import json import logging import os import sys from pathlib import Path from collections import defaultdict from multiprocessing import get_context from docling.datamodel.pipeline_options import ( AcceleratorDevice, AcceleratorOptions, PdfPipelineOptions, ) from docling.backend.pypdfium2_backend import PyPdfiumDocumentBackend from docling.datamodel.base_models import InputFormat from docling.document_converter import DocumentConverter, PdfFormatOption from docling.pipeline.standard_pdf_pipeline import StandardPdfPipeline _log = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) def extract_clean_table_data(table): cells = table.get("data", {}).get("table_cells", []) if not cells: return None max_row = max(cell["end_row_offset_idx"] for cell in cells) max_col = max(cell["end_col_offset_idx"] for cell in cells) table_matrix = [["" for _ in range(max_col)] for _ in range(max_row)] for cell in cells: row = cell["start_row_offset_idx"] col = cell["start_col_offset_idx"] table_matrix[row][col] = cell.get("text", "").strip() column_headers = table_matrix[0] data_rows = table_matrix[1:] structured_rows = [] for row in data_rows: row_data = { column_headers[i]: row[i] for i in range(len(column_headers)) if column_headers[i] } structured_rows.append(row_data) return { "num_rows": len(data_rows), "num_columns": len(column_headers), "columns": column_headers, "data": structured_rows, } def process_single_pdf(pdf_path: Path, accelerator_options: AcceleratorOptions): logging.info(f"Verarbeite: {pdf_path.name}") output_dir = pdf_path.parent pipeline_options = PdfPipelineOptions() pipeline_options.accelerator_options = accelerator_options pipeline_options.do_ocr = False pipeline_options.do_table_structure = True pipeline_options.table_structure_options.do_cell_matching = True converter = DocumentConverter( format_options={ InputFormat.PDF: PdfFormatOption( pipeline_cls=StandardPdfPipeline, backend=PyPdfiumDocumentBackend, pipeline_options=pipeline_options, ) } ) doc = converter.convert(pdf_path).document doc_dict = doc.export_to_dict() page_texts = defaultdict(list) page_tables = defaultdict(list) for text_item in doc_dict.get("texts", []): if "text" in text_item and "prov" in text_item: for prov in text_item["prov"]: page = prov.get("page_no") if page is not None: page_texts[page].append(text_item["text"]) for table_item in doc_dict.get("tables", []): prov = table_item.get("prov", []) if not prov: continue page = prov[0].get("page_no") clean_table = extract_clean_table_data(table_item) if clean_table: page_tables[page].append(clean_table) output_txt_path = output_dir / f"{pdf_path.stem}_extracted.txt" with open(output_txt_path, "w", encoding="utf-8") as f: for page_no in sorted(set(page_texts.keys()).union(page_tables.keys())): f.write(f"=== Page {page_no} ===\n\n") texts = page_texts.get(page_no, []) if texts: f.write("\n") f.write("\n".join(texts)) f.write("\n\n") tables = page_tables.get(page_no, []) if tables: f.write("tabele:\n") for i, table in enumerate(tables, 1): table_entry = { "table_index": i, **table, } f.write(json.dumps(table_entry, ensure_ascii=False, indent=1)) f.write("\n\n") logging.info(f"Fertig: {pdf_path.name} → {output_txt_path.name}") def main(): base_dir = Path(__file__).resolve().parent pdf_files = list(base_dir.glob("*.pdf")) if not pdf_files: print("Keine PDF-Dateien im aktuellen Ordner gefunden.") return print(f"{len(pdf_files)} PDF-Dateien gefunden. Starte Verarbeitung.") # Manuell festgelegter VRAM in GB vram_gb = 16 # YOUR GPU VRAM, Dedicated RAM # Anzahl paralleler Prozesse basierend auf VRAM max_subprocesses = int(vram_gb / 1.3) print(f"Maximale Anzahl paralleler Subprozesse: {max_subprocesses}") accelerator_options = AcceleratorOptions(num_threads=1, device=AcceleratorDevice.AUTO) ctx = get_context("spawn") # Verteile PDFs auf Prozesse – jeweils eine ganze PDF pro Subprozess with ctx.Pool(processes=min(max_subprocesses, len(pdf_files))) as pool: pool.starmap(process_single_pdf, [(pdf_path, accelerator_options) for pdf_path in pdf_files]) sys.exit(">>> STOP <<<") if __name__ == "__main__": main()