from typing import Dict, Any from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch class EndpointHandler: def __init__(self, path: str = "."): self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.tokenizer = AutoTokenizer.from_pretrained(path) self.model = AutoModelForSequenceClassification.from_pretrained(path) self.model.to(self.device) self.model.eval() self.id2label = self.model.config.id2label def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: input_text = data.get("inputs", "") if not input_text: return {"error": "No input provided."} # Tokenization inputs = self.tokenizer( input_text, return_tensors="pt", padding=True, truncation=True, max_length=64 ) inputs = {k: v.to(self.device) for k, v in inputs.items()} # Forward pass with torch.no_grad(): outputs = self.model(**inputs) probs = torch.softmax(outputs.logits, dim=-1)[0] # shape: (num_classes,) # Get top class top_class_id = torch.argmax(probs).item() top_class_label = self.id2label.get(top_class_id) or self.id2label.get(str(top_class_id)) top_class_prob = probs[top_class_id].item() # Convert full distribution to label->probability dict prob_distribution = { self.id2label.get(i) or self.id2label.get(str(i)): round(p.item(), 4) for i, p in enumerate(probs) } return { "pack": top_class_label, "probDistribution": prob_distribution }