File size: 4,493 Bytes
2e15e24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
---
library_name: transformers
license: mit
base_model: dbmdz/bert-base-turkish-cased
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: turkish-medical-question-answering
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# turkish-medical-question-answering

This model is a fine-tuned version of [dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.2864
- Exact Match: 55.1899
- F1: 75.1246

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Exact Match | F1      |
|:-------------:|:------:|:----:|:---------------:|:-----------:|:-------:|
| 5.9451        | 0.1166 | 50   | 5.9731          | 0.0         | 5.7871  |
| 5.8483        | 0.2331 | 100  | 5.8315          | 0.0         | 5.9124  |
| 5.6758        | 0.3497 | 150  | 5.6207          | 0.2519      | 6.2966  |
| 5.4079        | 0.4662 | 200  | 5.3396          | 0.2584      | 6.1159  |
| 5.1136        | 0.5828 | 250  | 5.0135          | 0.2755      | 7.7324  |
| 4.7974        | 0.6993 | 300  | 4.6818          | 1.2531      | 9.4001  |
| 4.4412        | 0.8159 | 350  | 4.3335          | 1.5656      | 10.9210 |
| 4.1566        | 0.9324 | 400  | 3.8584          | 7.0281      | 22.6904 |
| 3.599         | 1.0490 | 450  | 2.8534          | 23.4628     | 48.7349 |
| 3.0347        | 1.1655 | 500  | 2.4007          | 28.9362     | 53.4749 |
| 2.7626        | 1.2821 | 550  | 2.2064          | 33.4711     | 57.0427 |
| 2.5741        | 1.3986 | 600  | 2.0689          | 37.3297     | 60.0019 |
| 2.3917        | 1.5152 | 650  | 1.9761          | 38.6968     | 61.5842 |
| 2.3607        | 1.6317 | 700  | 1.9137          | 41.5344     | 63.5713 |
| 2.2972        | 1.7483 | 750  | 1.8294          | 44.0210     | 65.5393 |
| 2.1214        | 1.8648 | 800  | 1.7721          | 44.7028     | 65.9376 |
| 2.1775        | 1.9814 | 850  | 1.7058          | 46.1538     | 66.8453 |
| 1.9282        | 2.0979 | 900  | 1.6579          | 46.7784     | 67.7813 |
| 1.9428        | 2.2145 | 950  | 1.6366          | 46.8912     | 68.5467 |
| 1.8639        | 2.3310 | 1000 | 1.5751          | 49.4819     | 70.2320 |
| 1.8969        | 2.4476 | 1050 | 1.5519          | 48.9610     | 70.3424 |
| 1.7348        | 2.5641 | 1100 | 1.5173          | 50.4505     | 71.1044 |
| 1.7847        | 2.6807 | 1150 | 1.4999          | 50.5762     | 71.6186 |
| 1.7822        | 2.7972 | 1200 | 1.4566          | 53.0691     | 72.0005 |
| 1.7989        | 2.9138 | 1250 | 1.4300          | 51.6005     | 72.0121 |
| 1.7683        | 3.0303 | 1300 | 1.4319          | 52.0305     | 72.2366 |
| 1.5444        | 3.1469 | 1350 | 1.4277          | 51.7903     | 72.0603 |
| 1.5121        | 3.2634 | 1400 | 1.3861          | 53.6122     | 73.3486 |
| 1.6294        | 3.3800 | 1450 | 1.3830          | 52.6718     | 73.2456 |
| 1.514         | 3.4965 | 1500 | 1.3456          | 53.7389     | 73.4757 |
| 1.3778        | 3.6131 | 1550 | 1.3644          | 53.2319     | 73.5271 |
| 1.4502        | 3.7296 | 1600 | 1.3491          | 53.6030     | 73.8642 |
| 1.5388        | 3.8462 | 1650 | 1.3611          | 53.0380     | 73.1390 |
| 1.5244        | 3.9627 | 1700 | 1.3143          | 53.3587     | 74.0002 |
| 1.3127        | 4.0793 | 1750 | 1.3191          | 54.4767     | 74.6247 |
| 1.3819        | 4.1958 | 1800 | 1.2864          | 55.1899     | 75.1246 |
| 1.307         | 4.3124 | 1850 | 1.3762          | 54.1401     | 74.4158 |
| 1.2792        | 4.4289 | 1900 | 1.3156          | 53.4943     | 75.0122 |
| 1.289         | 4.5455 | 1950 | 1.2809          | 55.0063     | 74.6137 |


### Framework versions

- Transformers 4.48.0.dev0
- Pytorch 2.4.1+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0