--- base_model: prosusai/finbert tags: - generated_from_trainer metrics: - accuracy model-index: - name: finbert-fomc results: [] --- # finbert-fomc This model is a fine-tuned version of [prosusai/finbert](https://huggingface.co/prosusai/finbert) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.8286 - Accuracy: 0.6154 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | No log | 0.0083 | 1 | 1.7351 | 0.4049 | | 1.7127 | 0.2149 | 26 | 1.4334 | 0.4777 | | 1.3539 | 0.4215 | 51 | 1.0763 | 0.5547 | | 1.0501 | 0.6281 | 76 | 0.9471 | 0.5547 | | 0.9614 | 0.8347 | 101 | 0.9471 | 0.5628 | | 0.988 | 1.0 | 121 | 0.9030 | 0.5709 | | 0.988 | 1.0413 | 126 | 0.8999 | 0.5547 | | 0.8862 | 1.2479 | 151 | 0.9215 | 0.5628 | | 0.8506 | 1.4545 | 176 | 0.8740 | 0.5506 | | 0.8825 | 1.6612 | 201 | 0.8604 | 0.6235 | | 0.8366 | 1.8678 | 226 | 0.8063 | 0.6194 | | 0.7666 | 2.0 | 242 | 0.8286 | 0.6154 | | 0.7039 | 2.0744 | 251 | 0.8652 | 0.6073 | | 0.5698 | 2.2810 | 276 | 1.0371 | 0.5911 | | 0.7683 | 2.4876 | 301 | 0.9662 | 0.5951 | | 0.528 | 2.6942 | 326 | 0.8984 | 0.6275 | | 0.6282 | 2.9008 | 351 | 0.9095 | 0.6154 | | 0.5638 | 3.0 | 363 | 0.8730 | 0.6761 | | 0.5208 | 3.1074 | 376 | 0.9042 | 0.6599 | | 0.4426 | 3.3140 | 401 | 1.0531 | 0.6235 | | 0.5795 | 3.5207 | 426 | 1.0305 | 0.6559 | | 0.363 | 3.7273 | 451 | 0.9831 | 0.6559 | | 0.4584 | 3.9339 | 476 | 0.9950 | 0.6437 | | 0.3794 | 4.0 | 484 | 1.0740 | 0.6154 | | 0.2579 | 4.1405 | 501 | 1.1667 | 0.6356 | | 0.1803 | 4.3471 | 526 | 1.0366 | 0.6883 | | 0.1824 | 4.5537 | 551 | 1.2625 | 0.6599 | | 0.2647 | 4.7603 | 576 | 1.2183 | 0.6761 | | 0.205 | 4.9669 | 601 | 1.1944 | 0.6721 | | 0.205 | 5.0 | 605 | 1.1959 | 0.6721 | ### Framework versions - Transformers 4.40.2 - Pytorch 1.12.0 - Datasets 2.19.1 - Tokenizers 0.19.1