctx.x_dtype = x.dtype
|
925 |
+
ctx.zero_centered_weight = zero_centered_weight
|
926 |
+
y = y.reshape(x_shape_og)
|
927 |
+
y1 = y1.reshape(x_shape_og) if y1 is not None else None
|
928 |
+
residual_out = residual_out.reshape(x_shape_og) if residual_out is not None else None
|
929 |
+
dropout_mask = dropout_mask.reshape(x_shape_og) if dropout_mask is not None else None
|
930 |
+
dropout_mask1 = dropout_mask1.reshape(x_shape_og) if dropout_mask1 is not None else None
|
931 |
+
if not return_dropout_mask:
|
932 |
+
if weight1 is None:
|
933 |
+
return y if not prenorm else (y, residual_out)
|
934 |
+
else:
|
935 |
+
return (y, y1) if not prenorm else (y, y1, residual_out)
|
936 |
+
else:
|
937 |
+
if weight1 is None:
|
938 |
+
return (
|
939 |
+
(y, dropout_mask, dropout_mask1)
|
940 |
+
if not prenorm
|
941 |
+
else (y, residual_out, dropout_mask, dropout_mask1)
|
942 |
+
)
|
943 |
+
else:
|
944 |
+
return (
|
945 |
+
(y, y1, dropout_mask, dropout_mask1)
|
946 |
+
if not prenorm
|
947 |
+
else (y, y1, residual_out, dropout_mask, dropout_mask1)
|
948 |
+
)
|
949 |
+
|
950 |
+
@staticmethod
|
951 |
+
def backward(ctx, dy, *args):
|
952 |
+
x, weight, bias, weight1, bias1, rowscale, seeds, mean, rstd = ctx.saved_tensors
|
953 |
+
dy = dy.reshape(-1, dy.shape[-1])
|
954 |
+
if weight1 is not None:
|
955 |
+
dy1, args = args[0], args[1:]
|
956 |
+
dy1 = dy1.reshape(-1, dy1.shape[-1])
|
957 |
+
assert dy1.shape == x.shape
|
958 |
+
else:
|
959 |
+
dy1 = None
|
960 |
+
if ctx.prenorm:
|
961 |
+
dresidual = args[0]
|
962 |
+
dresidual = dresidual.reshape(-1, dresidual.shape[-1])
|
963 |
+
assert dresidual.shape == x.shape
|
964 |
+
else:
|
965 |
+
dresidual = None
|
966 |
+
dx, dw, db, dresidual_in, dx1, dw1, db1, _ = _layer_norm_bwd(
|
967 |
+
dy,
|
968 |
+
x,
|
969 |
+
weight,
|
970 |
+
bias,
|
971 |
+
ctx.eps,
|
972 |
+
mean,
|
973 |
+
rstd,
|
974 |
+
dresidual,
|
975 |
+
dy1,
|
976 |
+
weight1,
|
977 |
+
bias1,
|
978 |
+
seeds,
|
979 |
+
ctx.dropout_p,
|
980 |
+
rowscale,
|
981 |
+
ctx.has_residual,
|
982 |
+
ctx.has_x1,
|
983 |
+
ctx.zero_centered_weight,
|
984 |
+
ctx.is_rms_norm,
|
985 |
+
x_dtype=ctx.x_dtype,
|
986 |
+
recompute_output=False,
|
987 |
+
)
|
988 |
+
return (
|
989 |
+
dx.reshape(ctx.x_shape_og),
|
990 |
+
dw,
|
991 |
+
db,
|
992 |
+
dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None,
|
993 |
+
dx1.reshape(ctx.x_shape_og) if dx1 is not None else None,
|
994 |
+
dw1,
|
995 |
+
db1,
|
996 |
+
None,
|
997 |
+
None,
|
998 |
+
None,
|
999 |
+
None,
|
1000 |
+
None,
|
1001 |
+
None,
|
1002 |
+
None,
|
1003 |
+
None,
|
1004 |
+
None,
|
1005 |
+
None,
|
1006 |
+
None,
|
1007 |
+
)
|
1008 |
+
|
1009 |
+
|
1010 |
+
def layer_norm_fn(
|
1011 |
+
x,
|
1012 |
+
weight,
|
1013 |
+
bias,
|
1014 |
+
residual=None,
|
1015 |
+
x1=None,
|
1016 |
+
weight1=None,
|
1017 |
+
bias1=None,
|
1018 |
+
eps=1e-6,
|
1019 |
+
dropout_p=0.0,
|
1020 |
+
rowscale=None,
|
1021 |
+
prenorm=False,
|
1022 |
+
residual_in_fp32=False,
|
1023 |
+
zero_centered_weight=False,
|
1024 |
+
is_rms_norm=False,
|
1025 |
+
return_dropout_mask=False,
|
1026 |
+
out_dtype=None,
|
1027 |
+
out=None,
|
1028 |
+
residual_out=None
|
1029 |
+
):
|
1030 |
+
return LayerNormFn.apply(
|
1031 |
+
x,
|
1032 |
+
weight,
|
1033 |
+
bias,
|
1034 |
+
residual,
|
1035 |
+
x1,
|
1036 |
+
weight1,
|
1037 |
+
bias1,
|
1038 |
+
eps,
|
1039 |
+
dropout_p,
|
1040 |
+
rowscale,
|
1041 |
+
prenorm,
|
1042 |
+
residual_in_fp32,
|
1043 |
+
zero_centered_weight,
|
1044 |
+
is_rms_norm,
|
1045 |
+
return_dropout_mask,
|
1046 |
+
out_dtype,
|
1047 |
+
out,
|
1048 |
+
residual_out
|
1049 |
+
)
|
1050 |
+
|
1051 |
+
|
1052 |
+
def rms_norm_fn(
|
1053 |
+
x,
|
1054 |
+
weight,
|
1055 |
+
bias,
|
1056 |
+
residual=None,
|
1057 |
+
x1=None,
|
1058 |
+
weight1=None,
|
1059 |
+
bias1=None,
|
1060 |
+
eps=1e-6,
|
1061 |
+
dropout_p=0.0,
|
1062 |
+
rowscale=None,
|
1063 |
+
prenorm=False,
|
1064 |
+
residual_in_fp32=False,
|
1065 |
+
zero_centered_weight=False,
|
1066 |
+
return_dropout_mask=False,
|
1067 |
+
out_dtype=None,
|
1068 |
+
out=None,
|
1069 |
+
residual_out=None
|
1070 |
+
):
|
1071 |
+
return LayerNormFn.apply(
|
1072 |
+
x,
|
1073 |
+
weight,
|
1074 |
+
bias,
|
1075 |
+
residual,
|
1076 |
+
x1,
|
1077 |
+
weight1,
|
1078 |
+
bias1,
|
1079 |
+
eps,
|
1080 |
+
dropout_p,
|
1081 |
+
rowscale,
|
1082 |
+
prenorm,
|
1083 |
+
residual_in_fp32,
|
1084 |
+
zero_centered_weight,
|
1085 |
+
True,
|
1086 |
+
return_dropout_mask,
|
1087 |
+
out_dtype,
|
1088 |
+
out,
|
1089 |
+
residual_out
|
1090 |
+
)
|
1091 |
+
|
1092 |
+
|
1093 |
+
class RMSNorm(torch.nn.Module):
|
1094 |
+
|
1095 |
+
def __init__(self, hidden_size, eps=1e-5, dropout_p=0.0, zero_centered_weight=False,
|
1096 |
+
device=None, dtype=None):
|
1097 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
1098 |
+
super().__init__()
|
1099 |
+
self.eps = eps
|
1100 |
+
if dropout_p > 0.0:
|
1101 |
+
self.drop = torch.nn.Dropout(dropout_p)
|
1102 |
+
else:
|
1103 |
+
self.drop = None
|
1104 |
+
self.zero_centered_weight = zero_centered_weight
|
1105 |
+
self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
|
1106 |
+
self.register_parameter("bias", None)
|
1107 |
+
self.reset_parameters()
|
1108 |
+
|
1109 |
+
def reset_parameters(self):
|
1110 |
+
if not self.zero_centered_weight:
|
1111 |
+
torch.nn.init.ones_(self.weight)
|
1112 |
+
else:
|
1113 |
+
torch.nn.init.zeros_(self.weight)
|
1114 |
+
|
1115 |
+
def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False):
|
1116 |
+
return rms_norm_fn(
|
1117 |
+
x,
|
1118 |
+
self.weight,
|
1119 |
+
self.bias,
|
1120 |
+
residual=residual,
|
1121 |
+
eps=self.eps,
|
1122 |
+
dropout_p=self.drop.p if self.drop is not None and self.training else 0.0,
|
1123 |
+
prenorm=prenorm,
|
1124 |
+
residual_in_fp32=residual_in_fp32,
|
1125 |
+
zero_centered_weight=self.zero_centered_weight,
|
1126 |
+
)
|
1127 |
+
|
1128 |
+
|
1129 |
+
class LayerNormLinearFn(torch.autograd.Function):
|
1130 |
+
|
1131 |
+
@staticmethod
|
1132 |
+
@custom_fwd
|
1133 |
+
def forward(
|
1134 |
+
ctx,
|
1135 |
+
x,
|
1136 |
+
norm_weight,
|
1137 |
+
norm_bias,
|
1138 |
+
linear_weight,
|
1139 |
+
linear_bias,
|
1140 |
+
residual=None,
|
1141 |
+
eps=1e-6,
|
1142 |
+
prenorm=False,
|
1143 |
+
residual_in_fp32=False,
|
1144 |
+
is_rms_norm=False,
|
1145 |
+
):
|
1146 |
+
x_shape_og = x.shape
|
1147 |
+
# reshape input data into 2D tensor
|
1148 |
+
x = maybe_contiguous_lastdim(x.reshape(-1, x.shape[-1]))
|
1149 |
+
if residual is not None:
|
1150 |
+
assert residual.shape == x_shape_og
|
1151 |
+
residual = maybe_contiguous_lastdim(residual.reshape(-1, residual.shape[-1]))
|
1152 |
+
norm_weight = norm_weight.contiguous()
|
1153 |
+
norm_bias = maybe_contiguous(norm_bias)
|
1154 |
+
residual_dtype = (
|
1155 |
+
residual.dtype
|
1156 |
+
if residual is not None
|
1157 |
+
else (torch.float32 if residual_in_fp32 else None)
|
1158 |
+
)
|
1159 |
+
y, _, mean, rstd, residual_out, *rest = _layer_norm_fwd(
|
1160 |
+
x,
|
1161 |
+
norm_weight,
|
1162 |
+
norm_bias,
|
1163 |
+
eps,
|
1164 |
+
residual,
|
1165 |
+
out_dtype=None if not torch.is_autocast_enabled() else torch.get_autocast_dtype("cuda"),
|
1166 |
+
residual_dtype=residual_dtype,
|
1167 |
+
is_rms_norm=is_rms_norm,
|
1168 |
+
)
|
1169 |
+
y = y.reshape(x_shape_og)
|
1170 |
+
dtype = torch.get_autocast_dtype("cuda") if torch.is_autocast_enabled() else y.dtype
|
1171 |
+
linear_weight = linear_weight.to(dtype)
|
1172 |
+
linear_bias = linear_bias.to(dtype) if linear_bias is not None else None
|
1173 |
+
out = F.linear(y.to(linear_weight.dtype), linear_weight, linear_bias)
|
1174 |
+
# We don't store y, will be recomputed in the backward pass to save memory
|
1175 |
+
ctx.save_for_backward(residual_out, norm_weight, norm_bias, linear_weight, mean, rstd)
|
1176 |
+
ctx.x_shape_og = x_shape_og
|
1177 |
+
ctx.eps = eps
|
1178 |
+
ctx.is_rms_norm = is_rms_norm
|
1179 |
+
ctx.has_residual = residual is not None
|
1180 |
+
ctx.prenorm = prenorm
|
1181 |
+
ctx.x_dtype = x.dtype
|
1182 |
+
ctx.linear_bias_is_none = linear_bias is None
|
1183 |
+
return out if not prenorm else (out, residual_out.reshape(x_shape_og))
|
1184 |
+
|
1185 |
+
@staticmethod
|
1186 |
+
@custom_bwd
|
1187 |
+
def backward(ctx, dout, *args):
|
1188 |
+
x, norm_weight, norm_bias, linear_weight, mean, rstd = ctx.saved_tensors
|
1189 |
+
dout = dout.reshape(-1, dout.shape[-1])
|
1190 |
+
dy = F.linear(dout, linear_weight.t())
|
1191 |
+
dlinear_bias = None if ctx.linear_bias_is_none else dout.sum(0)
|
1192 |
+
dy = maybe_contiguous_lastdim(dy)
|
1193 |
+
assert dy.shape == x.shape
|
1194 |
+
if ctx.prenorm:
|
1195 |
+
dresidual = args[0]
|
1196 |
+
dresidual = maybe_contiguous_lastdim(dresidual.reshape(-1, dresidual.shape[-1]))
|
1197 |
+
assert dresidual.shape == x.shape
|
1198 |
+
else:
|
1199 |
+
dresidual = None
|
1200 |
+
dx, dnorm_weight, dnorm_bias, dresidual_in, _, _, _, y = _layer_norm_bwd(
|
1201 |
+
dy,
|
1202 |
+
x,
|
1203 |
+
norm_weight,
|
1204 |
+
norm_bias,
|
1205 |
+
ctx.eps,
|
1206 |
+
mean,
|
1207 |
+
rstd,
|
1208 |
+
dresidual=dresidual,
|
1209 |
+
has_residual=ctx.has_residual,
|
1210 |
+
is_rms_norm=ctx.is_rms_norm,
|
1211 |
+
x_dtype=ctx.x_dtype,
|
1212 |
+
recompute_output=True,
|
1213 |
+
)
|
1214 |
+
dlinear_weight = torch.einsum("bo,bi->oi", dout, y)
|
1215 |
+
return (
|
1216 |
+
dx.reshape(ctx.x_shape_og),
|
1217 |
+
dnorm_weight,
|
1218 |
+
dnorm_bias,
|
1219 |
+
dlinear_weight,
|
1220 |
+
dlinear_bias,
|
1221 |
+
dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None,
|
1222 |
+
None,
|
1223 |
+
None,
|
1224 |
+
None,
|
1225 |
+
None,
|
1226 |
+
)
|
1227 |
+
|
1228 |
+
|
1229 |
+
def layer_norm_linear_fn(
|
1230 |
+
x,
|
1231 |
+
norm_weight,
|
1232 |
+
norm_bias,
|
1233 |
+
linear_weight,
|
1234 |
+
linear_bias,
|
1235 |
+
residual=None,
|
1236 |
+
eps=1e-6,
|
1237 |
+
prenorm=False,
|
1238 |
+
residual_in_fp32=False,
|
1239 |
+
is_rms_norm=False,
|
1240 |
+
):
|
1241 |
+
return LayerNormLinearFn.apply(
|
1242 |
+
x,
|
1243 |
+
norm_weight,
|
1244 |
+
norm_bias,
|
1245 |
+
linear_weight,
|
1246 |
+
linear_bias,
|
1247 |
+
residual,
|
1248 |
+
eps,
|
1249 |
+
prenorm,
|
1250 |
+
residual_in_fp32,
|
1251 |
+
is_rms_norm,
|
1252 |
+
)
|
torch-ext/flash_attn/ops/triton/linear.py
ADDED
@@ -0,0 +1,594 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/ELS-RD/kernl/blob/main/src/kernl/implementations/linear_layer.py
|
2 |
+
# and https://github.com/openai/triton/blob/master/python/triton/ops/matmul.py
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import triton
|
7 |
+
import triton.language as tl
|
8 |
+
from triton.ops.matmul_perf_model import early_config_prune, estimate_matmul_time
|
9 |
+
|
10 |
+
from flash_attn.ops.triton.k_activations import (
|
11 |
+
gelu,
|
12 |
+
gelu_approx,
|
13 |
+
gelu_approx_grad,
|
14 |
+
gelu_grad,
|
15 |
+
squared_relu,
|
16 |
+
squared_relu_grad,
|
17 |
+
)
|
18 |
+
|
19 |
+
# CREDITS: Initially inspired by the Triton tutorial on matrix multiplications
|
20 |
+
|
21 |
+
|
22 |
+
def init_to_zero(name):
|
23 |
+
return lambda nargs: nargs[name].zero_()
|
24 |
+
|
25 |
+
|
26 |
+
def get_configs_io_bound():
|
27 |
+
configs = []
|
28 |
+
for num_stages in [2, 3, 4, 5, 6]:
|
29 |
+
for block_m in [16, 32]:
|
30 |
+
for block_k in [32, 64]:
|
31 |
+
for block_n in [32, 64, 128, 256]:
|
32 |
+
num_warps = 2 if block_n <= 64 else 4
|
33 |
+
configs.append(
|
34 |
+
triton.Config(
|
35 |
+
{
|
36 |
+
"BLOCK_M": block_m,
|
37 |
+
"BLOCK_N": block_n,
|
38 |
+
"BLOCK_K": block_k,
|
39 |
+
"SPLIT_K": 1,
|
40 |
+
},
|
41 |
+
num_stages=num_stages,
|
42 |
+
num_warps=num_warps,
|
43 |
+
)
|
44 |
+
)
|
45 |
+
# split_k not used
|
46 |
+
# for split_k in [2, 4, 8, 16]:
|
47 |
+
# configs.append(triton.Config(
|
48 |
+
# {'BLOCK_M': block_m, 'BLOCK_N': block_n, 'BLOCK_K': block_k, 'SPLIT_K': split_k},
|
49 |
+
# num_stages=num_stages, num_warps=num_warps, pre_hook=init_to_zero('C')))
|
50 |
+
return configs
|
51 |
+
|
52 |
+
|
53 |
+
@triton.autotune(
|
54 |
+
configs=[
|
55 |
+
triton.Config(
|
56 |
+
{"BLOCK_M": 128, "BLOCK_N": 256, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=3, num_warps=8
|
57 |
+
),
|
58 |
+
triton.Config(
|
59 |
+
{"BLOCK_M": 256, "BLOCK_N": 128, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=3, num_warps=8
|
60 |
+
),
|
61 |
+
triton.Config(
|
62 |
+
{"BLOCK_M": 256, "BLOCK_N": 64, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4
|
63 |
+
),
|
64 |
+
triton.Config(
|
65 |
+
{"BLOCK_M": 64, "BLOCK_N": 256, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4
|
66 |
+
),
|
67 |
+
triton.Config(
|
68 |
+
{"BLOCK_M": 128, "BLOCK_N": 128, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4
|
69 |
+
),
|
70 |
+
triton.Config(
|
71 |
+
{"BLOCK_M": 128, "BLOCK_N": 64, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4
|
72 |
+
),
|
73 |
+
triton.Config(
|
74 |
+
{"BLOCK_M": 64, "BLOCK_N": 128, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4
|
75 |
+
),
|
76 |
+
triton.Config(
|
77 |
+
{"BLOCK_M": 128, "BLOCK_N": 32, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4
|
78 |
+
),
|
79 |
+
triton.Config(
|
80 |
+
{"BLOCK_M": 64, "BLOCK_N": 32, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=5, num_warps=2
|
81 |
+
),
|
82 |
+
# good for int8
|
83 |
+
triton.Config(
|
84 |
+
{"BLOCK_M": 128, "BLOCK_N": 256, "BLOCK_K": 128, "SPLIT_K": 1},
|
85 |
+
num_stages=3,
|
86 |
+
num_warps=8,
|
87 |
+
),
|
88 |
+
triton.Config(
|
89 |
+
{"BLOCK_M": 256, "BLOCK_N": 128, "BLOCK_K": 128, "SPLIT_K": 1},
|
90 |
+
num_stages=3,
|
91 |
+
num_warps=8,
|
92 |
+
),
|
93 |
+
triton.Config(
|
94 |
+
{"BLOCK_M": 256, "BLOCK_N": 64, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=4, num_warps=4
|
95 |
+
),
|
96 |
+
triton.Config(
|
97 |
+
{"BLOCK_M": 64, "BLOCK_N": 256, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=4, num_warps=4
|
98 |
+
),
|
99 |
+
triton.Config(
|
100 |
+
{"BLOCK_M": 128, "BLOCK_N": 128, "BLOCK_K": 128, "SPLIT_K": 1},
|
101 |
+
num_stages=4,
|
102 |
+
num_warps=4,
|
103 |
+
),
|
104 |
+
triton.Config(
|
105 |
+
{"BLOCK_M": 128, "BLOCK_N": 64, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=4, num_warps=4
|
106 |
+
),
|
107 |
+
triton.Config(
|
108 |
+
{"BLOCK_M": 64, "BLOCK_N": 128, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=4, num_warps=4
|
109 |
+
),
|
110 |
+
triton.Config(
|
111 |
+
{"BLOCK_M": 128, "BLOCK_N": 32, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=4, num_warps=4
|
112 |
+
),
|
113 |
+
triton.Config(
|
114 |
+
{"BLOCK_M": 64, "BLOCK_N": 32, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=5, num_warps=2
|
115 |
+
),
|
116 |
+
]
|
117 |
+
+ get_configs_io_bound(),
|
118 |
+
key=["CACHE_KEY_M", "CACHE_KEY_N", "CACHE_KEY_K"],
|
119 |
+
prune_configs_by={
|
120 |
+
"early_config_prune": early_config_prune,
|
121 |
+
"perf_model": estimate_matmul_time,
|
122 |
+
"top_k": 10,
|
123 |
+
},
|
124 |
+
)
|
125 |
+
@triton.heuristics(
|
126 |
+
{
|
127 |
+
"EVEN_K": lambda args: args["K"] % (args["BLOCK_K"] * args["SPLIT_K"]) == 0,
|
128 |
+
}
|
129 |
+
)
|
130 |
+
@triton.jit
|
131 |
+
def kernel_fwd(
|
132 |
+
C, # Pointers to matrices
|
133 |
+
ACT_INPUT,
|
134 |
+
A,
|
135 |
+
B,
|
136 |
+
bias,
|
137 |
+
# Matrix dimensions
|
138 |
+
M,
|
139 |
+
N,
|
140 |
+
K,
|
141 |
+
CACHE_KEY_M,
|
142 |
+
CACHE_KEY_N,
|
143 |
+
CACHE_KEY_K,
|
144 |
+
# The stride variables represent how much to increase the ptr by when moving by 1
|
145 |
+
# element in a particular dimension. E.g. stride_am is how much to increase a_ptr
|
146 |
+
# by to get the element one row down (A has M rows)
|
147 |
+
stride_cm,
|
148 |
+
# stride_cn, # Assume that stride_cn == 1
|
149 |
+
stride_am,
|
150 |
+
stride_ak,
|
151 |
+
stride_bn,
|
152 |
+
stride_bk,
|
153 |
+
# Meta-parameters
|
154 |
+
BLOCK_M: tl.constexpr,
|
155 |
+
GROUP_M: tl.constexpr,
|
156 |
+
BLOCK_N: tl.constexpr,
|
157 |
+
BLOCK_K: tl.constexpr,
|
158 |
+
# split k not used, not performant with activation, kept because early_config_prune is expecting it
|
159 |
+
SPLIT_K: tl.constexpr,
|
160 |
+
EVEN_K: tl.constexpr,
|
161 |
+
A_ROWMAJOR: tl.constexpr,
|
162 |
+
B_COLMAJOR: tl.constexpr,
|
163 |
+
BIAS: tl.constexpr,
|
164 |
+
SAVE_ACT_INPUT: tl.constexpr,
|
165 |
+
ACTIVATION: tl.constexpr,
|
166 |
+
):
|
167 |
+
|
168 |
+
"""
|
169 |
+
Kernel for computing Out = activation(A x W + C)
|
170 |
+
- Input has shape (M, K)
|
171 |
+
- Weight has shape (K, N)
|
172 |
+
- Bias has shape (N,)
|
173 |
+
- Output has shape (M, N)
|
174 |
+
- ActInputs (optional) has shape (M, N)
|
175 |
+
'ActInputs' optionally saves the A x W + C intermediate for backward computations
|
176 |
+
This kernel will consolidate over K
|
177 |
+
"""
|
178 |
+
|
179 |
+
pid = tl.program_id(axis=0)
|
180 |
+
|
181 |
+
grid_m = (M + BLOCK_M - 1) // BLOCK_M
|
182 |
+
grid_n = (N + BLOCK_N - 1) // BLOCK_N
|
183 |
+
# re-order program ID for better L2 performance
|
184 |
+
width = GROUP_M * grid_n
|
185 |
+
group_id = pid // width
|
186 |
+
group_size = min(grid_m - group_id * GROUP_M, GROUP_M)
|
187 |
+
pid_m = group_id * GROUP_M + (pid % group_size)
|
188 |
+
pid_n = (pid % width) // (group_size)
|
189 |
+
|
190 |
+
# now compute the block that each program will go through
|
191 |
+
# rm (resp. rn) denotes a range of indices
|
192 |
+
# for rows (resp. col) of C
|
193 |
+
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
194 |
+
rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
195 |
+
# trick to avoid masking on M and N axis
|
196 |
+
ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M)
|
197 |
+
rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N)
|
198 |
+
rk = tl.arange(0, BLOCK_K)
|
199 |
+
|
200 |
+
if A_ROWMAJOR:
|
201 |
+
A = A + (ram[:, None] * stride_am + rk[None, :])
|
202 |
+
else:
|
203 |
+
A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak)
|
204 |
+
if B_COLMAJOR:
|
205 |
+
B = B + (rk[:, None] + rbn[None, :] * stride_bn)
|
206 |
+
else:
|
207 |
+
B = B + (rk[:, None] * stride_bk + rbn[None, :] * stride_bn)
|
208 |
+
|
209 |
+
acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)
|
210 |
+
|
211 |
+
for k in range(K, 0, -BLOCK_K):
|
212 |
+
if EVEN_K:
|
213 |
+
a = tl.load(A)
|
214 |
+
b = tl.load(B)
|
215 |
+
else:
|
216 |
+
a = tl.load(A, mask=rk[None, :] < k, other=0.0)
|
217 |
+
b = tl.load(B, mask=rk[:, None] < k, other=0.0)
|
218 |
+
acc += tl.dot(a, b)
|
219 |
+
|
220 |
+
if A_ROWMAJOR:
|
221 |
+
A += BLOCK_K
|
222 |
+
else:
|
223 |
+
A += BLOCK_K * stride_ak
|
224 |
+
if B_COLMAJOR:
|
225 |
+
B += BLOCK_K
|
226 |
+
else:
|
227 |
+
B += BLOCK_K * stride_bk
|
228 |
+
|
229 |
+
# Putting bias after the matmul (instead of before) is faster, idk why
|
230 |
+
if BIAS:
|
231 |
+
bias = tl.load(bias + rn, mask=rn < N, other=0.0).to(tl.float32)
|
232 |
+
acc += bias[None, :]
|
233 |
+
|
234 |
+
# optional: save the activation inputs
|
235 |
+
if SAVE_ACT_INPUT:
|
236 |
+
# act_in_ptrs = ACT_INPUT + ram[:, None] * stride_cm + rbn[None, :] * stride_cn
|
237 |
+
act_in_ptrs = ACT_INPUT + ram[:, None] * stride_cm + rbn[None, :]
|
238 |
+
tl.store(act_in_ptrs, acc)
|
239 |
+
|
240 |
+
# optional: fused activation (while the data is in shared memory)
|
241 |
+
if ACTIVATION == "gelu":
|
242 |
+
acc = gelu(acc)
|
243 |
+
elif ACTIVATION == "gelu_approx":
|
244 |
+
acc = gelu_approx(acc)
|
245 |
+
elif ACTIVATION == "squared_relu":
|
246 |
+
acc = squared_relu(acc)
|
247 |
+
# rematerialize rm and rn to save registers
|
248 |
+
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
249 |
+
rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
250 |
+
|
251 |
+
# write back result
|
252 |
+
# C = C + rm[:, None] * stride_cm + rn[None, :] * stride_cn
|
253 |
+
C = C + rm[:, None] * stride_cm + rn[None, :]
|
254 |
+
mask = (rm < M)[:, None] & (rn < N)[None, :]
|
255 |
+
tl.store(C, acc)
|
256 |
+
|
257 |
+
|
258 |
+
def triton_linear_act(
|
259 |
+
x: torch.Tensor,
|
260 |
+
weight: torch.Tensor,
|
261 |
+
bias: Optional[torch.Tensor] = None,
|
262 |
+
activation: str = "id",
|
263 |
+
save_act_input: bool = False,
|
264 |
+
) -> torch.Tensor:
|
265 |
+
"""
|
266 |
+
Compute e = activation(x @ weight.T + bias).
|
267 |
+
This wrapper kicks the `kernel_fwd` Triton kernel
|
268 |
+
:param x: input tensor
|
269 |
+
:param weight: weight matrix
|
270 |
+
:param bias: an optional bias tensor
|
271 |
+
:param activation: Activation name. Needs to be a Triton kernel.
|
272 |
+
:param act_input: an optional tensor to save the activation inputs (for backward)
|
273 |
+
:return: result tensor
|
274 |
+
"""
|
275 |
+
# if torch.is_autocast_enabled():
|
276 |
+
# dtype = torch.get_autocast_gpu_dtype()
|
277 |
+
# x, weight, bias = [a.to(dtype=dtype) for a in [x, weight, bias]]
|
278 |
+
|
279 |
+
assert activation in ["id", "gelu", "gelu_approx", "squared_relu"]
|
280 |
+
|
281 |
+
batch_shape, n = x.shape[:-1], x.shape[-1]
|
282 |
+
batch_dim = batch_shape.numel()
|
283 |
+
x_reshaped = x.reshape(batch_dim, n)
|
284 |
+
|
285 |
+
if x_reshaped.stride(0) > 1 and x_reshaped.stride(1) > 1:
|
286 |
+
x_reshaped = x_reshaped.contiguous()
|
287 |
+
if weight.stride(0) > 1 and weight.stride(1) > 1:
|
288 |
+
weight = weight.contiguous()
|
289 |
+
bias = bias.contiguous() if bias is not None else None
|
290 |
+
|
291 |
+
assert (
|
292 |
+
x.dtype == weight.dtype
|
293 |
+
), f"Input and weight must have the same dtype, got {x.dtype} and {weight.dtype}"
|
294 |
+
if bias is not None:
|
295 |
+
assert (
|
296 |
+
x.dtype == bias.dtype
|
297 |
+
), f"Input and bias must have the same dtype, got {x.dtype} and {bias.dtype}"
|
298 |
+
assert (
|
299 |
+
x_reshaped.shape[1] == weight.shape[1]
|
300 |
+
), f"Incompatible dimensions: {x_reshaped.shape} - {weight.shape}"
|
301 |
+
|
302 |
+
assert (
|
303 |
+
bias is None or bias.shape[0] == weight.shape[0]
|
304 |
+
), "Incompatible dimensions in between weight and bias"
|
305 |
+
|
306 |
+
M, K = x_reshaped.shape
|
307 |
+
N, K = weight.shape
|
308 |
+
|
309 |
+
output = torch.empty((M, N), device=x.device, dtype=x.dtype)
|
310 |
+
act_input = torch.empty_like(output) if save_act_input else None
|
311 |
+
|
312 |
+
# 1D launch kernel where each block gets its own program.
|
313 |
+
grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),) # noqa
|
314 |
+
|
315 |
+
kernel_fwd[grid](
|
316 |
+
output,
|
317 |
+
act_input,
|
318 |
+
x_reshaped,
|
319 |
+
weight, # data ptrs
|
320 |
+
bias if bias is not None else x, # auto skip bias if not present
|
321 |
+
M, # shapes
|
322 |
+
N,
|
323 |
+
K,
|
324 |
+
M // 32, # key for triton cache (limit number of compilations)
|
325 |
+
N // 32,
|
326 |
+
K // 32,
|
327 |
+
stride_cm=output.stride(0), # strides
|
328 |
+
# stride_cn=output.stride(1),
|
329 |
+
stride_am=x_reshaped.stride(0),
|
330 |
+
stride_ak=x_reshaped.stride(1),
|
331 |
+
stride_bk=weight.stride(1),
|
332 |
+
stride_bn=weight.stride(0),
|
333 |
+
BIAS=bias is not None, # optional fused bias
|
334 |
+
SAVE_ACT_INPUT=save_act_input, # optional save activation inputs
|
335 |
+
ACTIVATION=activation, # optional fused activation
|
336 |
+
A_ROWMAJOR=x_reshaped.stride(1) == 1,
|
337 |
+
B_COLMAJOR=weight.stride(1) == 1,
|
338 |
+
GROUP_M=8, # speed optimization: group the programs
|
339 |
+
)
|
340 |
+
|
341 |
+
if not save_act_input:
|
342 |
+
return output.reshape(*batch_shape, output.shape[-1])
|
343 |
+
else:
|
344 |
+
return (
|
345 |
+
output.reshape(*batch_shape, output.shape[-1]),
|
346 |
+
act_input.reshape(*batch_shape, act_input.shape[-1]),
|
347 |
+
)
|
348 |
+
|
349 |
+
|
350 |
+
@triton.autotune(
|
351 |
+
configs=[
|
352 |
+
triton.Config(
|
353 |
+
{"BLOCK_M": 128, "BLOCK_N": 256, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=3, num_warps=8
|
354 |
+
),
|
355 |
+
triton.Config(
|
356 |
+
{"BLOCK_M": 256, "BLOCK_N": 128, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=3, num_warps=8
|
357 |
+
),
|
358 |
+
triton.Config(
|
359 |
+
{"BLOCK_M": 256, "BLOCK_N": 64, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4
|
360 |
+
),
|
361 |
+
triton.Config(
|
362 |
+
{"BLOCK_M": 64, "BLOCK_N": 256, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4
|
363 |
+
),
|
364 |
+
triton.Config(
|
365 |
+
{"BLOCK_M": 128, "BLOCK_N": 128, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4
|
366 |
+
),
|
367 |
+
triton.Config(
|
368 |
+
{"BLOCK_M": 128, "BLOCK_N": 64, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4
|
369 |
+
),
|
370 |
+
triton.Config(
|
371 |
+
{"BLOCK_M": 64, "BLOCK_N": 128, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4
|
372 |
+
),
|
373 |
+
triton.Config(
|
374 |
+
{"BLOCK_M": 128, "BLOCK_N": 32, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=4, num_warps=4
|
375 |
+
),
|
376 |
+
triton.Config(
|
377 |
+
{"BLOCK_M": 64, "BLOCK_N": 32, "BLOCK_K": 32, "SPLIT_K": 1}, num_stages=5, num_warps=2
|
378 |
+
),
|
379 |
+
# good for int8
|
380 |
+
triton.Config(
|
381 |
+
{"BLOCK_M": 128, "BLOCK_N": 256, "BLOCK_K": 128, "SPLIT_K": 1},
|
382 |
+
num_stages=3,
|
383 |
+
num_warps=8,
|
384 |
+
),
|
385 |
+
triton.Config(
|
386 |
+
{"BLOCK_M": 256, "BLOCK_N": 128, "BLOCK_K": 128, "SPLIT_K": 1},
|
387 |
+
num_stages=3,
|
388 |
+
num_warps=8,
|
389 |
+
),
|
390 |
+
triton.Config(
|
391 |
+
{"BLOCK_M": 256, "BLOCK_N": 64, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=4, num_warps=4
|
392 |
+
),
|
393 |
+
triton.Config(
|
394 |
+
{"BLOCK_M": 64, "BLOCK_N": 256, "BLOCK_K": 128, "SPLIT_K": 1}, num_stages=4, num_warps=4
|
395 |
+
),
|
396 |
+
triton.Config(
|
397 |
+
{"BLOCK_M": 128, "BLOCK_N": 128, "BLOCK_K": 128, "SPLIT_K": 1},
|
398 |
+
num_stages=4,
|
399 |
+
num_warps=4,
|
400 |
+
),
|
401 |
+
triton.Config(
|
402 |
+
{"BLOCK_M": 128, "BLOCK_N": 64, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=4, num_warps=4
|
403 |
+
),
|
404 |
+
triton.Config(
|
405 |
+
{"BLOCK_M": 64, "BLOCK_N": 128, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=4, num_warps=4
|
406 |
+
),
|
407 |
+
triton.Config(
|
408 |
+
{"BLOCK_M": 128, "BLOCK_N": 32, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=4, num_warps=4
|
409 |
+
),
|
410 |
+
triton.Config(
|
411 |
+
{"BLOCK_M": 64, "BLOCK_N": 32, "BLOCK_K": 64, "SPLIT_K": 1}, num_stages=5, num_warps=2
|
412 |
+
),
|
413 |
+
]
|
414 |
+
+ get_configs_io_bound(),
|
415 |
+
key=["CACHE_KEY_M", "CACHE_KEY_N", "CACHE_KEY_K"],
|
416 |
+
prune_configs_by={
|
417 |
+
"early_config_prune": early_config_prune,
|
418 |
+
"perf_model": estimate_matmul_time,
|
419 |
+
"top_k": 10,
|
420 |
+
},
|
421 |
+
)
|
422 |
+
@triton.heuristics(
|
423 |
+
{
|
424 |
+
"EVEN_K": lambda args: args["K"] % (args["BLOCK_K"] * args["SPLIT_K"]) == 0,
|
425 |
+
}
|
426 |
+
)
|
427 |
+
@triton.jit
|
428 |
+
def kernel_bwd(
|
429 |
+
C, # Pointers to matrices
|
430 |
+
ACT_INPUT,
|
431 |
+
A,
|
432 |
+
B,
|
433 |
+
# Matrix dimensions
|
434 |
+
M,
|
435 |
+
N,
|
436 |
+
K,
|
437 |
+
CACHE_KEY_M,
|
438 |
+
CACHE_KEY_N,
|
439 |
+
CACHE_KEY_K,
|
440 |
+
# The stride variables represent how much to increase the ptr by when moving by 1
|
441 |
+
# element in a particular dimension. E.g. stride_am is how much to increase a_ptr
|
442 |
+
# by to get the element one row down (A has M rows)
|
443 |
+
stride_cm,
|
444 |
+
# stride_cn, # Assume that stride_cn == 1
|
445 |
+
stride_am,
|
446 |
+
stride_ak,
|
447 |
+
stride_bk,
|
448 |
+
stride_bn,
|
449 |
+
# Meta-parameters
|
450 |
+
BLOCK_M: tl.constexpr,
|
451 |
+
GROUP_M: tl.constexpr,
|
452 |
+
BLOCK_N: tl.constexpr,
|
453 |
+
BLOCK_K: tl.constexpr,
|
454 |
+
# split k not used, not performant with activation, kept because early_config_prune is expecting it
|
455 |
+
SPLIT_K: tl.constexpr,
|
456 |
+
EVEN_K: tl.constexpr,
|
457 |
+
ACTIVATION: tl.constexpr,
|
458 |
+
):
|
459 |
+
|
460 |
+
"""
|
461 |
+
Kernel for computing Out = activation(A x W + C)
|
462 |
+
- Input has shape (M, K)
|
463 |
+
- Weight has shape (K, N)
|
464 |
+
- Output has shape (M, N)
|
465 |
+
- ActInputs (optional) has shape (M, N)
|
466 |
+
'ActInputs' optionally saves the A x W + C intermediate for backward computations
|
467 |
+
This kernel will consolidate over K
|
468 |
+
"""
|
469 |
+
|
470 |
+
pid = tl.program_id(axis=0)
|
471 |
+
|
472 |
+
grid_m = (M + BLOCK_M - 1) // BLOCK_M
|
473 |
+
grid_n = (N + BLOCK_N - 1) // BLOCK_N
|
474 |
+
# re-order program ID for better L2 performance
|
475 |
+
width = GROUP_M * grid_n
|
476 |
+
group_id = pid // width
|
477 |
+
group_size = min(grid_m - group_id * GROUP_M, GROUP_M)
|
478 |
+
pid_m = group_id * GROUP_M + (pid % group_size)
|
479 |
+
pid_n = (pid % width) // (group_size)
|
480 |
+
|
481 |
+
# now compute the block that each program will go through
|
482 |
+
# rm (resp. rn) denotes a range of indices
|
483 |
+
# for rows (resp. col) of C
|
484 |
+
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
485 |
+
rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
486 |
+
# trick to avoid masking on M and N axis
|
487 |
+
ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M)
|
488 |
+
rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N)
|
489 |
+
rk = tl.arange(0, BLOCK_K)
|
490 |
+
|
491 |
+
A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak)
|
492 |
+
B = B + (rk[:, None] * stride_bk + rbn[None, :] * stride_bn)
|
493 |
+
|
494 |
+
acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=tl.float32)
|
495 |
+
|
496 |
+
for k in range(K, 0, -BLOCK_K):
|
497 |
+
if EVEN_K:
|
498 |
+
a = tl.load(A)
|
499 |
+
b = tl.load(B)
|
500 |
+
else:
|
501 |
+
a = tl.load(A, mask=rk[None, :] < k, other=0.0)
|
502 |
+
b = tl.load(B, mask=rk[:, None] < k, other=0.0)
|
503 |
+
acc += tl.dot(a, b)
|
504 |
+
|
505 |
+
A += BLOCK_K * stride_ak
|
506 |
+
B += BLOCK_K * stride_bk
|
507 |
+
|
508 |
+
# optional: fused activation (while the data is in shared memory)
|
509 |
+
if ACTIVATION != "id":
|
510 |
+
act_in_ptrs = ACT_INPUT + ram[:, None] * stride_cm + rbn[None, :]
|
511 |
+
act_input = tl.load(act_in_ptrs).to(acc.dtype)
|
512 |
+
if ACTIVATION == "gelu":
|
513 |
+
acc *= gelu_grad(act_input)
|
514 |
+
elif ACTIVATION == "gelu_approx":
|
515 |
+
acc *= gelu_approx_grad(act_input)
|
516 |
+
elif ACTIVATION == "squared_relu":
|
517 |
+
acc *= squared_relu_grad(act_input)
|
518 |
+
|
519 |
+
# rematerialize rm and rn to save registers
|
520 |
+
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
521 |
+
rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
|
522 |
+
|
523 |
+
# write back result
|
524 |
+
C = C + rm[:, None] * stride_cm + rn[None, :]
|
525 |
+
mask = (rm < M)[:, None] & (rn < N)[None, :]
|
526 |
+
tl.store(C, acc, mask=mask)
|
527 |
+
|
528 |
+
|
529 |
+
def triton_dgrad_act(
|
530 |
+
grad_output: torch.Tensor,
|
531 |
+
weight: torch.Tensor,
|
532 |
+
activation: str = "id",
|
533 |
+
act_input: Optional[torch.Tensor] = None,
|
534 |
+
) -> torch.Tensor:
|
535 |
+
"""
|
536 |
+
Compute e = activation(grad_output @ weight + bias).
|
537 |
+
This wrapper kicks the `kernel_fwd` Triton kernel
|
538 |
+
:param grad_output: input tensor
|
539 |
+
:param weight: weight matrix
|
540 |
+
:param activation: Activation name. Needs to be a Triton kernel.
|
541 |
+
:param act_input: an optional tensor to save the activation inputs (for backward)
|
542 |
+
:return: result tensor
|
543 |
+
"""
|
544 |
+
assert activation in ["id", "gelu", "gelu_approx", "squared_relu"]
|
545 |
+
|
546 |
+
batch_shape, n = grad_output.shape[:-1], grad_output.shape[-1]
|
547 |
+
batch_dim = batch_shape.numel()
|
548 |
+
grad_output_reshaped = grad_output.reshape(batch_dim, n)
|
549 |
+
|
550 |
+
if grad_output_reshaped.stride(0) > 1 and grad_output_reshaped.stride(1) > 1:
|
551 |
+
grad_output_reshaped = grad_output_reshaped.contiguous()
|
552 |
+
if weight.stride(0) > 1 and weight.stride(1) > 1:
|
553 |
+
weight = weight.contiguous()
|
554 |
+
|
555 |
+
assert (
|
556 |
+
grad_output.dtype == weight.dtype
|
557 |
+
), f"grad_output and weight must have the same dtype, got {grad_output.dtype} and {weight.dtype}"
|
558 |
+
assert (
|
559 |
+
grad_output_reshaped.shape[1] == weight.shape[0]
|
560 |
+
), f"Incompatible dimensions: {grad_output_reshaped.shape} - {weight.shape}"
|
561 |
+
if activation != "id":
|
562 |
+
assert act_input is not None, f"act_input is required for activation {activation}"
|
563 |
+
|
564 |
+
# M, N, K in bwd are different from M, N, K in fwd
|
565 |
+
M, K = grad_output_reshaped.shape
|
566 |
+
K, N = weight.shape
|
567 |
+
|
568 |
+
grad_input = torch.empty((M, N), device=grad_output.device, dtype=grad_output.dtype)
|
569 |
+
|
570 |
+
# 1D launch kernel where each block gets its own program.
|
571 |
+
grid = lambda META: (triton.cdiv(M, META["BLOCK_M"]) * triton.cdiv(N, META["BLOCK_N"]),) # noqa
|
572 |
+
|
573 |
+
kernel_bwd[grid](
|
574 |
+
grad_input,
|
575 |
+
act_input,
|
576 |
+
grad_output_reshaped,
|
577 |
+
weight, # data ptrs
|
578 |
+
M, # shapes
|
579 |
+
N,
|
580 |
+
K,
|
581 |
+
M // 32, # key for triton cache (limit number of compilations)
|
582 |
+
N // 32,
|
583 |
+
K // 32,
|
584 |
+
stride_cm=grad_input.stride(0), # strides
|
585 |
+
# stride_cn=grad_input.stride(1),
|
586 |
+
stride_am=grad_output_reshaped.stride(0),
|
587 |
+
stride_ak=grad_output_reshaped.stride(1),
|
588 |
+
stride_bk=weight.stride(0),
|
589 |
+
stride_bn=weight.stride(1),
|
590 |
+
ACTIVATION=activation, # optional fused activation
|
591 |
+
GROUP_M=8, # speed optimization: group the programs
|
592 |
+
)
|
593 |
+
|
594 |
+
return grad_input.reshape(*batch_shape, grad_input.shape[-1])
|
torch-ext/flash_attn/ops/triton/mlp.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# The triton fused matmul + sqrelu is faster for fp16 but slower for bf16, compared
|
2 |
+
# to naive implementation.
|
3 |
+
import fused_dense_lib as fused_dense_cuda
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
from flash_attn.utils.torch import custom_fwd, custom_bwd
|
9 |
+
from flash_attn.ops.activations import sqrelu_bwd, sqrelu_fwd
|
10 |
+
from flash_attn.ops.triton.linear import triton_dgrad_act, triton_linear_act
|
11 |
+
|
12 |
+
|
13 |
+
class FusedDenseSqreluDenseFunc(torch.autograd.Function):
|
14 |
+
@staticmethod
|
15 |
+
@custom_fwd
|
16 |
+
def forward(ctx, x, weight1, bias1, weight2, bias2, checkpoint_lvl=0):
|
17 |
+
"""checkpoint_lvl:
|
18 |
+
0: no recomputation in the bwd
|
19 |
+
1: recompute gelu_out in the bwd
|
20 |
+
2: recompute act_input and gelu_out in the bwd
|
21 |
+
"""
|
22 |
+
if torch.is_autocast_enabled():
|
23 |
+
dtype = torch.get_autocast_gpu_dtype()
|
24 |
+
x, weight1, bias1, weight2, bias2 = [
|
25 |
+
a.to(dtype=dtype) for a in [x, weight1, bias1, weight2, bias2]
|
26 |
+
]
|
27 |
+
is_bf16 = x.dtype == torch.bfloat16
|
28 |
+
assert checkpoint_lvl in [0, 1, 2]
|
29 |
+
x = x.contiguous()
|
30 |
+
weight1 = weight1.contiguous()
|
31 |
+
bias1 = bias1.contiguous()
|
32 |
+
weight2 = weight2.contiguous()
|
33 |
+
bias2 = bias2.contiguous()
|
34 |
+
batch_shape, n = x.shape[:-1], x.shape[-1]
|
35 |
+
batch_dim = batch_shape.numel()
|
36 |
+
if is_bf16:
|
37 |
+
act_input = fused_dense_cuda.linear_bias_forward(
|
38 |
+
x.reshape(batch_dim, n), weight1, bias1
|
39 |
+
)
|
40 |
+
output1 = sqrelu_fwd(act_input)
|
41 |
+
else:
|
42 |
+
save_act_input = checkpoint_lvl != 2
|
43 |
+
result = triton_linear_act(
|
44 |
+
x.reshape(batch_dim, n),
|
45 |
+
weight1,
|
46 |
+
bias1,
|
47 |
+
activation="squared_relu",
|
48 |
+
save_act_input=save_act_input,
|
49 |
+
)
|
50 |
+
if save_act_input:
|
51 |
+
output1, act_input = result
|
52 |
+
else:
|
53 |
+
output1 = result
|
54 |
+
output2 = fused_dense_cuda.linear_bias_forward(output1, weight2, bias2)
|
55 |
+
ctx.checkpoint_lvl = checkpoint_lvl
|
56 |
+
if checkpoint_lvl == 0:
|
57 |
+
ctx.save_for_backward(x, weight1, bias1, weight2, act_input, output1)
|
58 |
+
elif checkpoint_lvl == 1:
|
59 |
+
ctx.save_for_backward(x, weight1, bias1, weight2, act_input)
|
60 |
+
elif checkpoint_lvl == 2:
|
61 |
+
ctx.save_for_backward(x, weight1, bias1, weight2)
|
62 |
+
return output2.reshape(*batch_shape, output2.shape[-1])
|
63 |
+
|
64 |
+
@staticmethod
|
65 |
+
@custom_bwd
|
66 |
+
def backward(ctx, grad_output):
|
67 |
+
grad_output = grad_output.contiguous()
|
68 |
+
checkpoint_lvl = ctx.checkpoint_lvl
|
69 |
+
x, weight1, bias1, weight2, *rest = ctx.saved_tensors
|
70 |
+
batch_shape, n = x.shape[:-1], x.shape[-1]
|
71 |
+
batch_dim = batch_shape.numel()
|
72 |
+
is_bf16 = x.dtype == torch.bfloat16
|
73 |
+
if checkpoint_lvl == 0:
|
74 |
+
act_input, output1 = rest
|
75 |
+
elif checkpoint_lvl == 1:
|
76 |
+
(act_input,) = rest
|
77 |
+
output1 = sqrelu_fwd(act_input)
|
78 |
+
elif checkpoint_lvl == 2:
|
79 |
+
if is_bf16:
|
80 |
+
act_input = fused_dense_cuda.linear_bias_forward(
|
81 |
+
x.reshape(batch_dim, n), weight1, bias1
|
82 |
+
)
|
83 |
+
output1 = sqrelu_fwd(act_input)
|
84 |
+
else:
|
85 |
+
output1, act_input = triton_linear_act(
|
86 |
+
x.reshape(batch_dim, n),
|
87 |
+
weight1,
|
88 |
+
bias1,
|
89 |
+
activation="squared_relu",
|
90 |
+
save_act_input=True,
|
91 |
+
)
|
92 |
+
|
93 |
+
if is_bf16:
|
94 |
+
grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
|
95 |
+
grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(output1, grad_output)
|
96 |
+
grad_output1 = grad_output @ weight2
|
97 |
+
grad_act_input = sqrelu_bwd(grad_output1, act_input)
|
98 |
+
grad_input, grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_backward(
|
99 |
+
x.reshape(batch_dim, n), weight1, grad_act_input
|
100 |
+
)
|
101 |
+
else:
|
102 |
+
grad_output = grad_output.reshape(batch_dim, grad_output.shape[-1])
|
103 |
+
grad_weight2, grad_bias2 = fused_dense_cuda.linear_bias_wgrad(output1, grad_output)
|
104 |
+
grad_act_input = triton_dgrad_act(
|
105 |
+
grad_output, weight2, activation="squared_relu", act_input=act_input
|
106 |
+
)
|
107 |
+
grad_input, grad_weight1, grad_bias1 = fused_dense_cuda.linear_bias_backward(
|
108 |
+
x.reshape(batch_dim, n), weight1, grad_act_input
|
109 |
+
)
|
110 |
+
return grad_input.reshape_as(x), grad_weight1, grad_bias1, grad_weight2, grad_bias2, None
|
111 |
+
|
112 |
+
|
113 |
+
fused_dense_sqrelu_dense_function = FusedDenseSqreluDenseFunc.apply
|
114 |
+
|
115 |
+
|
116 |
+
class FusedDenseSqreluDense(nn.Module):
|
117 |
+
def __init__(
|
118 |
+
self,
|
119 |
+
in_features,
|
120 |
+
hidden_features=None,
|
121 |
+
out_features=None,
|
122 |
+
bias1=True,
|
123 |
+
bias2=True,
|
124 |
+
checkpoint_lvl=0,
|
125 |
+
device=None,
|
126 |
+
dtype=None,
|
127 |
+
):
|
128 |
+
"""
|
129 |
+
checkpoint_lvl (increasing lvl means slower but more memory saving):
|
130 |
+
0: no recomputation in the bwd
|
131 |
+
1: recompute gelu_out in the bwd
|
132 |
+
2: recompute gelu_in and gelu_out in the bwd
|
133 |
+
"""
|
134 |
+
assert checkpoint_lvl in [0, 1, 2]
|
135 |
+
factory_kwargs = {"device": device, "dtype": dtype}
|
136 |
+
super().__init__()
|
137 |
+
out_features = out_features or in_features
|
138 |
+
hidden_features = hidden_features or in_features * 4
|
139 |
+
assert bias1 == True, "DenseSqreluDense module without bias is currently not supported"
|
140 |
+
assert bias2 == True, "DenseSqreluDense module without bias is currently not supported"
|
141 |
+
self.checkpoint_lvl = checkpoint_lvl
|
142 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias1, **factory_kwargs)
|
143 |
+
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias2, **factory_kwargs)
|
144 |
+
|
145 |
+
def forward(self, x):
|
146 |
+
assert x.is_cuda
|
147 |
+
return fused_dense_sqrelu_dense_function(
|
148 |
+
x, self.fc1.weight, self.fc1.bias, self.fc2.weight, self.fc2.bias, self.checkpoint_lvl
|
149 |
+
)
|
torch-ext/flash_attn/ops/triton/rotary.py
ADDED
@@ -0,0 +1,185 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025, Tri Dao.
|
2 |
+
# As of 2025-04-23, we require triton >= 3.0
|
3 |
+
|
4 |
+
from typing import Optional, Union
|
5 |
+
|
6 |
+
import torch
|
7 |
+
|
8 |
+
import triton
|
9 |
+
import triton.language as tl
|
10 |
+
|
11 |
+
|
12 |
+
@triton.jit
|
13 |
+
def rotary_kernel(
|
14 |
+
OUT, # Pointers to matrices
|
15 |
+
X,
|
16 |
+
COS,
|
17 |
+
SIN,
|
18 |
+
CU_SEQLENS,
|
19 |
+
SEQLEN_OFFSETS, # this could be int or a pointer
|
20 |
+
# Matrix dimensions
|
21 |
+
seqlen,
|
22 |
+
nheads,
|
23 |
+
seqlen_ro,
|
24 |
+
# strides
|
25 |
+
stride_out_batch,
|
26 |
+
stride_out_seqlen,
|
27 |
+
stride_out_nheads,
|
28 |
+
stride_out_headdim,
|
29 |
+
stride_x_batch,
|
30 |
+
stride_x_seqlen,
|
31 |
+
stride_x_nheads,
|
32 |
+
stride_x_headdim,
|
33 |
+
# Meta-parameters
|
34 |
+
# We want ROTARY_DIM to be constexpr, otherwise the triton compiler doesn't know that
|
35 |
+
# the mask is constant every 8 elements, and it will generate LDG.16 instead of LDG.128
|
36 |
+
ROTARY_DIM: tl.constexpr,
|
37 |
+
IS_SEQLEN_OFFSETS_TENSOR: tl.constexpr,
|
38 |
+
IS_VARLEN: tl.constexpr,
|
39 |
+
INTERLEAVED: tl.constexpr,
|
40 |
+
CONJUGATE: tl.constexpr,
|
41 |
+
BLOCK_H: tl.constexpr,
|
42 |
+
BLOCK_M: tl.constexpr,
|
43 |
+
):
|
44 |
+
BLOCK_K: tl.constexpr = triton.next_power_of_2(ROTARY_DIM)
|
45 |
+
ROTARY_DIM_HALF = ROTARY_DIM // 2
|
46 |
+
pid_head = tl.program_id(axis=0)
|
47 |
+
pid_m = tl.program_id(axis=1)
|
48 |
+
pid_batch = tl.program_id(axis=2)
|
49 |
+
|
50 |
+
if not IS_VARLEN:
|
51 |
+
X = X + pid_batch * stride_x_batch
|
52 |
+
OUT = OUT + pid_batch * stride_out_batch
|
53 |
+
else:
|
54 |
+
start_idx = tl.load(CU_SEQLENS + pid_batch)
|
55 |
+
seqlen = tl.load(CU_SEQLENS + pid_batch + 1) - start_idx
|
56 |
+
X = X + start_idx * stride_x_seqlen
|
57 |
+
OUT = OUT + start_idx * stride_out_seqlen
|
58 |
+
|
59 |
+
if pid_m * BLOCK_M >= seqlen:
|
60 |
+
return
|
61 |
+
|
62 |
+
rh = pid_head * BLOCK_H + tl.arange(0, BLOCK_H)
|
63 |
+
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
|
64 |
+
if not IS_SEQLEN_OFFSETS_TENSOR:
|
65 |
+
rm_cs = rm + SEQLEN_OFFSETS
|
66 |
+
else:
|
67 |
+
rm_cs = rm + tl.load(SEQLEN_OFFSETS + pid_batch)
|
68 |
+
|
69 |
+
rk_half = tl.arange(0, BLOCK_K // 2)
|
70 |
+
COS = COS + (rm_cs[:, None] * ROTARY_DIM_HALF + rk_half[None, :])
|
71 |
+
SIN = SIN + (rm_cs[:, None] * ROTARY_DIM_HALF + rk_half[None, :])
|
72 |
+
mask_cs = (rm_cs[:, None] < seqlen_ro) & (rk_half[None, :] < ROTARY_DIM_HALF)
|
73 |
+
cos = tl.load(COS, mask=mask_cs, other=1.0).to(tl.float32)
|
74 |
+
sin = tl.load(SIN, mask=mask_cs, other=0.0).to(tl.float32)
|
75 |
+
if CONJUGATE:
|
76 |
+
sin = -sin
|
77 |
+
|
78 |
+
if not INTERLEAVED:
|
79 |
+
# Load the 1st and 2nd halves of X, do calculation, then store to 1st and 2nd halves of OUT
|
80 |
+
X = X + (rh[:, None, None] * stride_x_nheads + rm[None, :, None] * stride_x_seqlen + rk_half[None, None, :] * stride_x_headdim)
|
81 |
+
OUT = OUT + (rh[:, None, None] * stride_out_nheads + rm[None, :, None] * stride_out_seqlen + rk_half[None, None, :] * stride_out_headdim)
|
82 |
+
mask = (rh[:, None, None] < nheads) & (rm[None, :, None] < seqlen) & (rk_half[None, None, :] < ROTARY_DIM_HALF)
|
83 |
+
x0 = tl.load(X, mask=mask, other=0.0).to(tl.float32)
|
84 |
+
x1 = tl.load(X + ROTARY_DIM_HALF * stride_x_headdim, mask=mask, other=0.0,).to(tl.float32)
|
85 |
+
o0 = x0 * cos - x1 * sin
|
86 |
+
o1 = x0 * sin + x1 * cos
|
87 |
+
tl.store(OUT, o0, mask=mask)
|
88 |
+
tl.store(OUT + ROTARY_DIM_HALF * stride_out_headdim, o1, mask=mask)
|
89 |
+
else:
|
90 |
+
rk = tl.arange(0, BLOCK_K)
|
91 |
+
X = X + (rh[:, None, None] * stride_x_nheads + rm[None, :, None] * stride_x_seqlen + rk[None, None, :] * stride_x_headdim)
|
92 |
+
OUT = OUT + (rh[:, None, None] * stride_out_nheads + rm[None, :, None] * stride_out_seqlen + rk[None, None, :] * stride_out_headdim)
|
93 |
+
mask = (rh[:, None, None] < nheads) & (rm[None, :, None] < seqlen) & (rk[None, None, :] < ROTARY_DIM)
|
94 |
+
x = tl.load(X, mask=mask, other=0.0).to(tl.float32)
|
95 |
+
x0, x1 = tl.split(tl.reshape(x, [BLOCK_H, BLOCK_M, BLOCK_K // 2, 2]))
|
96 |
+
o0 = x0 * cos - x1 * sin
|
97 |
+
o1 = x0 * sin + x1 * cos
|
98 |
+
o = tl.reshape(tl.join(o0, o1), [BLOCK_H, BLOCK_M, BLOCK_K])
|
99 |
+
tl.store(OUT, o, mask=mask)
|
100 |
+
|
101 |
+
|
102 |
+
def apply_rotary(
|
103 |
+
x: torch.Tensor,
|
104 |
+
cos: torch.Tensor,
|
105 |
+
sin: torch.Tensor,
|
106 |
+
seqlen_offsets: Union[int, torch.Tensor] = 0,
|
107 |
+
cu_seqlens: Optional[torch.Tensor] = None,
|
108 |
+
max_seqlen: Optional[int] = None,
|
109 |
+
interleaved=False,
|
110 |
+
inplace=False,
|
111 |
+
conjugate=False,
|
112 |
+
) -> torch.Tensor:
|
113 |
+
"""
|
114 |
+
Arguments:
|
115 |
+
x: (batch, seqlen, nheads, headdim) if cu_seqlens is None
|
116 |
+
else (total_seqlen, nheads, headdim).
|
117 |
+
cos: (seqlen_ro, rotary_dim / 2)
|
118 |
+
sin: (seqlen_ro, rotary_dim / 2)
|
119 |
+
seqlen_offsets: integer or integer tensor of size (batch,)
|
120 |
+
cu_seqlens: (batch + 1,) or None
|
121 |
+
max_seqlen: int
|
122 |
+
Returns:
|
123 |
+
y: (batch, seqlen, nheads, headdim)
|
124 |
+
"""
|
125 |
+
is_varlen = cu_seqlens is not None
|
126 |
+
if not is_varlen:
|
127 |
+
batch, seqlen, nheads, headdim = x.shape
|
128 |
+
else:
|
129 |
+
assert max_seqlen is not None, "If cu_seqlens is passed in, then max_seqlen must be passed"
|
130 |
+
total_seqlen, nheads, headdim = x.shape
|
131 |
+
batch_p_1 = cu_seqlens.shape[0]
|
132 |
+
batch = batch_p_1 - 1
|
133 |
+
seqlen = max_seqlen
|
134 |
+
seqlen_ro, rotary_dim = cos.shape
|
135 |
+
assert sin.shape == cos.shape
|
136 |
+
rotary_dim *= 2
|
137 |
+
assert rotary_dim <= headdim, "rotary_dim must be <= headdim"
|
138 |
+
assert headdim <= 256, "Only support headdim <= 256"
|
139 |
+
assert seqlen_ro >= seqlen, "seqlen_ro must be >= seqlen"
|
140 |
+
|
141 |
+
cos, sin = cos.contiguous(), sin.contiguous()
|
142 |
+
if isinstance(seqlen_offsets, torch.Tensor):
|
143 |
+
assert seqlen_offsets.shape == (batch,)
|
144 |
+
assert seqlen_offsets.dtype in [torch.int32, torch.int64]
|
145 |
+
seqlen_offsets = seqlen_offsets.contiguous()
|
146 |
+
else:
|
147 |
+
assert seqlen_offsets + seqlen <= seqlen_ro
|
148 |
+
|
149 |
+
output = torch.empty_like(x) if not inplace else x
|
150 |
+
if rotary_dim < headdim and not inplace:
|
151 |
+
output[..., rotary_dim:].copy_(x[..., rotary_dim:])
|
152 |
+
|
153 |
+
grid = lambda META: (triton.cdiv(nheads, META["BLOCK_H"]), triton.cdiv(seqlen, META["BLOCK_M"]), batch) # noqa
|
154 |
+
BLOCK_M = 8 if rotary_dim <= 128 else 4
|
155 |
+
|
156 |
+
# Need this, otherwise Triton tries to launch from cuda:0 and we get
|
157 |
+
# ValueError: Pointer argument (at 0) cannot be accessed from Triton (cpu tensor?)
|
158 |
+
with torch.cuda.device(x.device.index):
|
159 |
+
torch.library.wrap_triton(rotary_kernel)[grid](
|
160 |
+
output, # data ptrs
|
161 |
+
x,
|
162 |
+
cos,
|
163 |
+
sin,
|
164 |
+
cu_seqlens,
|
165 |
+
seqlen_offsets,
|
166 |
+
seqlen, # shapes
|
167 |
+
nheads,
|
168 |
+
seqlen_ro,
|
169 |
+
output.stride(0) if not is_varlen else 0, # batch_strides if not varlen else 0
|
170 |
+
output.stride(-3), # seqlen_stride or total_seqlen_stride
|
171 |
+
output.stride(-2), # nheads_stride
|
172 |
+
output.stride(-1), # headdim_stride
|
173 |
+
x.stride(0) if not is_varlen else 0, # batch_strides if not varlen else 0
|
174 |
+
x.stride(-3), # seqlen stride or total_seqlen_stride
|
175 |
+
x.stride(-2), # nheads stride
|
176 |
+
x.stride(-1), # headdim stride
|
177 |
+
rotary_dim,
|
178 |
+
isinstance(seqlen_offsets, torch.Tensor),
|
179 |
+
is_varlen,
|
180 |
+
interleaved,
|
181 |
+
conjugate,
|
182 |
+
BLOCK_M=BLOCK_M,
|
183 |
+
BLOCK_H=2,
|
184 |
+
)
|
185 |
+
return output
|
torch-ext/torch_binding.cpp
CHANGED
@@ -14,23 +14,117 @@
|
|
14 |
// }
|
15 |
|
16 |
TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
17 |
-
ops.def("
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
-
ops.def("
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
ops.def("
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
ops.def("
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
ops.def("
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
}
|
35 |
|
36 |
REGISTER_EXTENSION(TORCH_EXTENSION_NAME)
|
|
|
14 |
// }
|
15 |
|
16 |
TORCH_LIBRARY_EXPAND(TORCH_EXTENSION_NAME, ops) {
|
17 |
+
ops.def("fwd("
|
18 |
+
"Tensor! q, "
|
19 |
+
"Tensor k, "
|
20 |
+
"Tensor v, "
|
21 |
+
"Tensor(out_!)? out_, "
|
22 |
+
"Tensor? alibi_slopes_, "
|
23 |
+
"float p_dropout, "
|
24 |
+
"float softmax_scale, "
|
25 |
+
"bool is_causal,"
|
26 |
+
"int window_size_left, "
|
27 |
+
"int window_size_right, "
|
28 |
+
"float softcap, "
|
29 |
+
"bool return_softmax, "
|
30 |
+
"Generator? gen_) -> Tensor[]");
|
31 |
+
ops.impl("fwd", torch::kCUDA, &mha_fwd);
|
32 |
|
33 |
+
ops.def("varlen_fwd("
|
34 |
+
"Tensor! q, "
|
35 |
+
"Tensor k, "
|
36 |
+
"Tensor v, "
|
37 |
+
"Tensor? out_, "
|
38 |
+
"Tensor cu_seqlens_q, "
|
39 |
+
"Tensor cu_seqlens_k, "
|
40 |
+
"Tensor? seqused_k_, "
|
41 |
+
"Tensor? leftpad_k_, "
|
42 |
+
"Tensor? block_table_, "
|
43 |
+
"Tensor? alibi_slopes_, "
|
44 |
+
"int max_seqlen_q, "
|
45 |
+
"int max_seqlen_k, "
|
46 |
+
"float p_dropout, "
|
47 |
+
"float softmax_scale, "
|
48 |
+
"bool zero_tensors, "
|
49 |
+
"bool is_causal, "
|
50 |
+
"int window_size_left, "
|
51 |
+
"int window_size_right, "
|
52 |
+
"float softcap, "
|
53 |
+
"bool return_softmax, "
|
54 |
+
"Generator? gen_) -> Tensor[]");
|
55 |
+
ops.impl("varlen_fwd", torch::kCUDA, &mha_varlen_fwd);
|
56 |
|
57 |
+
ops.def("bwd("
|
58 |
+
"Tensor! dout, "
|
59 |
+
"Tensor! q, "
|
60 |
+
"Tensor! k, "
|
61 |
+
"Tensor! v, "
|
62 |
+
"Tensor! out, "
|
63 |
+
"Tensor! "
|
64 |
+
"softmax_lse, "
|
65 |
+
"Tensor? dq_, "
|
66 |
+
"Tensor? dk_, "
|
67 |
+
"Tensor? dv_, "
|
68 |
+
"Tensor? alibi_slopes_, "
|
69 |
+
"float p_dropout, "
|
70 |
+
"float softmax_scale, "
|
71 |
+
"bool is_causal, "
|
72 |
+
"int window_size_left, "
|
73 |
+
"int window_size_right, "
|
74 |
+
"float softcap, "
|
75 |
+
"bool deterministic, "
|
76 |
+
"Generator? gen_, "
|
77 |
+
"Tensor? rng_state) -> Tensor[]");
|
78 |
+
ops.impl("bwd", torch::kCUDA, &mha_bwd);
|
79 |
|
80 |
+
ops.def("varlen_bwd("
|
81 |
+
"Tensor! dout, "
|
82 |
+
"Tensor! q, "
|
83 |
+
"Tensor! k, "
|
84 |
+
"Tensor! v, "
|
85 |
+
"Tensor! out, "
|
86 |
+
"Tensor! softmax_lse, "
|
87 |
+
"Tensor? dq_, "
|
88 |
+
"Tensor? dk_, "
|
89 |
+
"Tensor? dv_, "
|
90 |
+
"Tensor cu_seqlens_q, "
|
91 |
+
"Tensor cu_seqlens_k, "
|
92 |
+
"Tensor? alibi_slopes_, "
|
93 |
+
"int max_seqlen_q, "
|
94 |
+
"int max_seqlen_k, "
|
95 |
+
"float p_dropout, float softmax_scale, "
|
96 |
+
"bool zero_tensors, "
|
97 |
+
"bool is_causal, "
|
98 |
+
"int window_size_left, "
|
99 |
+
"int window_size_right, "
|
100 |
+
"float softcap, "
|
101 |
+
"bool deterministic, "
|
102 |
+
"Generator? gen_, "
|
103 |
+
"Tensor? rng_state) -> Tensor[]");
|
104 |
+
ops.impl("varlen_bwd", torch::kCUDA, &mha_varlen_bwd);
|
105 |
|
106 |
+
ops.def("fwd_kvcache("
|
107 |
+
"Tensor! q, "
|
108 |
+
"Tensor! kcache, "
|
109 |
+
"Tensor! vcache, "
|
110 |
+
"Tensor? k_, "
|
111 |
+
"Tensor? v_, "
|
112 |
+
"Tensor? seqlens_k_, "
|
113 |
+
"Tensor? rotary_cos_, "
|
114 |
+
"Tensor? rotary_sin_, "
|
115 |
+
"Tensor? cache_batch_idx_, "
|
116 |
+
"Tensor? leftpad_k_, "
|
117 |
+
"Tensor? block_table_, "
|
118 |
+
"Tensor? alibi_slopes_, "
|
119 |
+
"Tensor? out_, "
|
120 |
+
"float softmax_scale, "
|
121 |
+
"bool is_causal, "
|
122 |
+
"int window_size_left, "
|
123 |
+
"int window_size_right, "
|
124 |
+
"float softcap, "
|
125 |
+
"bool is_rotary_interleaved, "
|
126 |
+
"int num_splits) -> Tensor[]");
|
127 |
+
ops.impl("fwd_kvcache", torch::kCUDA, &mha_fwd_kvcache);
|
128 |
}
|
129 |
|
130 |
REGISTER_EXTENSION(TORCH_EXTENSION_NAME)
|
torch-ext/torch_binding.h
CHANGED
@@ -2,45 +2,47 @@
|
|
2 |
|
3 |
#include <torch/torch.h>
|
4 |
|
|
|
5 |
std::vector<torch::Tensor>
|
6 |
-
mha_fwd(
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
19 |
|
20 |
std::vector<torch::Tensor>
|
21 |
mha_varlen_fwd(
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
|
45 |
std::vector<torch::Tensor>
|
46 |
mha_bwd(const torch::Tensor &dout, // batch_size x seqlen_q x num_heads, x multiple_of(head_size_og, 8)
|
|
|
2 |
|
3 |
#include <torch/torch.h>
|
4 |
|
5 |
+
// std::tuple<torch::Tensor, torch::Tensor, torch::Tensor, torch::Tensor>
|
6 |
std::vector<torch::Tensor>
|
7 |
+
mha_fwd(
|
8 |
+
torch::Tensor &q,
|
9 |
+
const torch::Tensor &k,
|
10 |
+
const torch::Tensor &v,
|
11 |
+
c10::optional<torch::Tensor> out_,\
|
12 |
+
c10::optional<torch::Tensor> alibi_slopes_,
|
13 |
+
const double p_dropout,
|
14 |
+
const double softmax_scale,
|
15 |
+
bool is_causal,
|
16 |
+
const int64_t window_size_left,
|
17 |
+
const int64_t window_size_right,
|
18 |
+
const double softcap,
|
19 |
+
const bool return_softmax,
|
20 |
+
c10::optional<at::Generator> gen_);
|
21 |
|
22 |
std::vector<torch::Tensor>
|
23 |
mha_varlen_fwd(
|
24 |
+
at::Tensor &q, // total_q x num_heads x head_size, total_q := \sum_{i=0}^{b} s_i
|
25 |
+
const torch::Tensor &k, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
|
26 |
+
const torch::Tensor &v, // total_k x num_heads_k x head_size, total_k := \sum_{i=0}^{b} s_i or num_blocks x page_block_size x num_heads_k x head_size if there's a block_table.
|
27 |
+
c10::optional<torch::Tensor> out_, // total_q x num_heads x head_size, total_k := \sum_{i=0}^{b} s_i
|
28 |
+
const torch::Tensor &cu_seqlens_q, // b+1
|
29 |
+
const torch::Tensor &cu_seqlens_k, // b+1
|
30 |
+
c10::optional<torch::Tensor> seqused_k, // b. If given, only this many elements of each batch element's keys are used.
|
31 |
+
// c10::optional<const at::Tensor> leftpad_k_, // batch_size
|
32 |
+
c10::optional<torch::Tensor> leftpad_k_, // batch_size
|
33 |
+
c10::optional<torch::Tensor> block_table_, // batch_size x max_num_blocks_per_seq
|
34 |
+
c10::optional<torch::Tensor> alibi_slopes_, // num_heads or b x num_heads
|
35 |
+
int64_t max_seqlen_q,
|
36 |
+
const int64_t max_seqlen_k,
|
37 |
+
const double p_dropout,
|
38 |
+
const double softmax_scale,
|
39 |
+
const bool zero_tensors,
|
40 |
+
bool is_causal,
|
41 |
+
int64_t window_size_left,
|
42 |
+
int64_t window_size_right,
|
43 |
+
const double softcap,
|
44 |
+
const bool return_softmax,
|
45 |
+
std::optional<at::Generator> gen_);
|
46 |
|
47 |
std::vector<torch::Tensor>
|
48 |
mha_bwd(const torch::Tensor &dout, // batch_size x seqlen_q x num_heads, x multiple_of(head_size_og, 8)
|