Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,3 +1,110 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- FruitBox
|
5 |
+
- reinforcement-learning
|
6 |
+
- ppo
|
7 |
+
- game-ai
|
8 |
+
- puzzle-solving
|
9 |
+
model-index:
|
10 |
+
- name: AlphaApple
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
type: reinforcement-learning
|
14 |
+
name: Reinforcement Learning
|
15 |
+
dataset:
|
16 |
+
name: FruitBox Game
|
17 |
+
type: fruitbox
|
18 |
+
metrics:
|
19 |
+
- type: mean_reward
|
20 |
+
value: 77.0
|
21 |
+
name: Mean Episode Score
|
22 |
+
- type: improvement_vs_random
|
23 |
+
value: 7.1%
|
24 |
+
name: Improvement vs Random
|
25 |
+
- type: improvement_vs_greedy
|
26 |
+
value: 5.0%
|
27 |
+
name: Improvement vs Greedy
|
28 |
+
---
|
29 |
+
|
30 |
+
# AlphaApple: FruitBox Game AI Agent
|
31 |
+
|
32 |
+
## Model Description
|
33 |
+
|
34 |
+
μ΄ λͺ¨λΈμ νκ΅μ μ¬κ³Όκ²μ(FruitBox) νΌμ¦μ ν΄κ²°νλ AI μμ΄μ νΈμ
λλ€.
|
35 |
+
10Γ17 격μμμ ν©μ΄ 10μΈ μ§μ¬κ°νμ μ°Ύμ μ κ±°νλ κ²μμ PPO(Proximal Policy Optimization) μκ³ λ¦¬μ¦μΌλ‘ νμ΅νμ΅λλ€.
|
36 |
+
|
37 |
+
## Game Rules
|
38 |
+
|
39 |
+
- 10Γ17 격μ, κ° μ
μ 1-9 μ«μ
|
40 |
+
- μ§μ¬κ°ν μμμ μ νν΄μ μ«μ ν©μ΄ μ νν 10μ΄λ©΄ ν΄λΉ μμ μ κ±°
|
41 |
+
- μ κ±°λ μ
κ°μλ§νΌ μ μ νλ
|
42 |
+
- λ μ΄μ μ κ±°ν μ μλ μμμ΄ μμΌλ©΄ κ²μ μ’
λ£
|
43 |
+
|
44 |
+
## Performance
|
45 |
+
|
46 |
+
| Agent | Average Score | Improvement |
|
47 |
+
|---------|--------------|-------------|
|
48 |
+
| Random | 71.9 | - |
|
49 |
+
| Greedy | 73.3 | +1.9% |
|
50 |
+
| **PPO** | **77.0** | **+7.1%** |
|
51 |
+
|
52 |
+
## Usage
|
53 |
+
|
54 |
+
### Python (PyTorch)
|
55 |
+
|
56 |
+
```python
|
57 |
+
from stable_baselines3 import PPO
|
58 |
+
from stable_baselines3.common.vec_env import DummyVecEnv
|
59 |
+
|
60 |
+
# Load model
|
61 |
+
model = PPO.load("pytorch_model.zip")
|
62 |
+
|
63 |
+
# Use for inference
|
64 |
+
obs = env.reset()
|
65 |
+
action, _ = model.predict(obs)
|
66 |
+
```
|
67 |
+
|
68 |
+
### Web/JavaScript (ONNX)
|
69 |
+
|
70 |
+
```javascript
|
71 |
+
import { InferenceSession } from 'onnxruntime-web';
|
72 |
+
|
73 |
+
// Load ONNX model
|
74 |
+
const session = await InferenceSession.create('./fruitbox_ppo.onnx');
|
75 |
+
|
76 |
+
// Predict action
|
77 |
+
const { action_logits } = await session.run({
|
78 |
+
board_input: new ort.Tensor('float32', board_data, [1, 17, 10, 1])
|
79 |
+
});
|
80 |
+
const action = action_logits.data.indexOf(Math.max(...action_logits.data));
|
81 |
+
```
|
82 |
+
|
83 |
+
## Files
|
84 |
+
|
85 |
+
- `pytorch_model.zip`: Original SB3 PPO model
|
86 |
+
- `fruitbox_ppo.onnx`: ONNX version for web deployment (2.95MB)
|
87 |
+
- `model_info.json`: Model metadata and performance metrics
|
88 |
+
|
89 |
+
## Training Details
|
90 |
+
|
91 |
+
- Algorithm: PPO with action masking
|
92 |
+
- Network: Custom CNN (SmallGridCNN)
|
93 |
+
- Training steps: 1,000,000
|
94 |
+
- Environment: Custom Gymnasium environment
|
95 |
+
- Action space: 8,415 possible rectangles (masked)
|
96 |
+
|
97 |
+
## Repository
|
98 |
+
|
99 |
+
Source code: https://github.com/your-username/alphaapple
|
100 |
+
|
101 |
+
## Citation
|
102 |
+
|
103 |
+
```bibtex
|
104 |
+
@misc{alphaapple2024,
|
105 |
+
title={AlphaApple: AI Agent for FruitBox Puzzle Game},
|
106 |
+
author={Your Name},
|
107 |
+
year={2024},
|
108 |
+
howpublished={\url{https://huggingface.co/AlphaApple}}
|
109 |
+
}
|
110 |
+
```
|