|
from typing import Dict, Any |
|
from transformers import AutoTokenizer, AutoModelForSequenceClassification |
|
import torch |
|
|
|
class EndpointHandler: |
|
def __init__(self, path: str = "."): |
|
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
self.tokenizer = AutoTokenizer.from_pretrained(path) |
|
self.model = AutoModelForSequenceClassification.from_pretrained(path) |
|
self.model.to(self.device) |
|
self.model.eval() |
|
|
|
self.id2label = self.model.config.id2label |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: |
|
input_text = data.get("inputs", "") |
|
if not input_text: |
|
return {"error": "No input provided."} |
|
|
|
|
|
inputs = self.tokenizer( |
|
input_text, |
|
return_tensors="pt", |
|
padding=True, |
|
truncation=True, |
|
max_length=64 |
|
) |
|
inputs = {k: v.to(self.device) for k, v in inputs.items()} |
|
|
|
|
|
with torch.no_grad(): |
|
outputs = self.model(**inputs) |
|
probs = torch.softmax(outputs.logits, dim=-1)[0] |
|
|
|
|
|
top_class_id = torch.argmax(probs).item() |
|
top_class_label = self.id2label.get(top_class_id) or self.id2label.get(str(top_class_id)) |
|
top_class_prob = probs[top_class_id].item() |
|
|
|
|
|
prob_distribution = { |
|
self.id2label.get(i) or self.id2label.get(str(i)): round(p.item(), 4) |
|
for i, p in enumerate(probs) |
|
} |
|
|
|
return { |
|
"pack": top_class_label, |
|
"probDistribution": prob_distribution |
|
} |
|
|
|
|