Safetensors
bnjmnmarie commited on
Commit
c115652
·
verified ·
1 Parent(s): 95ec587

Upload folder using huggingface_hub

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +10 -0
  2. checkpoint-10000/README.md +202 -0
  3. checkpoint-10000/adapter_config.json +42 -0
  4. checkpoint-10000/adapter_model.safetensors +3 -0
  5. checkpoint-10000/added_tokens.json +28 -0
  6. checkpoint-10000/merges.txt +0 -0
  7. checkpoint-10000/optimizer.pt +3 -0
  8. checkpoint-10000/rng_state.pth +3 -0
  9. checkpoint-10000/scheduler.pt +3 -0
  10. checkpoint-10000/special_tokens_map.json +31 -0
  11. checkpoint-10000/tokenizer.json +3 -0
  12. checkpoint-10000/tokenizer_config.json +241 -0
  13. checkpoint-10000/trainer_state.json +2834 -0
  14. checkpoint-10000/training_args.bin +3 -0
  15. checkpoint-10000/vocab.json +0 -0
  16. checkpoint-11000/README.md +202 -0
  17. checkpoint-11000/adapter_config.json +42 -0
  18. checkpoint-11000/adapter_model.safetensors +3 -0
  19. checkpoint-11000/added_tokens.json +28 -0
  20. checkpoint-11000/merges.txt +0 -0
  21. checkpoint-11000/optimizer.pt +3 -0
  22. checkpoint-11000/rng_state.pth +3 -0
  23. checkpoint-11000/scheduler.pt +3 -0
  24. checkpoint-11000/special_tokens_map.json +31 -0
  25. checkpoint-11000/tokenizer.json +3 -0
  26. checkpoint-11000/tokenizer_config.json +241 -0
  27. checkpoint-11000/trainer_state.json +3114 -0
  28. checkpoint-11000/training_args.bin +3 -0
  29. checkpoint-11000/vocab.json +0 -0
  30. checkpoint-12000/README.md +202 -0
  31. checkpoint-12000/adapter_config.json +42 -0
  32. checkpoint-12000/adapter_model.safetensors +3 -0
  33. checkpoint-12000/added_tokens.json +28 -0
  34. checkpoint-12000/merges.txt +0 -0
  35. checkpoint-12000/optimizer.pt +3 -0
  36. checkpoint-12000/rng_state.pth +3 -0
  37. checkpoint-12000/scheduler.pt +3 -0
  38. checkpoint-12000/special_tokens_map.json +31 -0
  39. checkpoint-12000/tokenizer.json +3 -0
  40. checkpoint-12000/tokenizer_config.json +241 -0
  41. checkpoint-12000/trainer_state.json +3394 -0
  42. checkpoint-12000/training_args.bin +3 -0
  43. checkpoint-12000/vocab.json +0 -0
  44. checkpoint-13000/README.md +202 -0
  45. checkpoint-13000/adapter_config.json +42 -0
  46. checkpoint-13000/adapter_model.safetensors +3 -0
  47. checkpoint-13000/added_tokens.json +28 -0
  48. checkpoint-13000/merges.txt +0 -0
  49. checkpoint-13000/optimizer.pt +3 -0
  50. checkpoint-13000/rng_state.pth +3 -0
.gitattributes CHANGED
@@ -37,3 +37,13 @@ checkpoint-1000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
  checkpoint-2000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
  checkpoint-3000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
39
  checkpoint-4000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
37
  checkpoint-2000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
38
  checkpoint-3000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
39
  checkpoint-4000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
40
+ checkpoint-10000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
41
+ checkpoint-11000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
42
+ checkpoint-12000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
43
+ checkpoint-13000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
44
+ checkpoint-13532/tokenizer.json filter=lfs diff=lfs merge=lfs -text
45
+ checkpoint-5000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
46
+ checkpoint-6000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
47
+ checkpoint-7000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
48
+ checkpoint-8000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
49
+ checkpoint-9000/tokenizer.json filter=lfs diff=lfs merge=lfs -text
checkpoint-10000/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/Qwen3-8B-Base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
checkpoint-10000/adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/Qwen3-8B-Base",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": [
22
+ "lm_head",
23
+ "embed_tokens"
24
+ ],
25
+ "peft_type": "LORA",
26
+ "r": 32,
27
+ "rank_pattern": {},
28
+ "revision": null,
29
+ "target_modules": [
30
+ "down_proj",
31
+ "gate_proj",
32
+ "k_proj",
33
+ "o_proj",
34
+ "q_proj",
35
+ "v_proj",
36
+ "up_proj"
37
+ ],
38
+ "task_type": "CAUSAL_LM",
39
+ "trainable_token_indices": null,
40
+ "use_dora": false,
41
+ "use_rslora": false
42
+ }
checkpoint-10000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48b5c1f3d0cf60e09fd92334de54cec7a7a9ec07651c8d37851b37be377890d9
3
+ size 2838563408
checkpoint-10000/added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
checkpoint-10000/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-10000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f7d1f2636357fd4a71075f6edd5f93f7126589a2ac5205871dfca1b8058a947d
3
+ size 2706136909
checkpoint-10000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de69a2834426ff9ef8199d077e00892579278af31d8969d77f98235b5cfc010a
3
+ size 14645
checkpoint-10000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c390ecfb1f5916743f3b8376c9946a83a444cdd8284b5d5902ca5ef5c9250027
3
+ size 1465
checkpoint-10000/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|vision_pad|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-10000/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
checkpoint-10000/tokenizer_config.json ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is defined and message.reasoning_content is not none %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in message.content %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
231
+ "clean_up_tokenization_spaces": false,
232
+ "eos_token": "<|endoftext|>",
233
+ "errors": "replace",
234
+ "extra_special_tokens": {},
235
+ "model_max_length": 32768,
236
+ "pad_token": "<|vision_pad|>",
237
+ "padding_side": "right",
238
+ "split_special_tokens": false,
239
+ "tokenizer_class": "Qwen2Tokenizer",
240
+ "unk_token": null
241
+ }
checkpoint-10000/trainer_state.json ADDED
@@ -0,0 +1,2834 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.47778067698219,
6
+ "eval_steps": 500,
7
+ "global_step": 10000,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0036945613747462877,
14
+ "grad_norm": 2.2292165756225586,
15
+ "learning_rate": 5.911330049261084e-06,
16
+ "loss": 0.9395,
17
+ "step": 25
18
+ },
19
+ {
20
+ "epoch": 0.007389122749492575,
21
+ "grad_norm": 0.8381065130233765,
22
+ "learning_rate": 1.206896551724138e-05,
23
+ "loss": 0.89,
24
+ "step": 50
25
+ },
26
+ {
27
+ "epoch": 0.011083684124238862,
28
+ "grad_norm": 0.9238471984863281,
29
+ "learning_rate": 1.8226600985221676e-05,
30
+ "loss": 0.8384,
31
+ "step": 75
32
+ },
33
+ {
34
+ "epoch": 0.01477824549898515,
35
+ "grad_norm": 0.6837311387062073,
36
+ "learning_rate": 2.438423645320197e-05,
37
+ "loss": 0.784,
38
+ "step": 100
39
+ },
40
+ {
41
+ "epoch": 0.01847280687373144,
42
+ "grad_norm": 0.7093706727027893,
43
+ "learning_rate": 3.0541871921182266e-05,
44
+ "loss": 0.7675,
45
+ "step": 125
46
+ },
47
+ {
48
+ "epoch": 0.022167368248477724,
49
+ "grad_norm": 0.6208077073097229,
50
+ "learning_rate": 3.669950738916256e-05,
51
+ "loss": 0.7466,
52
+ "step": 150
53
+ },
54
+ {
55
+ "epoch": 0.025861929623224013,
56
+ "grad_norm": 0.8929094076156616,
57
+ "learning_rate": 4.2857142857142856e-05,
58
+ "loss": 0.7386,
59
+ "step": 175
60
+ },
61
+ {
62
+ "epoch": 0.0295564909979703,
63
+ "grad_norm": 0.7828120589256287,
64
+ "learning_rate": 4.901477832512316e-05,
65
+ "loss": 0.7173,
66
+ "step": 200
67
+ },
68
+ {
69
+ "epoch": 0.03325105237271659,
70
+ "grad_norm": 0.7134449481964111,
71
+ "learning_rate": 5.517241379310345e-05,
72
+ "loss": 0.7108,
73
+ "step": 225
74
+ },
75
+ {
76
+ "epoch": 0.03694561374746288,
77
+ "grad_norm": 0.7464851140975952,
78
+ "learning_rate": 6.133004926108375e-05,
79
+ "loss": 0.7332,
80
+ "step": 250
81
+ },
82
+ {
83
+ "epoch": 0.04064017512220916,
84
+ "grad_norm": 0.677793025970459,
85
+ "learning_rate": 6.748768472906404e-05,
86
+ "loss": 0.7194,
87
+ "step": 275
88
+ },
89
+ {
90
+ "epoch": 0.04433473649695545,
91
+ "grad_norm": 0.7936354875564575,
92
+ "learning_rate": 7.364532019704434e-05,
93
+ "loss": 0.7253,
94
+ "step": 300
95
+ },
96
+ {
97
+ "epoch": 0.04802929787170174,
98
+ "grad_norm": 0.6711100935935974,
99
+ "learning_rate": 7.980295566502463e-05,
100
+ "loss": 0.7018,
101
+ "step": 325
102
+ },
103
+ {
104
+ "epoch": 0.051723859246448026,
105
+ "grad_norm": 0.5816489458084106,
106
+ "learning_rate": 8.596059113300493e-05,
107
+ "loss": 0.7298,
108
+ "step": 350
109
+ },
110
+ {
111
+ "epoch": 0.055418420621194314,
112
+ "grad_norm": 0.6680681705474854,
113
+ "learning_rate": 9.211822660098522e-05,
114
+ "loss": 0.7149,
115
+ "step": 375
116
+ },
117
+ {
118
+ "epoch": 0.0591129819959406,
119
+ "grad_norm": 0.5643934607505798,
120
+ "learning_rate": 9.827586206896552e-05,
121
+ "loss": 0.763,
122
+ "step": 400
123
+ },
124
+ {
125
+ "epoch": 0.06280754337068689,
126
+ "grad_norm": 0.5739309191703796,
127
+ "learning_rate": 9.986286759104069e-05,
128
+ "loss": 0.7345,
129
+ "step": 425
130
+ },
131
+ {
132
+ "epoch": 0.06650210474543318,
133
+ "grad_norm": 0.5929909944534302,
134
+ "learning_rate": 9.967240591193052e-05,
135
+ "loss": 0.7364,
136
+ "step": 450
137
+ },
138
+ {
139
+ "epoch": 0.07019666612017947,
140
+ "grad_norm": 0.609235405921936,
141
+ "learning_rate": 9.948194423282036e-05,
142
+ "loss": 0.7294,
143
+ "step": 475
144
+ },
145
+ {
146
+ "epoch": 0.07389122749492576,
147
+ "grad_norm": 0.4643324613571167,
148
+ "learning_rate": 9.92914825537102e-05,
149
+ "loss": 0.7344,
150
+ "step": 500
151
+ },
152
+ {
153
+ "epoch": 0.07758578886967203,
154
+ "grad_norm": 0.5267598032951355,
155
+ "learning_rate": 9.910102087460003e-05,
156
+ "loss": 0.7249,
157
+ "step": 525
158
+ },
159
+ {
160
+ "epoch": 0.08128035024441832,
161
+ "grad_norm": 0.47951069474220276,
162
+ "learning_rate": 9.891055919548987e-05,
163
+ "loss": 0.7256,
164
+ "step": 550
165
+ },
166
+ {
167
+ "epoch": 0.08497491161916461,
168
+ "grad_norm": 0.4505012333393097,
169
+ "learning_rate": 9.87200975163797e-05,
170
+ "loss": 0.7359,
171
+ "step": 575
172
+ },
173
+ {
174
+ "epoch": 0.0886694729939109,
175
+ "grad_norm": 0.5320091247558594,
176
+ "learning_rate": 9.852963583726955e-05,
177
+ "loss": 0.6856,
178
+ "step": 600
179
+ },
180
+ {
181
+ "epoch": 0.09236403436865719,
182
+ "grad_norm": 0.5583036541938782,
183
+ "learning_rate": 9.833917415815939e-05,
184
+ "loss": 0.7235,
185
+ "step": 625
186
+ },
187
+ {
188
+ "epoch": 0.09605859574340347,
189
+ "grad_norm": 0.5139252543449402,
190
+ "learning_rate": 9.814871247904922e-05,
191
+ "loss": 0.7272,
192
+ "step": 650
193
+ },
194
+ {
195
+ "epoch": 0.09975315711814976,
196
+ "grad_norm": 0.4989326000213623,
197
+ "learning_rate": 9.795825079993906e-05,
198
+ "loss": 0.6952,
199
+ "step": 675
200
+ },
201
+ {
202
+ "epoch": 0.10344771849289605,
203
+ "grad_norm": 0.47355732321739197,
204
+ "learning_rate": 9.776778912082889e-05,
205
+ "loss": 0.7266,
206
+ "step": 700
207
+ },
208
+ {
209
+ "epoch": 0.10714227986764234,
210
+ "grad_norm": 0.3588508367538452,
211
+ "learning_rate": 9.757732744171874e-05,
212
+ "loss": 0.7406,
213
+ "step": 725
214
+ },
215
+ {
216
+ "epoch": 0.11083684124238863,
217
+ "grad_norm": 0.4120556712150574,
218
+ "learning_rate": 9.738686576260857e-05,
219
+ "loss": 0.7443,
220
+ "step": 750
221
+ },
222
+ {
223
+ "epoch": 0.11453140261713492,
224
+ "grad_norm": 0.5160555839538574,
225
+ "learning_rate": 9.71964040834984e-05,
226
+ "loss": 0.7134,
227
+ "step": 775
228
+ },
229
+ {
230
+ "epoch": 0.1182259639918812,
231
+ "grad_norm": 0.5423145890235901,
232
+ "learning_rate": 9.700594240438823e-05,
233
+ "loss": 0.7289,
234
+ "step": 800
235
+ },
236
+ {
237
+ "epoch": 0.1219205253666275,
238
+ "grad_norm": 0.5352346301078796,
239
+ "learning_rate": 9.681548072527808e-05,
240
+ "loss": 0.7144,
241
+ "step": 825
242
+ },
243
+ {
244
+ "epoch": 0.12561508674137378,
245
+ "grad_norm": 0.47908860445022583,
246
+ "learning_rate": 9.662501904616791e-05,
247
+ "loss": 0.7175,
248
+ "step": 850
249
+ },
250
+ {
251
+ "epoch": 0.12930964811612006,
252
+ "grad_norm": 0.47986069321632385,
253
+ "learning_rate": 9.643455736705776e-05,
254
+ "loss": 0.6983,
255
+ "step": 875
256
+ },
257
+ {
258
+ "epoch": 0.13300420949086636,
259
+ "grad_norm": 0.6903620958328247,
260
+ "learning_rate": 9.624409568794759e-05,
261
+ "loss": 0.7086,
262
+ "step": 900
263
+ },
264
+ {
265
+ "epoch": 0.13669877086561263,
266
+ "grad_norm": 0.44413208961486816,
267
+ "learning_rate": 9.605363400883742e-05,
268
+ "loss": 0.7306,
269
+ "step": 925
270
+ },
271
+ {
272
+ "epoch": 0.14039333224035894,
273
+ "grad_norm": 0.4634678065776825,
274
+ "learning_rate": 9.586317232972727e-05,
275
+ "loss": 0.7061,
276
+ "step": 950
277
+ },
278
+ {
279
+ "epoch": 0.1440878936151052,
280
+ "grad_norm": 0.5110129714012146,
281
+ "learning_rate": 9.56727106506171e-05,
282
+ "loss": 0.7406,
283
+ "step": 975
284
+ },
285
+ {
286
+ "epoch": 0.1477824549898515,
287
+ "grad_norm": 0.5460866093635559,
288
+ "learning_rate": 9.548224897150694e-05,
289
+ "loss": 0.721,
290
+ "step": 1000
291
+ },
292
+ {
293
+ "epoch": 0.1514770163645978,
294
+ "grad_norm": 0.5179885029792786,
295
+ "learning_rate": 9.529178729239677e-05,
296
+ "loss": 0.7068,
297
+ "step": 1025
298
+ },
299
+ {
300
+ "epoch": 0.15517157773934406,
301
+ "grad_norm": 0.40280836820602417,
302
+ "learning_rate": 9.51013256132866e-05,
303
+ "loss": 0.7009,
304
+ "step": 1050
305
+ },
306
+ {
307
+ "epoch": 0.15886613911409037,
308
+ "grad_norm": 1.2706756591796875,
309
+ "learning_rate": 9.491086393417645e-05,
310
+ "loss": 0.7125,
311
+ "step": 1075
312
+ },
313
+ {
314
+ "epoch": 0.16256070048883664,
315
+ "grad_norm": 0.4963163435459137,
316
+ "learning_rate": 9.47204022550663e-05,
317
+ "loss": 0.7149,
318
+ "step": 1100
319
+ },
320
+ {
321
+ "epoch": 0.16625526186358294,
322
+ "grad_norm": 0.5147728323936462,
323
+ "learning_rate": 9.452994057595613e-05,
324
+ "loss": 0.7245,
325
+ "step": 1125
326
+ },
327
+ {
328
+ "epoch": 0.16994982323832922,
329
+ "grad_norm": 0.5933899879455566,
330
+ "learning_rate": 9.433947889684596e-05,
331
+ "loss": 0.7261,
332
+ "step": 1150
333
+ },
334
+ {
335
+ "epoch": 0.17364438461307552,
336
+ "grad_norm": 0.4750466048717499,
337
+ "learning_rate": 9.414901721773579e-05,
338
+ "loss": 0.7206,
339
+ "step": 1175
340
+ },
341
+ {
342
+ "epoch": 0.1773389459878218,
343
+ "grad_norm": 0.46546968817710876,
344
+ "learning_rate": 9.395855553862564e-05,
345
+ "loss": 0.7121,
346
+ "step": 1200
347
+ },
348
+ {
349
+ "epoch": 0.1810335073625681,
350
+ "grad_norm": 0.6512172818183899,
351
+ "learning_rate": 9.376809385951547e-05,
352
+ "loss": 0.7212,
353
+ "step": 1225
354
+ },
355
+ {
356
+ "epoch": 0.18472806873731437,
357
+ "grad_norm": 0.34932607412338257,
358
+ "learning_rate": 9.35776321804053e-05,
359
+ "loss": 0.704,
360
+ "step": 1250
361
+ },
362
+ {
363
+ "epoch": 0.18842263011206067,
364
+ "grad_norm": 0.4648846983909607,
365
+ "learning_rate": 9.338717050129514e-05,
366
+ "loss": 0.7419,
367
+ "step": 1275
368
+ },
369
+ {
370
+ "epoch": 0.19211719148680695,
371
+ "grad_norm": 0.4566064774990082,
372
+ "learning_rate": 9.319670882218498e-05,
373
+ "loss": 0.7318,
374
+ "step": 1300
375
+ },
376
+ {
377
+ "epoch": 0.19581175286155325,
378
+ "grad_norm": 0.5357668399810791,
379
+ "learning_rate": 9.300624714307481e-05,
380
+ "loss": 0.6973,
381
+ "step": 1325
382
+ },
383
+ {
384
+ "epoch": 0.19950631423629953,
385
+ "grad_norm": 0.4423241913318634,
386
+ "learning_rate": 9.281578546396466e-05,
387
+ "loss": 0.7298,
388
+ "step": 1350
389
+ },
390
+ {
391
+ "epoch": 0.20320087561104583,
392
+ "grad_norm": 0.4530033767223358,
393
+ "learning_rate": 9.26253237848545e-05,
394
+ "loss": 0.7161,
395
+ "step": 1375
396
+ },
397
+ {
398
+ "epoch": 0.2068954369857921,
399
+ "grad_norm": 0.4678841233253479,
400
+ "learning_rate": 9.243486210574433e-05,
401
+ "loss": 0.6972,
402
+ "step": 1400
403
+ },
404
+ {
405
+ "epoch": 0.21058999836053838,
406
+ "grad_norm": 0.6039907336235046,
407
+ "learning_rate": 9.224440042663417e-05,
408
+ "loss": 0.7165,
409
+ "step": 1425
410
+ },
411
+ {
412
+ "epoch": 0.21428455973528468,
413
+ "grad_norm": 0.4463271498680115,
414
+ "learning_rate": 9.2053938747524e-05,
415
+ "loss": 0.6863,
416
+ "step": 1450
417
+ },
418
+ {
419
+ "epoch": 0.21797912111003095,
420
+ "grad_norm": 0.5739301443099976,
421
+ "learning_rate": 9.186347706841384e-05,
422
+ "loss": 0.6907,
423
+ "step": 1475
424
+ },
425
+ {
426
+ "epoch": 0.22167368248477726,
427
+ "grad_norm": 0.4577805697917938,
428
+ "learning_rate": 9.167301538930367e-05,
429
+ "loss": 0.7114,
430
+ "step": 1500
431
+ },
432
+ {
433
+ "epoch": 0.22536824385952353,
434
+ "grad_norm": 0.4522150158882141,
435
+ "learning_rate": 9.14825537101935e-05,
436
+ "loss": 0.6877,
437
+ "step": 1525
438
+ },
439
+ {
440
+ "epoch": 0.22906280523426983,
441
+ "grad_norm": 0.49612903594970703,
442
+ "learning_rate": 9.129209203108335e-05,
443
+ "loss": 0.7112,
444
+ "step": 1550
445
+ },
446
+ {
447
+ "epoch": 0.2327573666090161,
448
+ "grad_norm": 0.4710284471511841,
449
+ "learning_rate": 9.11016303519732e-05,
450
+ "loss": 0.7062,
451
+ "step": 1575
452
+ },
453
+ {
454
+ "epoch": 0.2364519279837624,
455
+ "grad_norm": 0.5009223818778992,
456
+ "learning_rate": 9.091116867286303e-05,
457
+ "loss": 0.7275,
458
+ "step": 1600
459
+ },
460
+ {
461
+ "epoch": 0.24014648935850869,
462
+ "grad_norm": 0.5547946691513062,
463
+ "learning_rate": 9.072070699375286e-05,
464
+ "loss": 0.6993,
465
+ "step": 1625
466
+ },
467
+ {
468
+ "epoch": 0.243841050733255,
469
+ "grad_norm": 0.4580361843109131,
470
+ "learning_rate": 9.05302453146427e-05,
471
+ "loss": 0.7106,
472
+ "step": 1650
473
+ },
474
+ {
475
+ "epoch": 0.24753561210800126,
476
+ "grad_norm": 0.4767173230648041,
477
+ "learning_rate": 9.033978363553254e-05,
478
+ "loss": 0.7103,
479
+ "step": 1675
480
+ },
481
+ {
482
+ "epoch": 0.25123017348274757,
483
+ "grad_norm": 0.502202570438385,
484
+ "learning_rate": 9.014932195642237e-05,
485
+ "loss": 0.6921,
486
+ "step": 1700
487
+ },
488
+ {
489
+ "epoch": 0.25492473485749384,
490
+ "grad_norm": 0.5283953547477722,
491
+ "learning_rate": 8.99588602773122e-05,
492
+ "loss": 0.7077,
493
+ "step": 1725
494
+ },
495
+ {
496
+ "epoch": 0.2586192962322401,
497
+ "grad_norm": 0.4994209408760071,
498
+ "learning_rate": 8.976839859820204e-05,
499
+ "loss": 0.7,
500
+ "step": 1750
501
+ },
502
+ {
503
+ "epoch": 0.2623138576069864,
504
+ "grad_norm": 0.48279210925102234,
505
+ "learning_rate": 8.957793691909188e-05,
506
+ "loss": 0.7114,
507
+ "step": 1775
508
+ },
509
+ {
510
+ "epoch": 0.2660084189817327,
511
+ "grad_norm": 0.6055914759635925,
512
+ "learning_rate": 8.938747523998172e-05,
513
+ "loss": 0.7081,
514
+ "step": 1800
515
+ },
516
+ {
517
+ "epoch": 0.269702980356479,
518
+ "grad_norm": 0.489519327878952,
519
+ "learning_rate": 8.919701356087156e-05,
520
+ "loss": 0.6946,
521
+ "step": 1825
522
+ },
523
+ {
524
+ "epoch": 0.27339754173122527,
525
+ "grad_norm": 0.5379961133003235,
526
+ "learning_rate": 8.90065518817614e-05,
527
+ "loss": 0.6996,
528
+ "step": 1850
529
+ },
530
+ {
531
+ "epoch": 0.27709210310597154,
532
+ "grad_norm": 0.47824332118034363,
533
+ "learning_rate": 8.881609020265123e-05,
534
+ "loss": 0.6881,
535
+ "step": 1875
536
+ },
537
+ {
538
+ "epoch": 0.2807866644807179,
539
+ "grad_norm": 1551.0594482421875,
540
+ "learning_rate": 8.862562852354107e-05,
541
+ "loss": 0.6998,
542
+ "step": 1900
543
+ },
544
+ {
545
+ "epoch": 0.28448122585546415,
546
+ "grad_norm": 0.4107681214809418,
547
+ "learning_rate": 8.84351668444309e-05,
548
+ "loss": 0.7088,
549
+ "step": 1925
550
+ },
551
+ {
552
+ "epoch": 0.2881757872302104,
553
+ "grad_norm": 0.4558309316635132,
554
+ "learning_rate": 8.824470516532074e-05,
555
+ "loss": 0.712,
556
+ "step": 1950
557
+ },
558
+ {
559
+ "epoch": 0.2918703486049567,
560
+ "grad_norm": 0.539107620716095,
561
+ "learning_rate": 8.805424348621057e-05,
562
+ "loss": 0.7159,
563
+ "step": 1975
564
+ },
565
+ {
566
+ "epoch": 0.295564909979703,
567
+ "grad_norm": 0.5768142938613892,
568
+ "learning_rate": 8.786378180710042e-05,
569
+ "loss": 0.7072,
570
+ "step": 2000
571
+ },
572
+ {
573
+ "epoch": 0.2992594713544493,
574
+ "grad_norm": 0.5575465559959412,
575
+ "learning_rate": 8.767332012799025e-05,
576
+ "loss": 0.7118,
577
+ "step": 2025
578
+ },
579
+ {
580
+ "epoch": 0.3029540327291956,
581
+ "grad_norm": 0.5190144181251526,
582
+ "learning_rate": 8.748285844888008e-05,
583
+ "loss": 0.7099,
584
+ "step": 2050
585
+ },
586
+ {
587
+ "epoch": 0.30664859410394185,
588
+ "grad_norm": 0.4934520125389099,
589
+ "learning_rate": 8.729239676976993e-05,
590
+ "loss": 0.692,
591
+ "step": 2075
592
+ },
593
+ {
594
+ "epoch": 0.3103431554786881,
595
+ "grad_norm": 0.42613571882247925,
596
+ "learning_rate": 8.710193509065976e-05,
597
+ "loss": 0.7277,
598
+ "step": 2100
599
+ },
600
+ {
601
+ "epoch": 0.31403771685343446,
602
+ "grad_norm": 0.5124602317810059,
603
+ "learning_rate": 8.691147341154961e-05,
604
+ "loss": 0.6801,
605
+ "step": 2125
606
+ },
607
+ {
608
+ "epoch": 0.31773227822818073,
609
+ "grad_norm": 0.5284898281097412,
610
+ "learning_rate": 8.672101173243944e-05,
611
+ "loss": 0.7103,
612
+ "step": 2150
613
+ },
614
+ {
615
+ "epoch": 0.321426839602927,
616
+ "grad_norm": 0.43099457025527954,
617
+ "learning_rate": 8.653055005332927e-05,
618
+ "loss": 0.7023,
619
+ "step": 2175
620
+ },
621
+ {
622
+ "epoch": 0.3251214009776733,
623
+ "grad_norm": 0.5190865993499756,
624
+ "learning_rate": 8.63400883742191e-05,
625
+ "loss": 0.7144,
626
+ "step": 2200
627
+ },
628
+ {
629
+ "epoch": 0.3288159623524196,
630
+ "grad_norm": 0.4722968637943268,
631
+ "learning_rate": 8.614962669510895e-05,
632
+ "loss": 0.7351,
633
+ "step": 2225
634
+ },
635
+ {
636
+ "epoch": 0.3325105237271659,
637
+ "grad_norm": 0.6091466546058655,
638
+ "learning_rate": 8.595916501599878e-05,
639
+ "loss": 0.7062,
640
+ "step": 2250
641
+ },
642
+ {
643
+ "epoch": 0.33620508510191216,
644
+ "grad_norm": 0.6135897040367126,
645
+ "learning_rate": 8.576870333688862e-05,
646
+ "loss": 0.7117,
647
+ "step": 2275
648
+ },
649
+ {
650
+ "epoch": 0.33989964647665843,
651
+ "grad_norm": 0.5224157571792603,
652
+ "learning_rate": 8.557824165777846e-05,
653
+ "loss": 0.7068,
654
+ "step": 2300
655
+ },
656
+ {
657
+ "epoch": 0.34359420785140476,
658
+ "grad_norm": 0.4863536059856415,
659
+ "learning_rate": 8.53877799786683e-05,
660
+ "loss": 0.6952,
661
+ "step": 2325
662
+ },
663
+ {
664
+ "epoch": 0.34728876922615104,
665
+ "grad_norm": 0.4728885889053345,
666
+ "learning_rate": 8.519731829955814e-05,
667
+ "loss": 0.7289,
668
+ "step": 2350
669
+ },
670
+ {
671
+ "epoch": 0.3509833306008973,
672
+ "grad_norm": 0.5152695775032043,
673
+ "learning_rate": 8.500685662044798e-05,
674
+ "loss": 0.6986,
675
+ "step": 2375
676
+ },
677
+ {
678
+ "epoch": 0.3546778919756436,
679
+ "grad_norm": 0.4407690465450287,
680
+ "learning_rate": 8.481639494133781e-05,
681
+ "loss": 0.6983,
682
+ "step": 2400
683
+ },
684
+ {
685
+ "epoch": 0.3583724533503899,
686
+ "grad_norm": 0.4756406545639038,
687
+ "learning_rate": 8.462593326222764e-05,
688
+ "loss": 0.6626,
689
+ "step": 2425
690
+ },
691
+ {
692
+ "epoch": 0.3620670147251362,
693
+ "grad_norm": 0.48595255613327026,
694
+ "learning_rate": 8.443547158311747e-05,
695
+ "loss": 0.6892,
696
+ "step": 2450
697
+ },
698
+ {
699
+ "epoch": 0.36576157609988247,
700
+ "grad_norm": 0.47830772399902344,
701
+ "learning_rate": 8.424500990400732e-05,
702
+ "loss": 0.7162,
703
+ "step": 2475
704
+ },
705
+ {
706
+ "epoch": 0.36945613747462874,
707
+ "grad_norm": 0.43090149760246277,
708
+ "learning_rate": 8.405454822489715e-05,
709
+ "loss": 0.6913,
710
+ "step": 2500
711
+ },
712
+ {
713
+ "epoch": 0.373150698849375,
714
+ "grad_norm": 0.5338718295097351,
715
+ "learning_rate": 8.386408654578698e-05,
716
+ "loss": 0.7159,
717
+ "step": 2525
718
+ },
719
+ {
720
+ "epoch": 0.37684526022412135,
721
+ "grad_norm": 0.4907350242137909,
722
+ "learning_rate": 8.367362486667683e-05,
723
+ "loss": 0.7022,
724
+ "step": 2550
725
+ },
726
+ {
727
+ "epoch": 0.3805398215988676,
728
+ "grad_norm": 0.44093430042266846,
729
+ "learning_rate": 8.348316318756668e-05,
730
+ "loss": 0.7124,
731
+ "step": 2575
732
+ },
733
+ {
734
+ "epoch": 0.3842343829736139,
735
+ "grad_norm": 0.5388796925544739,
736
+ "learning_rate": 8.329270150845651e-05,
737
+ "loss": 0.7304,
738
+ "step": 2600
739
+ },
740
+ {
741
+ "epoch": 0.38792894434836017,
742
+ "grad_norm": 0.4456349313259125,
743
+ "learning_rate": 8.310223982934634e-05,
744
+ "loss": 0.6964,
745
+ "step": 2625
746
+ },
747
+ {
748
+ "epoch": 0.3916235057231065,
749
+ "grad_norm": 0.4602237343788147,
750
+ "learning_rate": 8.291177815023617e-05,
751
+ "loss": 0.6707,
752
+ "step": 2650
753
+ },
754
+ {
755
+ "epoch": 0.3953180670978528,
756
+ "grad_norm": 0.4726378917694092,
757
+ "learning_rate": 8.272131647112601e-05,
758
+ "loss": 0.694,
759
+ "step": 2675
760
+ },
761
+ {
762
+ "epoch": 0.39901262847259905,
763
+ "grad_norm": 0.500451922416687,
764
+ "learning_rate": 8.253085479201585e-05,
765
+ "loss": 0.6812,
766
+ "step": 2700
767
+ },
768
+ {
769
+ "epoch": 0.4027071898473453,
770
+ "grad_norm": 0.4073813259601593,
771
+ "learning_rate": 8.234039311290569e-05,
772
+ "loss": 0.7028,
773
+ "step": 2725
774
+ },
775
+ {
776
+ "epoch": 0.40640175122209166,
777
+ "grad_norm": 0.43644702434539795,
778
+ "learning_rate": 8.214993143379552e-05,
779
+ "loss": 0.6936,
780
+ "step": 2750
781
+ },
782
+ {
783
+ "epoch": 0.41009631259683793,
784
+ "grad_norm": 0.5256789922714233,
785
+ "learning_rate": 8.195946975468535e-05,
786
+ "loss": 0.7035,
787
+ "step": 2775
788
+ },
789
+ {
790
+ "epoch": 0.4137908739715842,
791
+ "grad_norm": 0.48385316133499146,
792
+ "learning_rate": 8.17690080755752e-05,
793
+ "loss": 0.6736,
794
+ "step": 2800
795
+ },
796
+ {
797
+ "epoch": 0.4174854353463305,
798
+ "grad_norm": 0.49825233221054077,
799
+ "learning_rate": 8.157854639646504e-05,
800
+ "loss": 0.7019,
801
+ "step": 2825
802
+ },
803
+ {
804
+ "epoch": 0.42117999672107675,
805
+ "grad_norm": 0.5086994171142578,
806
+ "learning_rate": 8.138808471735488e-05,
807
+ "loss": 0.6918,
808
+ "step": 2850
809
+ },
810
+ {
811
+ "epoch": 0.4248745580958231,
812
+ "grad_norm": 0.5430259108543396,
813
+ "learning_rate": 8.119762303824471e-05,
814
+ "loss": 0.7175,
815
+ "step": 2875
816
+ },
817
+ {
818
+ "epoch": 0.42856911947056936,
819
+ "grad_norm": 0.5889118313789368,
820
+ "learning_rate": 8.100716135913454e-05,
821
+ "loss": 0.6967,
822
+ "step": 2900
823
+ },
824
+ {
825
+ "epoch": 0.43226368084531563,
826
+ "grad_norm": 0.5345672369003296,
827
+ "learning_rate": 8.081669968002439e-05,
828
+ "loss": 0.6926,
829
+ "step": 2925
830
+ },
831
+ {
832
+ "epoch": 0.4359582422200619,
833
+ "grad_norm": 0.511101245880127,
834
+ "learning_rate": 8.062623800091422e-05,
835
+ "loss": 0.7248,
836
+ "step": 2950
837
+ },
838
+ {
839
+ "epoch": 0.43965280359480824,
840
+ "grad_norm": 0.511239767074585,
841
+ "learning_rate": 8.043577632180405e-05,
842
+ "loss": 0.7319,
843
+ "step": 2975
844
+ },
845
+ {
846
+ "epoch": 0.4433473649695545,
847
+ "grad_norm": 0.5121573805809021,
848
+ "learning_rate": 8.024531464269389e-05,
849
+ "loss": 0.7023,
850
+ "step": 3000
851
+ },
852
+ {
853
+ "epoch": 0.4470419263443008,
854
+ "grad_norm": 0.5658753514289856,
855
+ "learning_rate": 8.005485296358373e-05,
856
+ "loss": 0.6934,
857
+ "step": 3025
858
+ },
859
+ {
860
+ "epoch": 0.45073648771904706,
861
+ "grad_norm": 0.5475583672523499,
862
+ "learning_rate": 7.986439128447358e-05,
863
+ "loss": 0.6701,
864
+ "step": 3050
865
+ },
866
+ {
867
+ "epoch": 0.4544310490937934,
868
+ "grad_norm": 0.6107661724090576,
869
+ "learning_rate": 7.967392960536341e-05,
870
+ "loss": 0.7056,
871
+ "step": 3075
872
+ },
873
+ {
874
+ "epoch": 0.45812561046853967,
875
+ "grad_norm": 0.48424115777015686,
876
+ "learning_rate": 7.948346792625324e-05,
877
+ "loss": 0.7179,
878
+ "step": 3100
879
+ },
880
+ {
881
+ "epoch": 0.46182017184328594,
882
+ "grad_norm": 0.6184881329536438,
883
+ "learning_rate": 7.929300624714308e-05,
884
+ "loss": 0.7141,
885
+ "step": 3125
886
+ },
887
+ {
888
+ "epoch": 0.4655147332180322,
889
+ "grad_norm": 0.49919527769088745,
890
+ "learning_rate": 7.910254456803291e-05,
891
+ "loss": 0.7027,
892
+ "step": 3150
893
+ },
894
+ {
895
+ "epoch": 0.4692092945927785,
896
+ "grad_norm": 0.5012905597686768,
897
+ "learning_rate": 7.891208288892276e-05,
898
+ "loss": 0.6852,
899
+ "step": 3175
900
+ },
901
+ {
902
+ "epoch": 0.4729038559675248,
903
+ "grad_norm": 0.5033735036849976,
904
+ "learning_rate": 7.872162120981259e-05,
905
+ "loss": 0.7199,
906
+ "step": 3200
907
+ },
908
+ {
909
+ "epoch": 0.4765984173422711,
910
+ "grad_norm": 0.5746079087257385,
911
+ "learning_rate": 7.853115953070242e-05,
912
+ "loss": 0.715,
913
+ "step": 3225
914
+ },
915
+ {
916
+ "epoch": 0.48029297871701737,
917
+ "grad_norm": 0.5436145663261414,
918
+ "learning_rate": 7.834069785159225e-05,
919
+ "loss": 0.697,
920
+ "step": 3250
921
+ },
922
+ {
923
+ "epoch": 0.48398754009176365,
924
+ "grad_norm": 0.5836604833602905,
925
+ "learning_rate": 7.81502361724821e-05,
926
+ "loss": 0.7129,
927
+ "step": 3275
928
+ },
929
+ {
930
+ "epoch": 0.48768210146651,
931
+ "grad_norm": 0.5618935227394104,
932
+ "learning_rate": 7.795977449337195e-05,
933
+ "loss": 0.6993,
934
+ "step": 3300
935
+ },
936
+ {
937
+ "epoch": 0.49137666284125625,
938
+ "grad_norm": 0.6251245737075806,
939
+ "learning_rate": 7.776931281426178e-05,
940
+ "loss": 0.7132,
941
+ "step": 3325
942
+ },
943
+ {
944
+ "epoch": 0.4950712242160025,
945
+ "grad_norm": 0.5123202800750732,
946
+ "learning_rate": 7.757885113515161e-05,
947
+ "loss": 0.7218,
948
+ "step": 3350
949
+ },
950
+ {
951
+ "epoch": 0.4987657855907488,
952
+ "grad_norm": 0.5818086862564087,
953
+ "learning_rate": 7.738838945604144e-05,
954
+ "loss": 0.7154,
955
+ "step": 3375
956
+ },
957
+ {
958
+ "epoch": 0.5024603469654951,
959
+ "grad_norm": 0.5861947536468506,
960
+ "learning_rate": 7.719792777693129e-05,
961
+ "loss": 0.7013,
962
+ "step": 3400
963
+ },
964
+ {
965
+ "epoch": 0.5061549083402413,
966
+ "grad_norm": 0.4849907457828522,
967
+ "learning_rate": 7.700746609782112e-05,
968
+ "loss": 0.6902,
969
+ "step": 3425
970
+ },
971
+ {
972
+ "epoch": 0.5098494697149877,
973
+ "grad_norm": 0.5476916432380676,
974
+ "learning_rate": 7.681700441871096e-05,
975
+ "loss": 0.7147,
976
+ "step": 3450
977
+ },
978
+ {
979
+ "epoch": 0.513544031089734,
980
+ "grad_norm": 0.5822548866271973,
981
+ "learning_rate": 7.662654273960079e-05,
982
+ "loss": 0.7431,
983
+ "step": 3475
984
+ },
985
+ {
986
+ "epoch": 0.5172385924644802,
987
+ "grad_norm": 0.44818004965782166,
988
+ "learning_rate": 7.643608106049063e-05,
989
+ "loss": 0.718,
990
+ "step": 3500
991
+ },
992
+ {
993
+ "epoch": 0.5209331538392266,
994
+ "grad_norm": 0.544068455696106,
995
+ "learning_rate": 7.624561938138047e-05,
996
+ "loss": 0.7201,
997
+ "step": 3525
998
+ },
999
+ {
1000
+ "epoch": 0.5246277152139728,
1001
+ "grad_norm": 0.5535098910331726,
1002
+ "learning_rate": 7.605515770227031e-05,
1003
+ "loss": 0.6998,
1004
+ "step": 3550
1005
+ },
1006
+ {
1007
+ "epoch": 0.5283222765887191,
1008
+ "grad_norm": 0.5754445195198059,
1009
+ "learning_rate": 7.586469602316015e-05,
1010
+ "loss": 0.6918,
1011
+ "step": 3575
1012
+ },
1013
+ {
1014
+ "epoch": 0.5320168379634654,
1015
+ "grad_norm": 0.5976133942604065,
1016
+ "learning_rate": 7.567423434404998e-05,
1017
+ "loss": 0.693,
1018
+ "step": 3600
1019
+ },
1020
+ {
1021
+ "epoch": 0.5357113993382117,
1022
+ "grad_norm": 0.4844263195991516,
1023
+ "learning_rate": 7.548377266493982e-05,
1024
+ "loss": 0.68,
1025
+ "step": 3625
1026
+ },
1027
+ {
1028
+ "epoch": 0.539405960712958,
1029
+ "grad_norm": 0.5436462163925171,
1030
+ "learning_rate": 7.529331098582966e-05,
1031
+ "loss": 0.7075,
1032
+ "step": 3650
1033
+ },
1034
+ {
1035
+ "epoch": 0.5431005220877043,
1036
+ "grad_norm": 0.6490929126739502,
1037
+ "learning_rate": 7.510284930671949e-05,
1038
+ "loss": 0.6956,
1039
+ "step": 3675
1040
+ },
1041
+ {
1042
+ "epoch": 0.5467950834624505,
1043
+ "grad_norm": 0.47479814291000366,
1044
+ "learning_rate": 7.491238762760932e-05,
1045
+ "loss": 0.7026,
1046
+ "step": 3700
1047
+ },
1048
+ {
1049
+ "epoch": 0.5504896448371969,
1050
+ "grad_norm": 0.590874969959259,
1051
+ "learning_rate": 7.472192594849915e-05,
1052
+ "loss": 0.7117,
1053
+ "step": 3725
1054
+ },
1055
+ {
1056
+ "epoch": 0.5541842062119431,
1057
+ "grad_norm": 0.46487829089164734,
1058
+ "learning_rate": 7.4531464269389e-05,
1059
+ "loss": 0.6919,
1060
+ "step": 3750
1061
+ },
1062
+ {
1063
+ "epoch": 0.5578787675866894,
1064
+ "grad_norm": 0.6609780192375183,
1065
+ "learning_rate": 7.434100259027885e-05,
1066
+ "loss": 0.7089,
1067
+ "step": 3775
1068
+ },
1069
+ {
1070
+ "epoch": 0.5615733289614357,
1071
+ "grad_norm": 0.6165657639503479,
1072
+ "learning_rate": 7.415054091116868e-05,
1073
+ "loss": 0.7444,
1074
+ "step": 3800
1075
+ },
1076
+ {
1077
+ "epoch": 0.565267890336182,
1078
+ "grad_norm": 0.5194655656814575,
1079
+ "learning_rate": 7.396007923205851e-05,
1080
+ "loss": 0.7114,
1081
+ "step": 3825
1082
+ },
1083
+ {
1084
+ "epoch": 0.5689624517109283,
1085
+ "grad_norm": 0.4813441336154938,
1086
+ "learning_rate": 7.376961755294836e-05,
1087
+ "loss": 0.6953,
1088
+ "step": 3850
1089
+ },
1090
+ {
1091
+ "epoch": 0.5726570130856745,
1092
+ "grad_norm": 0.7607313990592957,
1093
+ "learning_rate": 7.357915587383819e-05,
1094
+ "loss": 0.7058,
1095
+ "step": 3875
1096
+ },
1097
+ {
1098
+ "epoch": 0.5763515744604208,
1099
+ "grad_norm": 0.48498719930648804,
1100
+ "learning_rate": 7.338869419472802e-05,
1101
+ "loss": 0.6866,
1102
+ "step": 3900
1103
+ },
1104
+ {
1105
+ "epoch": 0.5800461358351672,
1106
+ "grad_norm": 0.5969393253326416,
1107
+ "learning_rate": 7.319823251561786e-05,
1108
+ "loss": 0.6951,
1109
+ "step": 3925
1110
+ },
1111
+ {
1112
+ "epoch": 0.5837406972099134,
1113
+ "grad_norm": 0.6178887486457825,
1114
+ "learning_rate": 7.300777083650769e-05,
1115
+ "loss": 0.7036,
1116
+ "step": 3950
1117
+ },
1118
+ {
1119
+ "epoch": 0.5874352585846597,
1120
+ "grad_norm": 0.5318612456321716,
1121
+ "learning_rate": 7.281730915739754e-05,
1122
+ "loss": 0.6856,
1123
+ "step": 3975
1124
+ },
1125
+ {
1126
+ "epoch": 0.591129819959406,
1127
+ "grad_norm": 0.6101936101913452,
1128
+ "learning_rate": 7.262684747828737e-05,
1129
+ "loss": 0.7103,
1130
+ "step": 4000
1131
+ },
1132
+ {
1133
+ "epoch": 0.5948243813341523,
1134
+ "grad_norm": 0.5605831742286682,
1135
+ "learning_rate": 7.243638579917721e-05,
1136
+ "loss": 0.6684,
1137
+ "step": 4025
1138
+ },
1139
+ {
1140
+ "epoch": 0.5985189427088986,
1141
+ "grad_norm": 0.6576380133628845,
1142
+ "learning_rate": 7.224592412006705e-05,
1143
+ "loss": 0.6955,
1144
+ "step": 4050
1145
+ },
1146
+ {
1147
+ "epoch": 0.6022135040836448,
1148
+ "grad_norm": 0.49083924293518066,
1149
+ "learning_rate": 7.205546244095688e-05,
1150
+ "loss": 0.7089,
1151
+ "step": 4075
1152
+ },
1153
+ {
1154
+ "epoch": 0.6059080654583912,
1155
+ "grad_norm": 0.4783398509025574,
1156
+ "learning_rate": 7.186500076184673e-05,
1157
+ "loss": 0.6766,
1158
+ "step": 4100
1159
+ },
1160
+ {
1161
+ "epoch": 0.6096026268331375,
1162
+ "grad_norm": 0.5773366689682007,
1163
+ "learning_rate": 7.167453908273656e-05,
1164
+ "loss": 0.666,
1165
+ "step": 4125
1166
+ },
1167
+ {
1168
+ "epoch": 0.6132971882078837,
1169
+ "grad_norm": 0.5449897050857544,
1170
+ "learning_rate": 7.148407740362639e-05,
1171
+ "loss": 0.6795,
1172
+ "step": 4150
1173
+ },
1174
+ {
1175
+ "epoch": 0.61699174958263,
1176
+ "grad_norm": 0.519882082939148,
1177
+ "learning_rate": 7.129361572451622e-05,
1178
+ "loss": 0.6892,
1179
+ "step": 4175
1180
+ },
1181
+ {
1182
+ "epoch": 0.6206863109573763,
1183
+ "grad_norm": 0.5653222799301147,
1184
+ "learning_rate": 7.110315404540607e-05,
1185
+ "loss": 0.7029,
1186
+ "step": 4200
1187
+ },
1188
+ {
1189
+ "epoch": 0.6243808723321226,
1190
+ "grad_norm": 0.542448878288269,
1191
+ "learning_rate": 7.09126923662959e-05,
1192
+ "loss": 0.6885,
1193
+ "step": 4225
1194
+ },
1195
+ {
1196
+ "epoch": 0.6280754337068689,
1197
+ "grad_norm": 0.5602554082870483,
1198
+ "learning_rate": 7.072223068718575e-05,
1199
+ "loss": 0.6811,
1200
+ "step": 4250
1201
+ },
1202
+ {
1203
+ "epoch": 0.6317699950816151,
1204
+ "grad_norm": 0.5326575636863708,
1205
+ "learning_rate": 7.053176900807558e-05,
1206
+ "loss": 0.7032,
1207
+ "step": 4275
1208
+ },
1209
+ {
1210
+ "epoch": 0.6354645564563615,
1211
+ "grad_norm": 0.5822186470031738,
1212
+ "learning_rate": 7.034130732896541e-05,
1213
+ "loss": 0.6951,
1214
+ "step": 4300
1215
+ },
1216
+ {
1217
+ "epoch": 0.6391591178311078,
1218
+ "grad_norm": 0.5309107899665833,
1219
+ "learning_rate": 7.015084564985526e-05,
1220
+ "loss": 0.6891,
1221
+ "step": 4325
1222
+ },
1223
+ {
1224
+ "epoch": 0.642853679205854,
1225
+ "grad_norm": 0.6958228349685669,
1226
+ "learning_rate": 6.996038397074509e-05,
1227
+ "loss": 0.6932,
1228
+ "step": 4350
1229
+ },
1230
+ {
1231
+ "epoch": 0.6465482405806003,
1232
+ "grad_norm": 0.4864750802516937,
1233
+ "learning_rate": 6.976992229163493e-05,
1234
+ "loss": 0.6897,
1235
+ "step": 4375
1236
+ },
1237
+ {
1238
+ "epoch": 0.6502428019553466,
1239
+ "grad_norm": 0.5077944993972778,
1240
+ "learning_rate": 6.957946061252476e-05,
1241
+ "loss": 0.7067,
1242
+ "step": 4400
1243
+ },
1244
+ {
1245
+ "epoch": 0.6539373633300929,
1246
+ "grad_norm": 0.5589050054550171,
1247
+ "learning_rate": 6.938899893341459e-05,
1248
+ "loss": 0.6927,
1249
+ "step": 4425
1250
+ },
1251
+ {
1252
+ "epoch": 0.6576319247048392,
1253
+ "grad_norm": 0.6064692735671997,
1254
+ "learning_rate": 6.919853725430444e-05,
1255
+ "loss": 0.7186,
1256
+ "step": 4450
1257
+ },
1258
+ {
1259
+ "epoch": 0.6613264860795854,
1260
+ "grad_norm": 0.5546572208404541,
1261
+ "learning_rate": 6.900807557519427e-05,
1262
+ "loss": 0.6865,
1263
+ "step": 4475
1264
+ },
1265
+ {
1266
+ "epoch": 0.6650210474543318,
1267
+ "grad_norm": 0.6032342314720154,
1268
+ "learning_rate": 6.881761389608412e-05,
1269
+ "loss": 0.6999,
1270
+ "step": 4500
1271
+ },
1272
+ {
1273
+ "epoch": 0.668715608829078,
1274
+ "grad_norm": 0.5067450404167175,
1275
+ "learning_rate": 6.862715221697395e-05,
1276
+ "loss": 0.7068,
1277
+ "step": 4525
1278
+ },
1279
+ {
1280
+ "epoch": 0.6724101702038243,
1281
+ "grad_norm": 0.6697527170181274,
1282
+ "learning_rate": 6.84366905378638e-05,
1283
+ "loss": 0.7075,
1284
+ "step": 4550
1285
+ },
1286
+ {
1287
+ "epoch": 0.6761047315785707,
1288
+ "grad_norm": 0.48360082507133484,
1289
+ "learning_rate": 6.824622885875363e-05,
1290
+ "loss": 0.7076,
1291
+ "step": 4575
1292
+ },
1293
+ {
1294
+ "epoch": 0.6797992929533169,
1295
+ "grad_norm": 0.6387288570404053,
1296
+ "learning_rate": 6.805576717964346e-05,
1297
+ "loss": 0.6871,
1298
+ "step": 4600
1299
+ },
1300
+ {
1301
+ "epoch": 0.6834938543280632,
1302
+ "grad_norm": 0.6431862115859985,
1303
+ "learning_rate": 6.786530550053329e-05,
1304
+ "loss": 0.7138,
1305
+ "step": 4625
1306
+ },
1307
+ {
1308
+ "epoch": 0.6871884157028095,
1309
+ "grad_norm": 0.6050564050674438,
1310
+ "learning_rate": 6.767484382142313e-05,
1311
+ "loss": 0.6978,
1312
+ "step": 4650
1313
+ },
1314
+ {
1315
+ "epoch": 0.6908829770775557,
1316
+ "grad_norm": 0.7160177230834961,
1317
+ "learning_rate": 6.748438214231297e-05,
1318
+ "loss": 0.6813,
1319
+ "step": 4675
1320
+ },
1321
+ {
1322
+ "epoch": 0.6945775384523021,
1323
+ "grad_norm": 0.6984575986862183,
1324
+ "learning_rate": 6.72939204632028e-05,
1325
+ "loss": 0.7155,
1326
+ "step": 4700
1327
+ },
1328
+ {
1329
+ "epoch": 0.6982720998270483,
1330
+ "grad_norm": 0.5910038352012634,
1331
+ "learning_rate": 6.710345878409264e-05,
1332
+ "loss": 0.6689,
1333
+ "step": 4725
1334
+ },
1335
+ {
1336
+ "epoch": 0.7019666612017946,
1337
+ "grad_norm": 0.5897320508956909,
1338
+ "learning_rate": 6.691299710498248e-05,
1339
+ "loss": 0.7169,
1340
+ "step": 4750
1341
+ },
1342
+ {
1343
+ "epoch": 0.705661222576541,
1344
+ "grad_norm": 0.5735405683517456,
1345
+ "learning_rate": 6.672253542587232e-05,
1346
+ "loss": 0.6779,
1347
+ "step": 4775
1348
+ },
1349
+ {
1350
+ "epoch": 0.7093557839512872,
1351
+ "grad_norm": 0.6408699750900269,
1352
+ "learning_rate": 6.653207374676216e-05,
1353
+ "loss": 0.7069,
1354
+ "step": 4800
1355
+ },
1356
+ {
1357
+ "epoch": 0.7130503453260335,
1358
+ "grad_norm": 0.6292117834091187,
1359
+ "learning_rate": 6.6341612067652e-05,
1360
+ "loss": 0.698,
1361
+ "step": 4825
1362
+ },
1363
+ {
1364
+ "epoch": 0.7167449067007798,
1365
+ "grad_norm": 0.6101416349411011,
1366
+ "learning_rate": 6.615115038854183e-05,
1367
+ "loss": 0.6708,
1368
+ "step": 4850
1369
+ },
1370
+ {
1371
+ "epoch": 0.7204394680755261,
1372
+ "grad_norm": 0.6805480122566223,
1373
+ "learning_rate": 6.596068870943166e-05,
1374
+ "loss": 0.7115,
1375
+ "step": 4875
1376
+ },
1377
+ {
1378
+ "epoch": 0.7241340294502724,
1379
+ "grad_norm": 0.6465732455253601,
1380
+ "learning_rate": 6.57702270303215e-05,
1381
+ "loss": 0.688,
1382
+ "step": 4900
1383
+ },
1384
+ {
1385
+ "epoch": 0.7278285908250186,
1386
+ "grad_norm": 0.5873344540596008,
1387
+ "learning_rate": 6.557976535121134e-05,
1388
+ "loss": 0.7032,
1389
+ "step": 4925
1390
+ },
1391
+ {
1392
+ "epoch": 0.7315231521997649,
1393
+ "grad_norm": 0.5717042088508606,
1394
+ "learning_rate": 6.538930367210117e-05,
1395
+ "loss": 0.6907,
1396
+ "step": 4950
1397
+ },
1398
+ {
1399
+ "epoch": 0.7352177135745113,
1400
+ "grad_norm": 0.6366106867790222,
1401
+ "learning_rate": 6.519884199299102e-05,
1402
+ "loss": 0.7061,
1403
+ "step": 4975
1404
+ },
1405
+ {
1406
+ "epoch": 0.7389122749492575,
1407
+ "grad_norm": 0.7421902418136597,
1408
+ "learning_rate": 6.500838031388085e-05,
1409
+ "loss": 0.7267,
1410
+ "step": 5000
1411
+ },
1412
+ {
1413
+ "epoch": 0.7426068363240038,
1414
+ "grad_norm": 0.5897513031959534,
1415
+ "learning_rate": 6.48179186347707e-05,
1416
+ "loss": 0.7089,
1417
+ "step": 5025
1418
+ },
1419
+ {
1420
+ "epoch": 0.74630139769875,
1421
+ "grad_norm": 0.6692824959754944,
1422
+ "learning_rate": 6.462745695566053e-05,
1423
+ "loss": 0.7059,
1424
+ "step": 5050
1425
+ },
1426
+ {
1427
+ "epoch": 0.7499959590734964,
1428
+ "grad_norm": 0.5818034410476685,
1429
+ "learning_rate": 6.443699527655036e-05,
1430
+ "loss": 0.6734,
1431
+ "step": 5075
1432
+ },
1433
+ {
1434
+ "epoch": 0.7536905204482427,
1435
+ "grad_norm": 0.5975498557090759,
1436
+ "learning_rate": 6.42465335974402e-05,
1437
+ "loss": 0.6857,
1438
+ "step": 5100
1439
+ },
1440
+ {
1441
+ "epoch": 0.7573850818229889,
1442
+ "grad_norm": 0.5827130675315857,
1443
+ "learning_rate": 6.405607191833003e-05,
1444
+ "loss": 0.7156,
1445
+ "step": 5125
1446
+ },
1447
+ {
1448
+ "epoch": 0.7610796431977352,
1449
+ "grad_norm": 0.660932719707489,
1450
+ "learning_rate": 6.386561023921987e-05,
1451
+ "loss": 0.688,
1452
+ "step": 5150
1453
+ },
1454
+ {
1455
+ "epoch": 0.7647742045724816,
1456
+ "grad_norm": 0.5963577628135681,
1457
+ "learning_rate": 6.36751485601097e-05,
1458
+ "loss": 0.709,
1459
+ "step": 5175
1460
+ },
1461
+ {
1462
+ "epoch": 0.7684687659472278,
1463
+ "grad_norm": 0.6608302593231201,
1464
+ "learning_rate": 6.348468688099954e-05,
1465
+ "loss": 0.6761,
1466
+ "step": 5200
1467
+ },
1468
+ {
1469
+ "epoch": 0.7721633273219741,
1470
+ "grad_norm": 0.6137542724609375,
1471
+ "learning_rate": 6.329422520188938e-05,
1472
+ "loss": 0.6845,
1473
+ "step": 5225
1474
+ },
1475
+ {
1476
+ "epoch": 0.7758578886967203,
1477
+ "grad_norm": 0.6861995458602905,
1478
+ "learning_rate": 6.310376352277923e-05,
1479
+ "loss": 0.6746,
1480
+ "step": 5250
1481
+ },
1482
+ {
1483
+ "epoch": 0.7795524500714667,
1484
+ "grad_norm": 0.6537772417068481,
1485
+ "learning_rate": 6.291330184366906e-05,
1486
+ "loss": 0.6777,
1487
+ "step": 5275
1488
+ },
1489
+ {
1490
+ "epoch": 0.783247011446213,
1491
+ "grad_norm": 0.6634919047355652,
1492
+ "learning_rate": 6.27228401645589e-05,
1493
+ "loss": 0.6945,
1494
+ "step": 5300
1495
+ },
1496
+ {
1497
+ "epoch": 0.7869415728209592,
1498
+ "grad_norm": 0.610098123550415,
1499
+ "learning_rate": 6.253237848544873e-05,
1500
+ "loss": 0.6909,
1501
+ "step": 5325
1502
+ },
1503
+ {
1504
+ "epoch": 0.7906361341957056,
1505
+ "grad_norm": 0.6167535185813904,
1506
+ "learning_rate": 6.234191680633856e-05,
1507
+ "loss": 0.6988,
1508
+ "step": 5350
1509
+ },
1510
+ {
1511
+ "epoch": 0.7943306955704518,
1512
+ "grad_norm": 0.6502842903137207,
1513
+ "learning_rate": 6.215145512722841e-05,
1514
+ "loss": 0.6937,
1515
+ "step": 5375
1516
+ },
1517
+ {
1518
+ "epoch": 0.7980252569451981,
1519
+ "grad_norm": 0.5586534142494202,
1520
+ "learning_rate": 6.196099344811824e-05,
1521
+ "loss": 0.6891,
1522
+ "step": 5400
1523
+ },
1524
+ {
1525
+ "epoch": 0.8017198183199444,
1526
+ "grad_norm": 0.577847957611084,
1527
+ "learning_rate": 6.177053176900807e-05,
1528
+ "loss": 0.7111,
1529
+ "step": 5425
1530
+ },
1531
+ {
1532
+ "epoch": 0.8054143796946907,
1533
+ "grad_norm": 0.5086051225662231,
1534
+ "learning_rate": 6.158007008989792e-05,
1535
+ "loss": 0.6892,
1536
+ "step": 5450
1537
+ },
1538
+ {
1539
+ "epoch": 0.809108941069437,
1540
+ "grad_norm": 0.6650702953338623,
1541
+ "learning_rate": 6.138960841078775e-05,
1542
+ "loss": 0.6853,
1543
+ "step": 5475
1544
+ },
1545
+ {
1546
+ "epoch": 0.8128035024441833,
1547
+ "grad_norm": 0.730775773525238,
1548
+ "learning_rate": 6.11991467316776e-05,
1549
+ "loss": 0.6972,
1550
+ "step": 5500
1551
+ },
1552
+ {
1553
+ "epoch": 0.8164980638189295,
1554
+ "grad_norm": 0.6812962293624878,
1555
+ "learning_rate": 6.100868505256743e-05,
1556
+ "loss": 0.7179,
1557
+ "step": 5525
1558
+ },
1559
+ {
1560
+ "epoch": 0.8201926251936759,
1561
+ "grad_norm": 0.6698195934295654,
1562
+ "learning_rate": 6.081822337345726e-05,
1563
+ "loss": 0.6935,
1564
+ "step": 5550
1565
+ },
1566
+ {
1567
+ "epoch": 0.8238871865684221,
1568
+ "grad_norm": 0.7661596536636353,
1569
+ "learning_rate": 6.0627761694347096e-05,
1570
+ "loss": 0.7081,
1571
+ "step": 5575
1572
+ },
1573
+ {
1574
+ "epoch": 0.8275817479431684,
1575
+ "grad_norm": 0.63306725025177,
1576
+ "learning_rate": 6.043730001523694e-05,
1577
+ "loss": 0.6814,
1578
+ "step": 5600
1579
+ },
1580
+ {
1581
+ "epoch": 0.8312763093179147,
1582
+ "grad_norm": 0.638088047504425,
1583
+ "learning_rate": 6.0246838336126774e-05,
1584
+ "loss": 0.7162,
1585
+ "step": 5625
1586
+ },
1587
+ {
1588
+ "epoch": 0.834970870692661,
1589
+ "grad_norm": 0.6416764259338379,
1590
+ "learning_rate": 6.0056376657016614e-05,
1591
+ "loss": 0.6935,
1592
+ "step": 5650
1593
+ },
1594
+ {
1595
+ "epoch": 0.8386654320674073,
1596
+ "grad_norm": 0.6060255169868469,
1597
+ "learning_rate": 5.9865914977906447e-05,
1598
+ "loss": 0.6935,
1599
+ "step": 5675
1600
+ },
1601
+ {
1602
+ "epoch": 0.8423599934421535,
1603
+ "grad_norm": 0.6919652223587036,
1604
+ "learning_rate": 5.967545329879628e-05,
1605
+ "loss": 0.6781,
1606
+ "step": 5700
1607
+ },
1608
+ {
1609
+ "epoch": 0.8460545548168998,
1610
+ "grad_norm": 0.5610880851745605,
1611
+ "learning_rate": 5.9484991619686125e-05,
1612
+ "loss": 0.6924,
1613
+ "step": 5725
1614
+ },
1615
+ {
1616
+ "epoch": 0.8497491161916462,
1617
+ "grad_norm": 0.6481006145477295,
1618
+ "learning_rate": 5.929452994057596e-05,
1619
+ "loss": 0.6708,
1620
+ "step": 5750
1621
+ },
1622
+ {
1623
+ "epoch": 0.8534436775663924,
1624
+ "grad_norm": 0.618869423866272,
1625
+ "learning_rate": 5.91040682614658e-05,
1626
+ "loss": 0.6801,
1627
+ "step": 5775
1628
+ },
1629
+ {
1630
+ "epoch": 0.8571382389411387,
1631
+ "grad_norm": 0.5622214674949646,
1632
+ "learning_rate": 5.891360658235563e-05,
1633
+ "loss": 0.6932,
1634
+ "step": 5800
1635
+ },
1636
+ {
1637
+ "epoch": 0.860832800315885,
1638
+ "grad_norm": 0.6936132311820984,
1639
+ "learning_rate": 5.8723144903245476e-05,
1640
+ "loss": 0.6932,
1641
+ "step": 5825
1642
+ },
1643
+ {
1644
+ "epoch": 0.8645273616906313,
1645
+ "grad_norm": 0.6182092428207397,
1646
+ "learning_rate": 5.853268322413531e-05,
1647
+ "loss": 0.6767,
1648
+ "step": 5850
1649
+ },
1650
+ {
1651
+ "epoch": 0.8682219230653776,
1652
+ "grad_norm": 0.6932141184806824,
1653
+ "learning_rate": 5.834222154502514e-05,
1654
+ "loss": 0.694,
1655
+ "step": 5875
1656
+ },
1657
+ {
1658
+ "epoch": 0.8719164844401238,
1659
+ "grad_norm": 0.4943319261074066,
1660
+ "learning_rate": 5.815175986591498e-05,
1661
+ "loss": 0.6884,
1662
+ "step": 5900
1663
+ },
1664
+ {
1665
+ "epoch": 0.8756110458148701,
1666
+ "grad_norm": 0.730697512626648,
1667
+ "learning_rate": 5.7961298186804814e-05,
1668
+ "loss": 0.6906,
1669
+ "step": 5925
1670
+ },
1671
+ {
1672
+ "epoch": 0.8793056071896165,
1673
+ "grad_norm": 0.5535916090011597,
1674
+ "learning_rate": 5.777083650769466e-05,
1675
+ "loss": 0.6992,
1676
+ "step": 5950
1677
+ },
1678
+ {
1679
+ "epoch": 0.8830001685643627,
1680
+ "grad_norm": 0.6035041809082031,
1681
+ "learning_rate": 5.758037482858449e-05,
1682
+ "loss": 0.6637,
1683
+ "step": 5975
1684
+ },
1685
+ {
1686
+ "epoch": 0.886694729939109,
1687
+ "grad_norm": 0.6580167412757874,
1688
+ "learning_rate": 5.7389913149474325e-05,
1689
+ "loss": 0.7056,
1690
+ "step": 6000
1691
+ },
1692
+ {
1693
+ "epoch": 0.8903892913138552,
1694
+ "grad_norm": 0.5391905903816223,
1695
+ "learning_rate": 5.7199451470364165e-05,
1696
+ "loss": 0.7169,
1697
+ "step": 6025
1698
+ },
1699
+ {
1700
+ "epoch": 0.8940838526886016,
1701
+ "grad_norm": 0.7833768725395203,
1702
+ "learning_rate": 5.7008989791254e-05,
1703
+ "loss": 0.682,
1704
+ "step": 6050
1705
+ },
1706
+ {
1707
+ "epoch": 0.8977784140633479,
1708
+ "grad_norm": 0.6040502190589905,
1709
+ "learning_rate": 5.681852811214384e-05,
1710
+ "loss": 0.6893,
1711
+ "step": 6075
1712
+ },
1713
+ {
1714
+ "epoch": 0.9014729754380941,
1715
+ "grad_norm": 0.5723184943199158,
1716
+ "learning_rate": 5.6628066433033676e-05,
1717
+ "loss": 0.7041,
1718
+ "step": 6100
1719
+ },
1720
+ {
1721
+ "epoch": 0.9051675368128405,
1722
+ "grad_norm": 0.7001731395721436,
1723
+ "learning_rate": 5.643760475392351e-05,
1724
+ "loss": 0.69,
1725
+ "step": 6125
1726
+ },
1727
+ {
1728
+ "epoch": 0.9088620981875868,
1729
+ "grad_norm": 0.6454519629478455,
1730
+ "learning_rate": 5.624714307481335e-05,
1731
+ "loss": 0.6777,
1732
+ "step": 6150
1733
+ },
1734
+ {
1735
+ "epoch": 0.912556659562333,
1736
+ "grad_norm": 0.6187843680381775,
1737
+ "learning_rate": 5.6056681395703194e-05,
1738
+ "loss": 0.7069,
1739
+ "step": 6175
1740
+ },
1741
+ {
1742
+ "epoch": 0.9162512209370793,
1743
+ "grad_norm": 0.6245271563529968,
1744
+ "learning_rate": 5.586621971659303e-05,
1745
+ "loss": 0.6735,
1746
+ "step": 6200
1747
+ },
1748
+ {
1749
+ "epoch": 0.9199457823118256,
1750
+ "grad_norm": 0.513124406337738,
1751
+ "learning_rate": 5.567575803748286e-05,
1752
+ "loss": 0.6859,
1753
+ "step": 6225
1754
+ },
1755
+ {
1756
+ "epoch": 0.9236403436865719,
1757
+ "grad_norm": 0.5510721206665039,
1758
+ "learning_rate": 5.54852963583727e-05,
1759
+ "loss": 0.7195,
1760
+ "step": 6250
1761
+ },
1762
+ {
1763
+ "epoch": 0.9273349050613182,
1764
+ "grad_norm": 0.7087464332580566,
1765
+ "learning_rate": 5.529483467926253e-05,
1766
+ "loss": 0.6761,
1767
+ "step": 6275
1768
+ },
1769
+ {
1770
+ "epoch": 0.9310294664360644,
1771
+ "grad_norm": 0.6695664525032043,
1772
+ "learning_rate": 5.510437300015238e-05,
1773
+ "loss": 0.7013,
1774
+ "step": 6300
1775
+ },
1776
+ {
1777
+ "epoch": 0.9347240278108108,
1778
+ "grad_norm": 0.6182588934898376,
1779
+ "learning_rate": 5.491391132104221e-05,
1780
+ "loss": 0.6793,
1781
+ "step": 6325
1782
+ },
1783
+ {
1784
+ "epoch": 0.938418589185557,
1785
+ "grad_norm": 0.7019252181053162,
1786
+ "learning_rate": 5.472344964193204e-05,
1787
+ "loss": 0.7122,
1788
+ "step": 6350
1789
+ },
1790
+ {
1791
+ "epoch": 0.9421131505603033,
1792
+ "grad_norm": 0.772847592830658,
1793
+ "learning_rate": 5.453298796282188e-05,
1794
+ "loss": 0.6991,
1795
+ "step": 6375
1796
+ },
1797
+ {
1798
+ "epoch": 0.9458077119350496,
1799
+ "grad_norm": 0.7126289010047913,
1800
+ "learning_rate": 5.4342526283711715e-05,
1801
+ "loss": 0.6992,
1802
+ "step": 6400
1803
+ },
1804
+ {
1805
+ "epoch": 0.9495022733097959,
1806
+ "grad_norm": 0.7134938836097717,
1807
+ "learning_rate": 5.415206460460156e-05,
1808
+ "loss": 0.7091,
1809
+ "step": 6425
1810
+ },
1811
+ {
1812
+ "epoch": 0.9531968346845422,
1813
+ "grad_norm": 0.7651578187942505,
1814
+ "learning_rate": 5.3961602925491394e-05,
1815
+ "loss": 0.6829,
1816
+ "step": 6450
1817
+ },
1818
+ {
1819
+ "epoch": 0.9568913960592885,
1820
+ "grad_norm": 0.6493939161300659,
1821
+ "learning_rate": 5.377114124638123e-05,
1822
+ "loss": 0.6831,
1823
+ "step": 6475
1824
+ },
1825
+ {
1826
+ "epoch": 0.9605859574340347,
1827
+ "grad_norm": 0.5992809534072876,
1828
+ "learning_rate": 5.3580679567271066e-05,
1829
+ "loss": 0.6984,
1830
+ "step": 6500
1831
+ },
1832
+ {
1833
+ "epoch": 0.9642805188087811,
1834
+ "grad_norm": 0.6597899794578552,
1835
+ "learning_rate": 5.339021788816091e-05,
1836
+ "loss": 0.6893,
1837
+ "step": 6525
1838
+ },
1839
+ {
1840
+ "epoch": 0.9679750801835273,
1841
+ "grad_norm": 0.6459916234016418,
1842
+ "learning_rate": 5.3199756209050745e-05,
1843
+ "loss": 0.6935,
1844
+ "step": 6550
1845
+ },
1846
+ {
1847
+ "epoch": 0.9716696415582736,
1848
+ "grad_norm": 0.7714385986328125,
1849
+ "learning_rate": 5.300929452994058e-05,
1850
+ "loss": 0.6883,
1851
+ "step": 6575
1852
+ },
1853
+ {
1854
+ "epoch": 0.97536420293302,
1855
+ "grad_norm": 0.5793107748031616,
1856
+ "learning_rate": 5.281883285083041e-05,
1857
+ "loss": 0.6795,
1858
+ "step": 6600
1859
+ },
1860
+ {
1861
+ "epoch": 0.9790587643077662,
1862
+ "grad_norm": 0.5452476739883423,
1863
+ "learning_rate": 5.262837117172025e-05,
1864
+ "loss": 0.6809,
1865
+ "step": 6625
1866
+ },
1867
+ {
1868
+ "epoch": 0.9827533256825125,
1869
+ "grad_norm": 0.6292601823806763,
1870
+ "learning_rate": 5.2437909492610096e-05,
1871
+ "loss": 0.7021,
1872
+ "step": 6650
1873
+ },
1874
+ {
1875
+ "epoch": 0.9864478870572587,
1876
+ "grad_norm": 0.6509853601455688,
1877
+ "learning_rate": 5.224744781349993e-05,
1878
+ "loss": 0.6808,
1879
+ "step": 6675
1880
+ },
1881
+ {
1882
+ "epoch": 0.990142448432005,
1883
+ "grad_norm": 0.6169773936271667,
1884
+ "learning_rate": 5.205698613438976e-05,
1885
+ "loss": 0.677,
1886
+ "step": 6700
1887
+ },
1888
+ {
1889
+ "epoch": 0.9938370098067514,
1890
+ "grad_norm": 0.6769931316375732,
1891
+ "learning_rate": 5.1866524455279594e-05,
1892
+ "loss": 0.7188,
1893
+ "step": 6725
1894
+ },
1895
+ {
1896
+ "epoch": 0.9975315711814976,
1897
+ "grad_norm": 0.6493127346038818,
1898
+ "learning_rate": 5.167606277616944e-05,
1899
+ "loss": 0.68,
1900
+ "step": 6750
1901
+ },
1902
+ {
1903
+ "epoch": 1.001182259639919,
1904
+ "grad_norm": 0.6528682708740234,
1905
+ "learning_rate": 5.148560109705928e-05,
1906
+ "loss": 0.6982,
1907
+ "step": 6775
1908
+ },
1909
+ {
1910
+ "epoch": 1.004876821014665,
1911
+ "grad_norm": 0.6537097692489624,
1912
+ "learning_rate": 5.129513941794911e-05,
1913
+ "loss": 0.6513,
1914
+ "step": 6800
1915
+ },
1916
+ {
1917
+ "epoch": 1.0085713823894114,
1918
+ "grad_norm": 0.6426008939743042,
1919
+ "learning_rate": 5.1104677738838945e-05,
1920
+ "loss": 0.668,
1921
+ "step": 6825
1922
+ },
1923
+ {
1924
+ "epoch": 1.0122659437641577,
1925
+ "grad_norm": 0.5742406249046326,
1926
+ "learning_rate": 5.0914216059728784e-05,
1927
+ "loss": 0.67,
1928
+ "step": 6850
1929
+ },
1930
+ {
1931
+ "epoch": 1.015960505138904,
1932
+ "grad_norm": 0.7166649103164673,
1933
+ "learning_rate": 5.0723754380618623e-05,
1934
+ "loss": 0.6602,
1935
+ "step": 6875
1936
+ },
1937
+ {
1938
+ "epoch": 1.0196550665136503,
1939
+ "grad_norm": 0.7485601305961609,
1940
+ "learning_rate": 5.053329270150846e-05,
1941
+ "loss": 0.6567,
1942
+ "step": 6900
1943
+ },
1944
+ {
1945
+ "epoch": 1.0233496278883965,
1946
+ "grad_norm": 0.7126789689064026,
1947
+ "learning_rate": 5.0342831022398296e-05,
1948
+ "loss": 0.6624,
1949
+ "step": 6925
1950
+ },
1951
+ {
1952
+ "epoch": 1.0270441892631428,
1953
+ "grad_norm": 0.7238374948501587,
1954
+ "learning_rate": 5.015236934328813e-05,
1955
+ "loss": 0.6613,
1956
+ "step": 6950
1957
+ },
1958
+ {
1959
+ "epoch": 1.0307387506378891,
1960
+ "grad_norm": 0.6505608558654785,
1961
+ "learning_rate": 4.996190766417797e-05,
1962
+ "loss": 0.6554,
1963
+ "step": 6975
1964
+ },
1965
+ {
1966
+ "epoch": 1.0344333120126354,
1967
+ "grad_norm": 0.6918332576751709,
1968
+ "learning_rate": 4.977144598506781e-05,
1969
+ "loss": 0.6645,
1970
+ "step": 7000
1971
+ },
1972
+ {
1973
+ "epoch": 1.0381278733873818,
1974
+ "grad_norm": 0.5876255035400391,
1975
+ "learning_rate": 4.9580984305957646e-05,
1976
+ "loss": 0.6638,
1977
+ "step": 7025
1978
+ },
1979
+ {
1980
+ "epoch": 1.0418224347621279,
1981
+ "grad_norm": 0.7554610967636108,
1982
+ "learning_rate": 4.939052262684748e-05,
1983
+ "loss": 0.6742,
1984
+ "step": 7050
1985
+ },
1986
+ {
1987
+ "epoch": 1.0455169961368742,
1988
+ "grad_norm": 0.6300481557846069,
1989
+ "learning_rate": 4.920006094773732e-05,
1990
+ "loss": 0.6409,
1991
+ "step": 7075
1992
+ },
1993
+ {
1994
+ "epoch": 1.0492115575116205,
1995
+ "grad_norm": 0.5924395322799683,
1996
+ "learning_rate": 4.900959926862715e-05,
1997
+ "loss": 0.668,
1998
+ "step": 7100
1999
+ },
2000
+ {
2001
+ "epoch": 1.0529061188863669,
2002
+ "grad_norm": 0.6832597851753235,
2003
+ "learning_rate": 4.881913758951699e-05,
2004
+ "loss": 0.6431,
2005
+ "step": 7125
2006
+ },
2007
+ {
2008
+ "epoch": 1.0566006802611132,
2009
+ "grad_norm": 0.702418863773346,
2010
+ "learning_rate": 4.862867591040683e-05,
2011
+ "loss": 0.6463,
2012
+ "step": 7150
2013
+ },
2014
+ {
2015
+ "epoch": 1.0602952416358593,
2016
+ "grad_norm": 0.6264967918395996,
2017
+ "learning_rate": 4.843821423129666e-05,
2018
+ "loss": 0.653,
2019
+ "step": 7175
2020
+ },
2021
+ {
2022
+ "epoch": 1.0639898030106056,
2023
+ "grad_norm": 0.6441030502319336,
2024
+ "learning_rate": 4.82477525521865e-05,
2025
+ "loss": 0.6415,
2026
+ "step": 7200
2027
+ },
2028
+ {
2029
+ "epoch": 1.067684364385352,
2030
+ "grad_norm": 0.5445654392242432,
2031
+ "learning_rate": 4.805729087307634e-05,
2032
+ "loss": 0.6516,
2033
+ "step": 7225
2034
+ },
2035
+ {
2036
+ "epoch": 1.0713789257600983,
2037
+ "grad_norm": 0.634982168674469,
2038
+ "learning_rate": 4.786682919396618e-05,
2039
+ "loss": 0.6617,
2040
+ "step": 7250
2041
+ },
2042
+ {
2043
+ "epoch": 1.0750734871348446,
2044
+ "grad_norm": 0.5670004487037659,
2045
+ "learning_rate": 4.7676367514856013e-05,
2046
+ "loss": 0.644,
2047
+ "step": 7275
2048
+ },
2049
+ {
2050
+ "epoch": 1.0787680485095907,
2051
+ "grad_norm": 0.6136172413825989,
2052
+ "learning_rate": 4.7485905835745846e-05,
2053
+ "loss": 0.6404,
2054
+ "step": 7300
2055
+ },
2056
+ {
2057
+ "epoch": 1.082462609884337,
2058
+ "grad_norm": 0.6087863445281982,
2059
+ "learning_rate": 4.7295444156635686e-05,
2060
+ "loss": 0.666,
2061
+ "step": 7325
2062
+ },
2063
+ {
2064
+ "epoch": 1.0861571712590834,
2065
+ "grad_norm": 0.54926997423172,
2066
+ "learning_rate": 4.7104982477525525e-05,
2067
+ "loss": 0.6157,
2068
+ "step": 7350
2069
+ },
2070
+ {
2071
+ "epoch": 1.0898517326338297,
2072
+ "grad_norm": 0.6426320672035217,
2073
+ "learning_rate": 4.6914520798415364e-05,
2074
+ "loss": 0.6349,
2075
+ "step": 7375
2076
+ },
2077
+ {
2078
+ "epoch": 1.093546294008576,
2079
+ "grad_norm": 0.5854539275169373,
2080
+ "learning_rate": 4.67240591193052e-05,
2081
+ "loss": 0.6583,
2082
+ "step": 7400
2083
+ },
2084
+ {
2085
+ "epoch": 1.0972408553833224,
2086
+ "grad_norm": 0.7021641731262207,
2087
+ "learning_rate": 4.6533597440195036e-05,
2088
+ "loss": 0.6682,
2089
+ "step": 7425
2090
+ },
2091
+ {
2092
+ "epoch": 1.1009354167580685,
2093
+ "grad_norm": 0.7356472611427307,
2094
+ "learning_rate": 4.634313576108487e-05,
2095
+ "loss": 0.6563,
2096
+ "step": 7450
2097
+ },
2098
+ {
2099
+ "epoch": 1.1046299781328148,
2100
+ "grad_norm": 0.6147669553756714,
2101
+ "learning_rate": 4.615267408197471e-05,
2102
+ "loss": 0.667,
2103
+ "step": 7475
2104
+ },
2105
+ {
2106
+ "epoch": 1.1083245395075612,
2107
+ "grad_norm": 0.6394315958023071,
2108
+ "learning_rate": 4.596221240286455e-05,
2109
+ "loss": 0.6737,
2110
+ "step": 7500
2111
+ },
2112
+ {
2113
+ "epoch": 1.1120191008823075,
2114
+ "grad_norm": 0.7234614491462708,
2115
+ "learning_rate": 4.577175072375438e-05,
2116
+ "loss": 0.6556,
2117
+ "step": 7525
2118
+ },
2119
+ {
2120
+ "epoch": 1.1157136622570538,
2121
+ "grad_norm": 0.6812229156494141,
2122
+ "learning_rate": 4.558128904464422e-05,
2123
+ "loss": 0.6544,
2124
+ "step": 7550
2125
+ },
2126
+ {
2127
+ "epoch": 1.1194082236318,
2128
+ "grad_norm": 0.6218217611312866,
2129
+ "learning_rate": 4.539082736553405e-05,
2130
+ "loss": 0.668,
2131
+ "step": 7575
2132
+ },
2133
+ {
2134
+ "epoch": 1.1231027850065463,
2135
+ "grad_norm": 0.8202681541442871,
2136
+ "learning_rate": 4.52003656864239e-05,
2137
+ "loss": 0.679,
2138
+ "step": 7600
2139
+ },
2140
+ {
2141
+ "epoch": 1.1267973463812926,
2142
+ "grad_norm": 0.5360725522041321,
2143
+ "learning_rate": 4.500990400731373e-05,
2144
+ "loss": 0.6463,
2145
+ "step": 7625
2146
+ },
2147
+ {
2148
+ "epoch": 1.130491907756039,
2149
+ "grad_norm": 0.6142716407775879,
2150
+ "learning_rate": 4.481944232820357e-05,
2151
+ "loss": 0.659,
2152
+ "step": 7650
2153
+ },
2154
+ {
2155
+ "epoch": 1.1341864691307852,
2156
+ "grad_norm": 0.619349479675293,
2157
+ "learning_rate": 4.4628980649093404e-05,
2158
+ "loss": 0.6724,
2159
+ "step": 7675
2160
+ },
2161
+ {
2162
+ "epoch": 1.1378810305055314,
2163
+ "grad_norm": 0.6891987323760986,
2164
+ "learning_rate": 4.4438518969983236e-05,
2165
+ "loss": 0.6509,
2166
+ "step": 7700
2167
+ },
2168
+ {
2169
+ "epoch": 1.1415755918802777,
2170
+ "grad_norm": 0.7174720168113708,
2171
+ "learning_rate": 4.424805729087308e-05,
2172
+ "loss": 0.6715,
2173
+ "step": 7725
2174
+ },
2175
+ {
2176
+ "epoch": 1.145270153255024,
2177
+ "grad_norm": 0.7424497008323669,
2178
+ "learning_rate": 4.4057595611762915e-05,
2179
+ "loss": 0.6449,
2180
+ "step": 7750
2181
+ },
2182
+ {
2183
+ "epoch": 1.1489647146297703,
2184
+ "grad_norm": 0.6533998847007751,
2185
+ "learning_rate": 4.3867133932652754e-05,
2186
+ "loss": 0.6528,
2187
+ "step": 7775
2188
+ },
2189
+ {
2190
+ "epoch": 1.1526592760045167,
2191
+ "grad_norm": 0.7500383853912354,
2192
+ "learning_rate": 4.367667225354259e-05,
2193
+ "loss": 0.6592,
2194
+ "step": 7800
2195
+ },
2196
+ {
2197
+ "epoch": 1.156353837379263,
2198
+ "grad_norm": 0.6293950080871582,
2199
+ "learning_rate": 4.3486210574432427e-05,
2200
+ "loss": 0.6584,
2201
+ "step": 7825
2202
+ },
2203
+ {
2204
+ "epoch": 1.1600483987540091,
2205
+ "grad_norm": 0.8463473320007324,
2206
+ "learning_rate": 4.3295748895322266e-05,
2207
+ "loss": 0.6656,
2208
+ "step": 7850
2209
+ },
2210
+ {
2211
+ "epoch": 1.1637429601287554,
2212
+ "grad_norm": 0.6918061971664429,
2213
+ "learning_rate": 4.31052872162121e-05,
2214
+ "loss": 0.6603,
2215
+ "step": 7875
2216
+ },
2217
+ {
2218
+ "epoch": 1.1674375215035018,
2219
+ "grad_norm": 0.5433516502380371,
2220
+ "learning_rate": 4.291482553710194e-05,
2221
+ "loss": 0.6422,
2222
+ "step": 7900
2223
+ },
2224
+ {
2225
+ "epoch": 1.171132082878248,
2226
+ "grad_norm": 0.6414408087730408,
2227
+ "learning_rate": 4.272436385799177e-05,
2228
+ "loss": 0.6279,
2229
+ "step": 7925
2230
+ },
2231
+ {
2232
+ "epoch": 1.1748266442529944,
2233
+ "grad_norm": 0.814218282699585,
2234
+ "learning_rate": 4.253390217888161e-05,
2235
+ "loss": 0.6673,
2236
+ "step": 7950
2237
+ },
2238
+ {
2239
+ "epoch": 1.1785212056277405,
2240
+ "grad_norm": 0.7378386855125427,
2241
+ "learning_rate": 4.234344049977145e-05,
2242
+ "loss": 0.6651,
2243
+ "step": 7975
2244
+ },
2245
+ {
2246
+ "epoch": 1.1822157670024869,
2247
+ "grad_norm": 0.6620386242866516,
2248
+ "learning_rate": 4.215297882066129e-05,
2249
+ "loss": 0.6984,
2250
+ "step": 8000
2251
+ },
2252
+ {
2253
+ "epoch": 1.1859103283772332,
2254
+ "grad_norm": 0.6845581531524658,
2255
+ "learning_rate": 4.196251714155112e-05,
2256
+ "loss": 0.6524,
2257
+ "step": 8025
2258
+ },
2259
+ {
2260
+ "epoch": 1.1896048897519795,
2261
+ "grad_norm": 0.7139785289764404,
2262
+ "learning_rate": 4.1772055462440954e-05,
2263
+ "loss": 0.6453,
2264
+ "step": 8050
2265
+ },
2266
+ {
2267
+ "epoch": 1.1932994511267259,
2268
+ "grad_norm": 0.6536353230476379,
2269
+ "learning_rate": 4.1581593783330794e-05,
2270
+ "loss": 0.6456,
2271
+ "step": 8075
2272
+ },
2273
+ {
2274
+ "epoch": 1.196994012501472,
2275
+ "grad_norm": 0.6225493550300598,
2276
+ "learning_rate": 4.139113210422063e-05,
2277
+ "loss": 0.6192,
2278
+ "step": 8100
2279
+ },
2280
+ {
2281
+ "epoch": 1.2006885738762183,
2282
+ "grad_norm": 0.6810159683227539,
2283
+ "learning_rate": 4.120067042511047e-05,
2284
+ "loss": 0.6634,
2285
+ "step": 8125
2286
+ },
2287
+ {
2288
+ "epoch": 1.2043831352509646,
2289
+ "grad_norm": 0.5847315788269043,
2290
+ "learning_rate": 4.1010208746000305e-05,
2291
+ "loss": 0.6231,
2292
+ "step": 8150
2293
+ },
2294
+ {
2295
+ "epoch": 1.208077696625711,
2296
+ "grad_norm": 0.6385469436645508,
2297
+ "learning_rate": 4.0819747066890144e-05,
2298
+ "loss": 0.6619,
2299
+ "step": 8175
2300
+ },
2301
+ {
2302
+ "epoch": 1.2117722580004573,
2303
+ "grad_norm": 0.7124472260475159,
2304
+ "learning_rate": 4.0629285387779984e-05,
2305
+ "loss": 0.6626,
2306
+ "step": 8200
2307
+ },
2308
+ {
2309
+ "epoch": 1.2154668193752034,
2310
+ "grad_norm": 0.658824622631073,
2311
+ "learning_rate": 4.0438823708669817e-05,
2312
+ "loss": 0.6653,
2313
+ "step": 8225
2314
+ },
2315
+ {
2316
+ "epoch": 1.2191613807499497,
2317
+ "grad_norm": 0.6626468300819397,
2318
+ "learning_rate": 4.0248362029559656e-05,
2319
+ "loss": 0.6777,
2320
+ "step": 8250
2321
+ },
2322
+ {
2323
+ "epoch": 1.222855942124696,
2324
+ "grad_norm": 0.6238393783569336,
2325
+ "learning_rate": 4.005790035044949e-05,
2326
+ "loss": 0.6622,
2327
+ "step": 8275
2328
+ },
2329
+ {
2330
+ "epoch": 1.2265505034994424,
2331
+ "grad_norm": 0.685213565826416,
2332
+ "learning_rate": 3.986743867133933e-05,
2333
+ "loss": 0.6423,
2334
+ "step": 8300
2335
+ },
2336
+ {
2337
+ "epoch": 1.2302450648741887,
2338
+ "grad_norm": 0.7486940622329712,
2339
+ "learning_rate": 3.967697699222917e-05,
2340
+ "loss": 0.6631,
2341
+ "step": 8325
2342
+ },
2343
+ {
2344
+ "epoch": 1.2339396262489348,
2345
+ "grad_norm": 0.7994277477264404,
2346
+ "learning_rate": 3.948651531311901e-05,
2347
+ "loss": 0.6725,
2348
+ "step": 8350
2349
+ },
2350
+ {
2351
+ "epoch": 1.2376341876236812,
2352
+ "grad_norm": 0.6204445958137512,
2353
+ "learning_rate": 3.929605363400884e-05,
2354
+ "loss": 0.6411,
2355
+ "step": 8375
2356
+ },
2357
+ {
2358
+ "epoch": 1.2413287489984275,
2359
+ "grad_norm": 0.7625504732131958,
2360
+ "learning_rate": 3.910559195489867e-05,
2361
+ "loss": 0.6819,
2362
+ "step": 8400
2363
+ },
2364
+ {
2365
+ "epoch": 1.2450233103731738,
2366
+ "grad_norm": 0.6892343163490295,
2367
+ "learning_rate": 3.891513027578851e-05,
2368
+ "loss": 0.6614,
2369
+ "step": 8425
2370
+ },
2371
+ {
2372
+ "epoch": 1.2487178717479201,
2373
+ "grad_norm": 0.6849514245986938,
2374
+ "learning_rate": 3.872466859667835e-05,
2375
+ "loss": 0.6442,
2376
+ "step": 8450
2377
+ },
2378
+ {
2379
+ "epoch": 1.2524124331226663,
2380
+ "grad_norm": 0.7257765531539917,
2381
+ "learning_rate": 3.853420691756819e-05,
2382
+ "loss": 0.6475,
2383
+ "step": 8475
2384
+ },
2385
+ {
2386
+ "epoch": 1.2561069944974126,
2387
+ "grad_norm": 0.7827818393707275,
2388
+ "learning_rate": 3.834374523845802e-05,
2389
+ "loss": 0.6317,
2390
+ "step": 8500
2391
+ },
2392
+ {
2393
+ "epoch": 1.259801555872159,
2394
+ "grad_norm": 0.7970981597900391,
2395
+ "learning_rate": 3.815328355934786e-05,
2396
+ "loss": 0.6585,
2397
+ "step": 8525
2398
+ },
2399
+ {
2400
+ "epoch": 1.2634961172469052,
2401
+ "grad_norm": 0.7086262106895447,
2402
+ "learning_rate": 3.7962821880237695e-05,
2403
+ "loss": 0.6499,
2404
+ "step": 8550
2405
+ },
2406
+ {
2407
+ "epoch": 1.2671906786216516,
2408
+ "grad_norm": 0.654151439666748,
2409
+ "learning_rate": 3.7772360201127535e-05,
2410
+ "loss": 0.6587,
2411
+ "step": 8575
2412
+ },
2413
+ {
2414
+ "epoch": 1.2708852399963977,
2415
+ "grad_norm": 0.6484542489051819,
2416
+ "learning_rate": 3.7581898522017374e-05,
2417
+ "loss": 0.6533,
2418
+ "step": 8600
2419
+ },
2420
+ {
2421
+ "epoch": 1.274579801371144,
2422
+ "grad_norm": 0.5822983384132385,
2423
+ "learning_rate": 3.7391436842907207e-05,
2424
+ "loss": 0.6535,
2425
+ "step": 8625
2426
+ },
2427
+ {
2428
+ "epoch": 1.2782743627458903,
2429
+ "grad_norm": 0.6506041884422302,
2430
+ "learning_rate": 3.7200975163797046e-05,
2431
+ "loss": 0.6527,
2432
+ "step": 8650
2433
+ },
2434
+ {
2435
+ "epoch": 1.2819689241206367,
2436
+ "grad_norm": 0.6804136037826538,
2437
+ "learning_rate": 3.701051348468688e-05,
2438
+ "loss": 0.642,
2439
+ "step": 8675
2440
+ },
2441
+ {
2442
+ "epoch": 1.285663485495383,
2443
+ "grad_norm": 0.7997829914093018,
2444
+ "learning_rate": 3.6820051805576725e-05,
2445
+ "loss": 0.6489,
2446
+ "step": 8700
2447
+ },
2448
+ {
2449
+ "epoch": 1.2893580468701291,
2450
+ "grad_norm": 0.7355867028236389,
2451
+ "learning_rate": 3.662959012646656e-05,
2452
+ "loss": 0.6777,
2453
+ "step": 8725
2454
+ },
2455
+ {
2456
+ "epoch": 1.2930526082448754,
2457
+ "grad_norm": 9.047796249389648,
2458
+ "learning_rate": 3.643912844735639e-05,
2459
+ "loss": 0.6777,
2460
+ "step": 8750
2461
+ },
2462
+ {
2463
+ "epoch": 1.2967471696196218,
2464
+ "grad_norm": 0.7236223220825195,
2465
+ "learning_rate": 3.624866676824623e-05,
2466
+ "loss": 0.6777,
2467
+ "step": 8775
2468
+ },
2469
+ {
2470
+ "epoch": 1.300441730994368,
2471
+ "grad_norm": 0.6845753192901611,
2472
+ "learning_rate": 3.605820508913607e-05,
2473
+ "loss": 0.6284,
2474
+ "step": 8800
2475
+ },
2476
+ {
2477
+ "epoch": 1.3041362923691144,
2478
+ "grad_norm": 0.7639452815055847,
2479
+ "learning_rate": 3.586774341002591e-05,
2480
+ "loss": 0.6822,
2481
+ "step": 8825
2482
+ },
2483
+ {
2484
+ "epoch": 1.3078308537438605,
2485
+ "grad_norm": 0.6909865736961365,
2486
+ "learning_rate": 3.567728173091574e-05,
2487
+ "loss": 0.6737,
2488
+ "step": 8850
2489
+ },
2490
+ {
2491
+ "epoch": 1.311525415118607,
2492
+ "grad_norm": 0.6128563284873962,
2493
+ "learning_rate": 3.548682005180558e-05,
2494
+ "loss": 0.666,
2495
+ "step": 8875
2496
+ },
2497
+ {
2498
+ "epoch": 1.3152199764933532,
2499
+ "grad_norm": 0.7517656087875366,
2500
+ "learning_rate": 3.529635837269541e-05,
2501
+ "loss": 0.6389,
2502
+ "step": 8900
2503
+ },
2504
+ {
2505
+ "epoch": 1.3189145378680995,
2506
+ "grad_norm": 0.7127660512924194,
2507
+ "learning_rate": 3.510589669358525e-05,
2508
+ "loss": 0.6334,
2509
+ "step": 8925
2510
+ },
2511
+ {
2512
+ "epoch": 1.3226090992428459,
2513
+ "grad_norm": 0.7129451632499695,
2514
+ "learning_rate": 3.491543501447509e-05,
2515
+ "loss": 0.6545,
2516
+ "step": 8950
2517
+ },
2518
+ {
2519
+ "epoch": 1.3263036606175922,
2520
+ "grad_norm": 0.7367307543754578,
2521
+ "learning_rate": 3.4724973335364925e-05,
2522
+ "loss": 0.6329,
2523
+ "step": 8975
2524
+ },
2525
+ {
2526
+ "epoch": 1.3299982219923385,
2527
+ "grad_norm": 0.7707272171974182,
2528
+ "learning_rate": 3.4534511656254764e-05,
2529
+ "loss": 0.6469,
2530
+ "step": 9000
2531
+ },
2532
+ {
2533
+ "epoch": 1.3336927833670846,
2534
+ "grad_norm": 0.5796623826026917,
2535
+ "learning_rate": 3.43440499771446e-05,
2536
+ "loss": 0.6533,
2537
+ "step": 9025
2538
+ },
2539
+ {
2540
+ "epoch": 1.337387344741831,
2541
+ "grad_norm": 210.8633270263672,
2542
+ "learning_rate": 3.4153588298034436e-05,
2543
+ "loss": 0.663,
2544
+ "step": 9050
2545
+ },
2546
+ {
2547
+ "epoch": 1.3410819061165773,
2548
+ "grad_norm": 0.6077564358711243,
2549
+ "learning_rate": 3.3963126618924275e-05,
2550
+ "loss": 0.6529,
2551
+ "step": 9075
2552
+ },
2553
+ {
2554
+ "epoch": 1.3447764674913236,
2555
+ "grad_norm": 0.5756903290748596,
2556
+ "learning_rate": 3.3772664939814115e-05,
2557
+ "loss": 0.6379,
2558
+ "step": 9100
2559
+ },
2560
+ {
2561
+ "epoch": 1.34847102886607,
2562
+ "grad_norm": 0.6951320171356201,
2563
+ "learning_rate": 3.358220326070395e-05,
2564
+ "loss": 0.6572,
2565
+ "step": 9125
2566
+ },
2567
+ {
2568
+ "epoch": 1.352165590240816,
2569
+ "grad_norm": 0.654563307762146,
2570
+ "learning_rate": 3.339174158159378e-05,
2571
+ "loss": 0.6571,
2572
+ "step": 9150
2573
+ },
2574
+ {
2575
+ "epoch": 1.3558601516155624,
2576
+ "grad_norm": 0.8268250823020935,
2577
+ "learning_rate": 3.320127990248362e-05,
2578
+ "loss": 0.6952,
2579
+ "step": 9175
2580
+ },
2581
+ {
2582
+ "epoch": 1.3595547129903087,
2583
+ "grad_norm": 0.7915245890617371,
2584
+ "learning_rate": 3.301081822337346e-05,
2585
+ "loss": 0.6442,
2586
+ "step": 9200
2587
+ },
2588
+ {
2589
+ "epoch": 1.363249274365055,
2590
+ "grad_norm": 0.7299513816833496,
2591
+ "learning_rate": 3.28203565442633e-05,
2592
+ "loss": 0.6347,
2593
+ "step": 9225
2594
+ },
2595
+ {
2596
+ "epoch": 1.3669438357398014,
2597
+ "grad_norm": 0.6474806070327759,
2598
+ "learning_rate": 3.262989486515313e-05,
2599
+ "loss": 0.6604,
2600
+ "step": 9250
2601
+ },
2602
+ {
2603
+ "epoch": 1.3706383971145475,
2604
+ "grad_norm": 0.6813268661499023,
2605
+ "learning_rate": 3.243943318604297e-05,
2606
+ "loss": 0.66,
2607
+ "step": 9275
2608
+ },
2609
+ {
2610
+ "epoch": 1.3743329584892938,
2611
+ "grad_norm": 0.7166799306869507,
2612
+ "learning_rate": 3.224897150693281e-05,
2613
+ "loss": 0.6689,
2614
+ "step": 9300
2615
+ },
2616
+ {
2617
+ "epoch": 1.3780275198640402,
2618
+ "grad_norm": 0.6958301663398743,
2619
+ "learning_rate": 3.205850982782264e-05,
2620
+ "loss": 0.6512,
2621
+ "step": 9325
2622
+ },
2623
+ {
2624
+ "epoch": 1.3817220812387865,
2625
+ "grad_norm": 0.8137691617012024,
2626
+ "learning_rate": 3.186804814871248e-05,
2627
+ "loss": 0.6691,
2628
+ "step": 9350
2629
+ },
2630
+ {
2631
+ "epoch": 1.3854166426135328,
2632
+ "grad_norm": 0.6115707159042358,
2633
+ "learning_rate": 3.1677586469602315e-05,
2634
+ "loss": 0.6733,
2635
+ "step": 9375
2636
+ },
2637
+ {
2638
+ "epoch": 1.389111203988279,
2639
+ "grad_norm": 0.7478678822517395,
2640
+ "learning_rate": 3.1487124790492154e-05,
2641
+ "loss": 0.6514,
2642
+ "step": 9400
2643
+ },
2644
+ {
2645
+ "epoch": 1.3928057653630252,
2646
+ "grad_norm": 0.7280460000038147,
2647
+ "learning_rate": 3.1296663111381993e-05,
2648
+ "loss": 0.6375,
2649
+ "step": 9425
2650
+ },
2651
+ {
2652
+ "epoch": 1.3965003267377716,
2653
+ "grad_norm": 0.6709932088851929,
2654
+ "learning_rate": 3.110620143227183e-05,
2655
+ "loss": 0.6843,
2656
+ "step": 9450
2657
+ },
2658
+ {
2659
+ "epoch": 1.400194888112518,
2660
+ "grad_norm": 0.6445898413658142,
2661
+ "learning_rate": 3.0915739753161666e-05,
2662
+ "loss": 0.6395,
2663
+ "step": 9475
2664
+ },
2665
+ {
2666
+ "epoch": 1.4038894494872642,
2667
+ "grad_norm": 0.6072065830230713,
2668
+ "learning_rate": 3.07252780740515e-05,
2669
+ "loss": 0.6615,
2670
+ "step": 9500
2671
+ },
2672
+ {
2673
+ "epoch": 1.4075840108620103,
2674
+ "grad_norm": 0.7841944098472595,
2675
+ "learning_rate": 3.053481639494134e-05,
2676
+ "loss": 0.6388,
2677
+ "step": 9525
2678
+ },
2679
+ {
2680
+ "epoch": 1.4112785722367567,
2681
+ "grad_norm": 0.7215288281440735,
2682
+ "learning_rate": 3.0344354715831174e-05,
2683
+ "loss": 0.6694,
2684
+ "step": 9550
2685
+ },
2686
+ {
2687
+ "epoch": 1.414973133611503,
2688
+ "grad_norm": 0.5916579961776733,
2689
+ "learning_rate": 3.0153893036721016e-05,
2690
+ "loss": 0.7004,
2691
+ "step": 9575
2692
+ },
2693
+ {
2694
+ "epoch": 1.4186676949862493,
2695
+ "grad_norm": 0.6357461214065552,
2696
+ "learning_rate": 2.996343135761085e-05,
2697
+ "loss": 0.6416,
2698
+ "step": 9600
2699
+ },
2700
+ {
2701
+ "epoch": 1.4223622563609957,
2702
+ "grad_norm": 0.735261857509613,
2703
+ "learning_rate": 2.977296967850069e-05,
2704
+ "loss": 0.6374,
2705
+ "step": 9625
2706
+ },
2707
+ {
2708
+ "epoch": 1.4260568177357418,
2709
+ "grad_norm": 0.7285844087600708,
2710
+ "learning_rate": 2.9582507999390525e-05,
2711
+ "loss": 0.6448,
2712
+ "step": 9650
2713
+ },
2714
+ {
2715
+ "epoch": 1.429751379110488,
2716
+ "grad_norm": 0.7573617100715637,
2717
+ "learning_rate": 2.9392046320280357e-05,
2718
+ "loss": 0.6672,
2719
+ "step": 9675
2720
+ },
2721
+ {
2722
+ "epoch": 1.4334459404852344,
2723
+ "grad_norm": 0.5082629919052124,
2724
+ "learning_rate": 2.92015846411702e-05,
2725
+ "loss": 0.6514,
2726
+ "step": 9700
2727
+ },
2728
+ {
2729
+ "epoch": 1.4371405018599808,
2730
+ "grad_norm": 0.6786466836929321,
2731
+ "learning_rate": 2.9011122962060033e-05,
2732
+ "loss": 0.6542,
2733
+ "step": 9725
2734
+ },
2735
+ {
2736
+ "epoch": 1.440835063234727,
2737
+ "grad_norm": 0.6085937023162842,
2738
+ "learning_rate": 2.8820661282949872e-05,
2739
+ "loss": 0.6581,
2740
+ "step": 9750
2741
+ },
2742
+ {
2743
+ "epoch": 1.4445296246094732,
2744
+ "grad_norm": 0.6520203351974487,
2745
+ "learning_rate": 2.8630199603839708e-05,
2746
+ "loss": 0.6469,
2747
+ "step": 9775
2748
+ },
2749
+ {
2750
+ "epoch": 1.4482241859842195,
2751
+ "grad_norm": 0.5597354769706726,
2752
+ "learning_rate": 2.8439737924729548e-05,
2753
+ "loss": 0.6418,
2754
+ "step": 9800
2755
+ },
2756
+ {
2757
+ "epoch": 1.4519187473589659,
2758
+ "grad_norm": 0.6233022809028625,
2759
+ "learning_rate": 2.8249276245619384e-05,
2760
+ "loss": 0.6371,
2761
+ "step": 9825
2762
+ },
2763
+ {
2764
+ "epoch": 1.4556133087337122,
2765
+ "grad_norm": 0.880703866481781,
2766
+ "learning_rate": 2.8058814566509216e-05,
2767
+ "loss": 0.6647,
2768
+ "step": 9850
2769
+ },
2770
+ {
2771
+ "epoch": 1.4593078701084585,
2772
+ "grad_norm": 0.6821489334106445,
2773
+ "learning_rate": 2.786835288739906e-05,
2774
+ "loss": 0.6545,
2775
+ "step": 9875
2776
+ },
2777
+ {
2778
+ "epoch": 1.4630024314832046,
2779
+ "grad_norm": 0.6734182834625244,
2780
+ "learning_rate": 2.767789120828889e-05,
2781
+ "loss": 0.6385,
2782
+ "step": 9900
2783
+ },
2784
+ {
2785
+ "epoch": 1.466696992857951,
2786
+ "grad_norm": 0.8161661028862,
2787
+ "learning_rate": 2.748742952917873e-05,
2788
+ "loss": 0.6526,
2789
+ "step": 9925
2790
+ },
2791
+ {
2792
+ "epoch": 1.4703915542326973,
2793
+ "grad_norm": 0.6308382153511047,
2794
+ "learning_rate": 2.7296967850068567e-05,
2795
+ "loss": 0.6561,
2796
+ "step": 9950
2797
+ },
2798
+ {
2799
+ "epoch": 1.4740861156074436,
2800
+ "grad_norm": 0.791493833065033,
2801
+ "learning_rate": 2.7106506170958406e-05,
2802
+ "loss": 0.6607,
2803
+ "step": 9975
2804
+ },
2805
+ {
2806
+ "epoch": 1.47778067698219,
2807
+ "grad_norm": 0.7888880372047424,
2808
+ "learning_rate": 2.6916044491848243e-05,
2809
+ "loss": 0.6511,
2810
+ "step": 10000
2811
+ }
2812
+ ],
2813
+ "logging_steps": 25,
2814
+ "max_steps": 13532,
2815
+ "num_input_tokens_seen": 0,
2816
+ "num_train_epochs": 2,
2817
+ "save_steps": 1000,
2818
+ "stateful_callbacks": {
2819
+ "TrainerControl": {
2820
+ "args": {
2821
+ "should_epoch_stop": false,
2822
+ "should_evaluate": false,
2823
+ "should_log": false,
2824
+ "should_save": true,
2825
+ "should_training_stop": false
2826
+ },
2827
+ "attributes": {}
2828
+ }
2829
+ },
2830
+ "total_flos": 4.001171062528594e+19,
2831
+ "train_batch_size": 1,
2832
+ "trial_name": null,
2833
+ "trial_params": null
2834
+ }
checkpoint-10000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddec6eef92f76dd21b66ba65fc3f8486e2d925551fb3a26f493b39225b02363f
3
+ size 5969
checkpoint-10000/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-11000/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/Qwen3-8B-Base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
checkpoint-11000/adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/Qwen3-8B-Base",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": [
22
+ "lm_head",
23
+ "embed_tokens"
24
+ ],
25
+ "peft_type": "LORA",
26
+ "r": 32,
27
+ "rank_pattern": {},
28
+ "revision": null,
29
+ "target_modules": [
30
+ "down_proj",
31
+ "gate_proj",
32
+ "k_proj",
33
+ "o_proj",
34
+ "q_proj",
35
+ "v_proj",
36
+ "up_proj"
37
+ ],
38
+ "task_type": "CAUSAL_LM",
39
+ "trainable_token_indices": null,
40
+ "use_dora": false,
41
+ "use_rslora": false
42
+ }
checkpoint-11000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:030b89f4b6884a074530d5409f3883af935c5c59340b284c0735fa940e7cf8ef
3
+ size 2838563408
checkpoint-11000/added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
checkpoint-11000/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-11000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6abbef3e7769a829003a169dd94ef074ba6ac16a2ce828e6af4b7b913bb2270
3
+ size 2706136909
checkpoint-11000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de69a2834426ff9ef8199d077e00892579278af31d8969d77f98235b5cfc010a
3
+ size 14645
checkpoint-11000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbb24d096d2f8bff4d8a71163f4fedb5401bf03cc617a704f21afaedb47914aa
3
+ size 1465
checkpoint-11000/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|vision_pad|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-11000/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
checkpoint-11000/tokenizer_config.json ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is defined and message.reasoning_content is not none %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in message.content %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
231
+ "clean_up_tokenization_spaces": false,
232
+ "eos_token": "<|endoftext|>",
233
+ "errors": "replace",
234
+ "extra_special_tokens": {},
235
+ "model_max_length": 32768,
236
+ "pad_token": "<|vision_pad|>",
237
+ "padding_side": "right",
238
+ "split_special_tokens": false,
239
+ "tokenizer_class": "Qwen2Tokenizer",
240
+ "unk_token": null
241
+ }
checkpoint-11000/trainer_state.json ADDED
@@ -0,0 +1,3114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.6255631319720414,
6
+ "eval_steps": 500,
7
+ "global_step": 11000,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0036945613747462877,
14
+ "grad_norm": 2.2292165756225586,
15
+ "learning_rate": 5.911330049261084e-06,
16
+ "loss": 0.9395,
17
+ "step": 25
18
+ },
19
+ {
20
+ "epoch": 0.007389122749492575,
21
+ "grad_norm": 0.8381065130233765,
22
+ "learning_rate": 1.206896551724138e-05,
23
+ "loss": 0.89,
24
+ "step": 50
25
+ },
26
+ {
27
+ "epoch": 0.011083684124238862,
28
+ "grad_norm": 0.9238471984863281,
29
+ "learning_rate": 1.8226600985221676e-05,
30
+ "loss": 0.8384,
31
+ "step": 75
32
+ },
33
+ {
34
+ "epoch": 0.01477824549898515,
35
+ "grad_norm": 0.6837311387062073,
36
+ "learning_rate": 2.438423645320197e-05,
37
+ "loss": 0.784,
38
+ "step": 100
39
+ },
40
+ {
41
+ "epoch": 0.01847280687373144,
42
+ "grad_norm": 0.7093706727027893,
43
+ "learning_rate": 3.0541871921182266e-05,
44
+ "loss": 0.7675,
45
+ "step": 125
46
+ },
47
+ {
48
+ "epoch": 0.022167368248477724,
49
+ "grad_norm": 0.6208077073097229,
50
+ "learning_rate": 3.669950738916256e-05,
51
+ "loss": 0.7466,
52
+ "step": 150
53
+ },
54
+ {
55
+ "epoch": 0.025861929623224013,
56
+ "grad_norm": 0.8929094076156616,
57
+ "learning_rate": 4.2857142857142856e-05,
58
+ "loss": 0.7386,
59
+ "step": 175
60
+ },
61
+ {
62
+ "epoch": 0.0295564909979703,
63
+ "grad_norm": 0.7828120589256287,
64
+ "learning_rate": 4.901477832512316e-05,
65
+ "loss": 0.7173,
66
+ "step": 200
67
+ },
68
+ {
69
+ "epoch": 0.03325105237271659,
70
+ "grad_norm": 0.7134449481964111,
71
+ "learning_rate": 5.517241379310345e-05,
72
+ "loss": 0.7108,
73
+ "step": 225
74
+ },
75
+ {
76
+ "epoch": 0.03694561374746288,
77
+ "grad_norm": 0.7464851140975952,
78
+ "learning_rate": 6.133004926108375e-05,
79
+ "loss": 0.7332,
80
+ "step": 250
81
+ },
82
+ {
83
+ "epoch": 0.04064017512220916,
84
+ "grad_norm": 0.677793025970459,
85
+ "learning_rate": 6.748768472906404e-05,
86
+ "loss": 0.7194,
87
+ "step": 275
88
+ },
89
+ {
90
+ "epoch": 0.04433473649695545,
91
+ "grad_norm": 0.7936354875564575,
92
+ "learning_rate": 7.364532019704434e-05,
93
+ "loss": 0.7253,
94
+ "step": 300
95
+ },
96
+ {
97
+ "epoch": 0.04802929787170174,
98
+ "grad_norm": 0.6711100935935974,
99
+ "learning_rate": 7.980295566502463e-05,
100
+ "loss": 0.7018,
101
+ "step": 325
102
+ },
103
+ {
104
+ "epoch": 0.051723859246448026,
105
+ "grad_norm": 0.5816489458084106,
106
+ "learning_rate": 8.596059113300493e-05,
107
+ "loss": 0.7298,
108
+ "step": 350
109
+ },
110
+ {
111
+ "epoch": 0.055418420621194314,
112
+ "grad_norm": 0.6680681705474854,
113
+ "learning_rate": 9.211822660098522e-05,
114
+ "loss": 0.7149,
115
+ "step": 375
116
+ },
117
+ {
118
+ "epoch": 0.0591129819959406,
119
+ "grad_norm": 0.5643934607505798,
120
+ "learning_rate": 9.827586206896552e-05,
121
+ "loss": 0.763,
122
+ "step": 400
123
+ },
124
+ {
125
+ "epoch": 0.06280754337068689,
126
+ "grad_norm": 0.5739309191703796,
127
+ "learning_rate": 9.986286759104069e-05,
128
+ "loss": 0.7345,
129
+ "step": 425
130
+ },
131
+ {
132
+ "epoch": 0.06650210474543318,
133
+ "grad_norm": 0.5929909944534302,
134
+ "learning_rate": 9.967240591193052e-05,
135
+ "loss": 0.7364,
136
+ "step": 450
137
+ },
138
+ {
139
+ "epoch": 0.07019666612017947,
140
+ "grad_norm": 0.609235405921936,
141
+ "learning_rate": 9.948194423282036e-05,
142
+ "loss": 0.7294,
143
+ "step": 475
144
+ },
145
+ {
146
+ "epoch": 0.07389122749492576,
147
+ "grad_norm": 0.4643324613571167,
148
+ "learning_rate": 9.92914825537102e-05,
149
+ "loss": 0.7344,
150
+ "step": 500
151
+ },
152
+ {
153
+ "epoch": 0.07758578886967203,
154
+ "grad_norm": 0.5267598032951355,
155
+ "learning_rate": 9.910102087460003e-05,
156
+ "loss": 0.7249,
157
+ "step": 525
158
+ },
159
+ {
160
+ "epoch": 0.08128035024441832,
161
+ "grad_norm": 0.47951069474220276,
162
+ "learning_rate": 9.891055919548987e-05,
163
+ "loss": 0.7256,
164
+ "step": 550
165
+ },
166
+ {
167
+ "epoch": 0.08497491161916461,
168
+ "grad_norm": 0.4505012333393097,
169
+ "learning_rate": 9.87200975163797e-05,
170
+ "loss": 0.7359,
171
+ "step": 575
172
+ },
173
+ {
174
+ "epoch": 0.0886694729939109,
175
+ "grad_norm": 0.5320091247558594,
176
+ "learning_rate": 9.852963583726955e-05,
177
+ "loss": 0.6856,
178
+ "step": 600
179
+ },
180
+ {
181
+ "epoch": 0.09236403436865719,
182
+ "grad_norm": 0.5583036541938782,
183
+ "learning_rate": 9.833917415815939e-05,
184
+ "loss": 0.7235,
185
+ "step": 625
186
+ },
187
+ {
188
+ "epoch": 0.09605859574340347,
189
+ "grad_norm": 0.5139252543449402,
190
+ "learning_rate": 9.814871247904922e-05,
191
+ "loss": 0.7272,
192
+ "step": 650
193
+ },
194
+ {
195
+ "epoch": 0.09975315711814976,
196
+ "grad_norm": 0.4989326000213623,
197
+ "learning_rate": 9.795825079993906e-05,
198
+ "loss": 0.6952,
199
+ "step": 675
200
+ },
201
+ {
202
+ "epoch": 0.10344771849289605,
203
+ "grad_norm": 0.47355732321739197,
204
+ "learning_rate": 9.776778912082889e-05,
205
+ "loss": 0.7266,
206
+ "step": 700
207
+ },
208
+ {
209
+ "epoch": 0.10714227986764234,
210
+ "grad_norm": 0.3588508367538452,
211
+ "learning_rate": 9.757732744171874e-05,
212
+ "loss": 0.7406,
213
+ "step": 725
214
+ },
215
+ {
216
+ "epoch": 0.11083684124238863,
217
+ "grad_norm": 0.4120556712150574,
218
+ "learning_rate": 9.738686576260857e-05,
219
+ "loss": 0.7443,
220
+ "step": 750
221
+ },
222
+ {
223
+ "epoch": 0.11453140261713492,
224
+ "grad_norm": 0.5160555839538574,
225
+ "learning_rate": 9.71964040834984e-05,
226
+ "loss": 0.7134,
227
+ "step": 775
228
+ },
229
+ {
230
+ "epoch": 0.1182259639918812,
231
+ "grad_norm": 0.5423145890235901,
232
+ "learning_rate": 9.700594240438823e-05,
233
+ "loss": 0.7289,
234
+ "step": 800
235
+ },
236
+ {
237
+ "epoch": 0.1219205253666275,
238
+ "grad_norm": 0.5352346301078796,
239
+ "learning_rate": 9.681548072527808e-05,
240
+ "loss": 0.7144,
241
+ "step": 825
242
+ },
243
+ {
244
+ "epoch": 0.12561508674137378,
245
+ "grad_norm": 0.47908860445022583,
246
+ "learning_rate": 9.662501904616791e-05,
247
+ "loss": 0.7175,
248
+ "step": 850
249
+ },
250
+ {
251
+ "epoch": 0.12930964811612006,
252
+ "grad_norm": 0.47986069321632385,
253
+ "learning_rate": 9.643455736705776e-05,
254
+ "loss": 0.6983,
255
+ "step": 875
256
+ },
257
+ {
258
+ "epoch": 0.13300420949086636,
259
+ "grad_norm": 0.6903620958328247,
260
+ "learning_rate": 9.624409568794759e-05,
261
+ "loss": 0.7086,
262
+ "step": 900
263
+ },
264
+ {
265
+ "epoch": 0.13669877086561263,
266
+ "grad_norm": 0.44413208961486816,
267
+ "learning_rate": 9.605363400883742e-05,
268
+ "loss": 0.7306,
269
+ "step": 925
270
+ },
271
+ {
272
+ "epoch": 0.14039333224035894,
273
+ "grad_norm": 0.4634678065776825,
274
+ "learning_rate": 9.586317232972727e-05,
275
+ "loss": 0.7061,
276
+ "step": 950
277
+ },
278
+ {
279
+ "epoch": 0.1440878936151052,
280
+ "grad_norm": 0.5110129714012146,
281
+ "learning_rate": 9.56727106506171e-05,
282
+ "loss": 0.7406,
283
+ "step": 975
284
+ },
285
+ {
286
+ "epoch": 0.1477824549898515,
287
+ "grad_norm": 0.5460866093635559,
288
+ "learning_rate": 9.548224897150694e-05,
289
+ "loss": 0.721,
290
+ "step": 1000
291
+ },
292
+ {
293
+ "epoch": 0.1514770163645978,
294
+ "grad_norm": 0.5179885029792786,
295
+ "learning_rate": 9.529178729239677e-05,
296
+ "loss": 0.7068,
297
+ "step": 1025
298
+ },
299
+ {
300
+ "epoch": 0.15517157773934406,
301
+ "grad_norm": 0.40280836820602417,
302
+ "learning_rate": 9.51013256132866e-05,
303
+ "loss": 0.7009,
304
+ "step": 1050
305
+ },
306
+ {
307
+ "epoch": 0.15886613911409037,
308
+ "grad_norm": 1.2706756591796875,
309
+ "learning_rate": 9.491086393417645e-05,
310
+ "loss": 0.7125,
311
+ "step": 1075
312
+ },
313
+ {
314
+ "epoch": 0.16256070048883664,
315
+ "grad_norm": 0.4963163435459137,
316
+ "learning_rate": 9.47204022550663e-05,
317
+ "loss": 0.7149,
318
+ "step": 1100
319
+ },
320
+ {
321
+ "epoch": 0.16625526186358294,
322
+ "grad_norm": 0.5147728323936462,
323
+ "learning_rate": 9.452994057595613e-05,
324
+ "loss": 0.7245,
325
+ "step": 1125
326
+ },
327
+ {
328
+ "epoch": 0.16994982323832922,
329
+ "grad_norm": 0.5933899879455566,
330
+ "learning_rate": 9.433947889684596e-05,
331
+ "loss": 0.7261,
332
+ "step": 1150
333
+ },
334
+ {
335
+ "epoch": 0.17364438461307552,
336
+ "grad_norm": 0.4750466048717499,
337
+ "learning_rate": 9.414901721773579e-05,
338
+ "loss": 0.7206,
339
+ "step": 1175
340
+ },
341
+ {
342
+ "epoch": 0.1773389459878218,
343
+ "grad_norm": 0.46546968817710876,
344
+ "learning_rate": 9.395855553862564e-05,
345
+ "loss": 0.7121,
346
+ "step": 1200
347
+ },
348
+ {
349
+ "epoch": 0.1810335073625681,
350
+ "grad_norm": 0.6512172818183899,
351
+ "learning_rate": 9.376809385951547e-05,
352
+ "loss": 0.7212,
353
+ "step": 1225
354
+ },
355
+ {
356
+ "epoch": 0.18472806873731437,
357
+ "grad_norm": 0.34932607412338257,
358
+ "learning_rate": 9.35776321804053e-05,
359
+ "loss": 0.704,
360
+ "step": 1250
361
+ },
362
+ {
363
+ "epoch": 0.18842263011206067,
364
+ "grad_norm": 0.4648846983909607,
365
+ "learning_rate": 9.338717050129514e-05,
366
+ "loss": 0.7419,
367
+ "step": 1275
368
+ },
369
+ {
370
+ "epoch": 0.19211719148680695,
371
+ "grad_norm": 0.4566064774990082,
372
+ "learning_rate": 9.319670882218498e-05,
373
+ "loss": 0.7318,
374
+ "step": 1300
375
+ },
376
+ {
377
+ "epoch": 0.19581175286155325,
378
+ "grad_norm": 0.5357668399810791,
379
+ "learning_rate": 9.300624714307481e-05,
380
+ "loss": 0.6973,
381
+ "step": 1325
382
+ },
383
+ {
384
+ "epoch": 0.19950631423629953,
385
+ "grad_norm": 0.4423241913318634,
386
+ "learning_rate": 9.281578546396466e-05,
387
+ "loss": 0.7298,
388
+ "step": 1350
389
+ },
390
+ {
391
+ "epoch": 0.20320087561104583,
392
+ "grad_norm": 0.4530033767223358,
393
+ "learning_rate": 9.26253237848545e-05,
394
+ "loss": 0.7161,
395
+ "step": 1375
396
+ },
397
+ {
398
+ "epoch": 0.2068954369857921,
399
+ "grad_norm": 0.4678841233253479,
400
+ "learning_rate": 9.243486210574433e-05,
401
+ "loss": 0.6972,
402
+ "step": 1400
403
+ },
404
+ {
405
+ "epoch": 0.21058999836053838,
406
+ "grad_norm": 0.6039907336235046,
407
+ "learning_rate": 9.224440042663417e-05,
408
+ "loss": 0.7165,
409
+ "step": 1425
410
+ },
411
+ {
412
+ "epoch": 0.21428455973528468,
413
+ "grad_norm": 0.4463271498680115,
414
+ "learning_rate": 9.2053938747524e-05,
415
+ "loss": 0.6863,
416
+ "step": 1450
417
+ },
418
+ {
419
+ "epoch": 0.21797912111003095,
420
+ "grad_norm": 0.5739301443099976,
421
+ "learning_rate": 9.186347706841384e-05,
422
+ "loss": 0.6907,
423
+ "step": 1475
424
+ },
425
+ {
426
+ "epoch": 0.22167368248477726,
427
+ "grad_norm": 0.4577805697917938,
428
+ "learning_rate": 9.167301538930367e-05,
429
+ "loss": 0.7114,
430
+ "step": 1500
431
+ },
432
+ {
433
+ "epoch": 0.22536824385952353,
434
+ "grad_norm": 0.4522150158882141,
435
+ "learning_rate": 9.14825537101935e-05,
436
+ "loss": 0.6877,
437
+ "step": 1525
438
+ },
439
+ {
440
+ "epoch": 0.22906280523426983,
441
+ "grad_norm": 0.49612903594970703,
442
+ "learning_rate": 9.129209203108335e-05,
443
+ "loss": 0.7112,
444
+ "step": 1550
445
+ },
446
+ {
447
+ "epoch": 0.2327573666090161,
448
+ "grad_norm": 0.4710284471511841,
449
+ "learning_rate": 9.11016303519732e-05,
450
+ "loss": 0.7062,
451
+ "step": 1575
452
+ },
453
+ {
454
+ "epoch": 0.2364519279837624,
455
+ "grad_norm": 0.5009223818778992,
456
+ "learning_rate": 9.091116867286303e-05,
457
+ "loss": 0.7275,
458
+ "step": 1600
459
+ },
460
+ {
461
+ "epoch": 0.24014648935850869,
462
+ "grad_norm": 0.5547946691513062,
463
+ "learning_rate": 9.072070699375286e-05,
464
+ "loss": 0.6993,
465
+ "step": 1625
466
+ },
467
+ {
468
+ "epoch": 0.243841050733255,
469
+ "grad_norm": 0.4580361843109131,
470
+ "learning_rate": 9.05302453146427e-05,
471
+ "loss": 0.7106,
472
+ "step": 1650
473
+ },
474
+ {
475
+ "epoch": 0.24753561210800126,
476
+ "grad_norm": 0.4767173230648041,
477
+ "learning_rate": 9.033978363553254e-05,
478
+ "loss": 0.7103,
479
+ "step": 1675
480
+ },
481
+ {
482
+ "epoch": 0.25123017348274757,
483
+ "grad_norm": 0.502202570438385,
484
+ "learning_rate": 9.014932195642237e-05,
485
+ "loss": 0.6921,
486
+ "step": 1700
487
+ },
488
+ {
489
+ "epoch": 0.25492473485749384,
490
+ "grad_norm": 0.5283953547477722,
491
+ "learning_rate": 8.99588602773122e-05,
492
+ "loss": 0.7077,
493
+ "step": 1725
494
+ },
495
+ {
496
+ "epoch": 0.2586192962322401,
497
+ "grad_norm": 0.4994209408760071,
498
+ "learning_rate": 8.976839859820204e-05,
499
+ "loss": 0.7,
500
+ "step": 1750
501
+ },
502
+ {
503
+ "epoch": 0.2623138576069864,
504
+ "grad_norm": 0.48279210925102234,
505
+ "learning_rate": 8.957793691909188e-05,
506
+ "loss": 0.7114,
507
+ "step": 1775
508
+ },
509
+ {
510
+ "epoch": 0.2660084189817327,
511
+ "grad_norm": 0.6055914759635925,
512
+ "learning_rate": 8.938747523998172e-05,
513
+ "loss": 0.7081,
514
+ "step": 1800
515
+ },
516
+ {
517
+ "epoch": 0.269702980356479,
518
+ "grad_norm": 0.489519327878952,
519
+ "learning_rate": 8.919701356087156e-05,
520
+ "loss": 0.6946,
521
+ "step": 1825
522
+ },
523
+ {
524
+ "epoch": 0.27339754173122527,
525
+ "grad_norm": 0.5379961133003235,
526
+ "learning_rate": 8.90065518817614e-05,
527
+ "loss": 0.6996,
528
+ "step": 1850
529
+ },
530
+ {
531
+ "epoch": 0.27709210310597154,
532
+ "grad_norm": 0.47824332118034363,
533
+ "learning_rate": 8.881609020265123e-05,
534
+ "loss": 0.6881,
535
+ "step": 1875
536
+ },
537
+ {
538
+ "epoch": 0.2807866644807179,
539
+ "grad_norm": 1551.0594482421875,
540
+ "learning_rate": 8.862562852354107e-05,
541
+ "loss": 0.6998,
542
+ "step": 1900
543
+ },
544
+ {
545
+ "epoch": 0.28448122585546415,
546
+ "grad_norm": 0.4107681214809418,
547
+ "learning_rate": 8.84351668444309e-05,
548
+ "loss": 0.7088,
549
+ "step": 1925
550
+ },
551
+ {
552
+ "epoch": 0.2881757872302104,
553
+ "grad_norm": 0.4558309316635132,
554
+ "learning_rate": 8.824470516532074e-05,
555
+ "loss": 0.712,
556
+ "step": 1950
557
+ },
558
+ {
559
+ "epoch": 0.2918703486049567,
560
+ "grad_norm": 0.539107620716095,
561
+ "learning_rate": 8.805424348621057e-05,
562
+ "loss": 0.7159,
563
+ "step": 1975
564
+ },
565
+ {
566
+ "epoch": 0.295564909979703,
567
+ "grad_norm": 0.5768142938613892,
568
+ "learning_rate": 8.786378180710042e-05,
569
+ "loss": 0.7072,
570
+ "step": 2000
571
+ },
572
+ {
573
+ "epoch": 0.2992594713544493,
574
+ "grad_norm": 0.5575465559959412,
575
+ "learning_rate": 8.767332012799025e-05,
576
+ "loss": 0.7118,
577
+ "step": 2025
578
+ },
579
+ {
580
+ "epoch": 0.3029540327291956,
581
+ "grad_norm": 0.5190144181251526,
582
+ "learning_rate": 8.748285844888008e-05,
583
+ "loss": 0.7099,
584
+ "step": 2050
585
+ },
586
+ {
587
+ "epoch": 0.30664859410394185,
588
+ "grad_norm": 0.4934520125389099,
589
+ "learning_rate": 8.729239676976993e-05,
590
+ "loss": 0.692,
591
+ "step": 2075
592
+ },
593
+ {
594
+ "epoch": 0.3103431554786881,
595
+ "grad_norm": 0.42613571882247925,
596
+ "learning_rate": 8.710193509065976e-05,
597
+ "loss": 0.7277,
598
+ "step": 2100
599
+ },
600
+ {
601
+ "epoch": 0.31403771685343446,
602
+ "grad_norm": 0.5124602317810059,
603
+ "learning_rate": 8.691147341154961e-05,
604
+ "loss": 0.6801,
605
+ "step": 2125
606
+ },
607
+ {
608
+ "epoch": 0.31773227822818073,
609
+ "grad_norm": 0.5284898281097412,
610
+ "learning_rate": 8.672101173243944e-05,
611
+ "loss": 0.7103,
612
+ "step": 2150
613
+ },
614
+ {
615
+ "epoch": 0.321426839602927,
616
+ "grad_norm": 0.43099457025527954,
617
+ "learning_rate": 8.653055005332927e-05,
618
+ "loss": 0.7023,
619
+ "step": 2175
620
+ },
621
+ {
622
+ "epoch": 0.3251214009776733,
623
+ "grad_norm": 0.5190865993499756,
624
+ "learning_rate": 8.63400883742191e-05,
625
+ "loss": 0.7144,
626
+ "step": 2200
627
+ },
628
+ {
629
+ "epoch": 0.3288159623524196,
630
+ "grad_norm": 0.4722968637943268,
631
+ "learning_rate": 8.614962669510895e-05,
632
+ "loss": 0.7351,
633
+ "step": 2225
634
+ },
635
+ {
636
+ "epoch": 0.3325105237271659,
637
+ "grad_norm": 0.6091466546058655,
638
+ "learning_rate": 8.595916501599878e-05,
639
+ "loss": 0.7062,
640
+ "step": 2250
641
+ },
642
+ {
643
+ "epoch": 0.33620508510191216,
644
+ "grad_norm": 0.6135897040367126,
645
+ "learning_rate": 8.576870333688862e-05,
646
+ "loss": 0.7117,
647
+ "step": 2275
648
+ },
649
+ {
650
+ "epoch": 0.33989964647665843,
651
+ "grad_norm": 0.5224157571792603,
652
+ "learning_rate": 8.557824165777846e-05,
653
+ "loss": 0.7068,
654
+ "step": 2300
655
+ },
656
+ {
657
+ "epoch": 0.34359420785140476,
658
+ "grad_norm": 0.4863536059856415,
659
+ "learning_rate": 8.53877799786683e-05,
660
+ "loss": 0.6952,
661
+ "step": 2325
662
+ },
663
+ {
664
+ "epoch": 0.34728876922615104,
665
+ "grad_norm": 0.4728885889053345,
666
+ "learning_rate": 8.519731829955814e-05,
667
+ "loss": 0.7289,
668
+ "step": 2350
669
+ },
670
+ {
671
+ "epoch": 0.3509833306008973,
672
+ "grad_norm": 0.5152695775032043,
673
+ "learning_rate": 8.500685662044798e-05,
674
+ "loss": 0.6986,
675
+ "step": 2375
676
+ },
677
+ {
678
+ "epoch": 0.3546778919756436,
679
+ "grad_norm": 0.4407690465450287,
680
+ "learning_rate": 8.481639494133781e-05,
681
+ "loss": 0.6983,
682
+ "step": 2400
683
+ },
684
+ {
685
+ "epoch": 0.3583724533503899,
686
+ "grad_norm": 0.4756406545639038,
687
+ "learning_rate": 8.462593326222764e-05,
688
+ "loss": 0.6626,
689
+ "step": 2425
690
+ },
691
+ {
692
+ "epoch": 0.3620670147251362,
693
+ "grad_norm": 0.48595255613327026,
694
+ "learning_rate": 8.443547158311747e-05,
695
+ "loss": 0.6892,
696
+ "step": 2450
697
+ },
698
+ {
699
+ "epoch": 0.36576157609988247,
700
+ "grad_norm": 0.47830772399902344,
701
+ "learning_rate": 8.424500990400732e-05,
702
+ "loss": 0.7162,
703
+ "step": 2475
704
+ },
705
+ {
706
+ "epoch": 0.36945613747462874,
707
+ "grad_norm": 0.43090149760246277,
708
+ "learning_rate": 8.405454822489715e-05,
709
+ "loss": 0.6913,
710
+ "step": 2500
711
+ },
712
+ {
713
+ "epoch": 0.373150698849375,
714
+ "grad_norm": 0.5338718295097351,
715
+ "learning_rate": 8.386408654578698e-05,
716
+ "loss": 0.7159,
717
+ "step": 2525
718
+ },
719
+ {
720
+ "epoch": 0.37684526022412135,
721
+ "grad_norm": 0.4907350242137909,
722
+ "learning_rate": 8.367362486667683e-05,
723
+ "loss": 0.7022,
724
+ "step": 2550
725
+ },
726
+ {
727
+ "epoch": 0.3805398215988676,
728
+ "grad_norm": 0.44093430042266846,
729
+ "learning_rate": 8.348316318756668e-05,
730
+ "loss": 0.7124,
731
+ "step": 2575
732
+ },
733
+ {
734
+ "epoch": 0.3842343829736139,
735
+ "grad_norm": 0.5388796925544739,
736
+ "learning_rate": 8.329270150845651e-05,
737
+ "loss": 0.7304,
738
+ "step": 2600
739
+ },
740
+ {
741
+ "epoch": 0.38792894434836017,
742
+ "grad_norm": 0.4456349313259125,
743
+ "learning_rate": 8.310223982934634e-05,
744
+ "loss": 0.6964,
745
+ "step": 2625
746
+ },
747
+ {
748
+ "epoch": 0.3916235057231065,
749
+ "grad_norm": 0.4602237343788147,
750
+ "learning_rate": 8.291177815023617e-05,
751
+ "loss": 0.6707,
752
+ "step": 2650
753
+ },
754
+ {
755
+ "epoch": 0.3953180670978528,
756
+ "grad_norm": 0.4726378917694092,
757
+ "learning_rate": 8.272131647112601e-05,
758
+ "loss": 0.694,
759
+ "step": 2675
760
+ },
761
+ {
762
+ "epoch": 0.39901262847259905,
763
+ "grad_norm": 0.500451922416687,
764
+ "learning_rate": 8.253085479201585e-05,
765
+ "loss": 0.6812,
766
+ "step": 2700
767
+ },
768
+ {
769
+ "epoch": 0.4027071898473453,
770
+ "grad_norm": 0.4073813259601593,
771
+ "learning_rate": 8.234039311290569e-05,
772
+ "loss": 0.7028,
773
+ "step": 2725
774
+ },
775
+ {
776
+ "epoch": 0.40640175122209166,
777
+ "grad_norm": 0.43644702434539795,
778
+ "learning_rate": 8.214993143379552e-05,
779
+ "loss": 0.6936,
780
+ "step": 2750
781
+ },
782
+ {
783
+ "epoch": 0.41009631259683793,
784
+ "grad_norm": 0.5256789922714233,
785
+ "learning_rate": 8.195946975468535e-05,
786
+ "loss": 0.7035,
787
+ "step": 2775
788
+ },
789
+ {
790
+ "epoch": 0.4137908739715842,
791
+ "grad_norm": 0.48385316133499146,
792
+ "learning_rate": 8.17690080755752e-05,
793
+ "loss": 0.6736,
794
+ "step": 2800
795
+ },
796
+ {
797
+ "epoch": 0.4174854353463305,
798
+ "grad_norm": 0.49825233221054077,
799
+ "learning_rate": 8.157854639646504e-05,
800
+ "loss": 0.7019,
801
+ "step": 2825
802
+ },
803
+ {
804
+ "epoch": 0.42117999672107675,
805
+ "grad_norm": 0.5086994171142578,
806
+ "learning_rate": 8.138808471735488e-05,
807
+ "loss": 0.6918,
808
+ "step": 2850
809
+ },
810
+ {
811
+ "epoch": 0.4248745580958231,
812
+ "grad_norm": 0.5430259108543396,
813
+ "learning_rate": 8.119762303824471e-05,
814
+ "loss": 0.7175,
815
+ "step": 2875
816
+ },
817
+ {
818
+ "epoch": 0.42856911947056936,
819
+ "grad_norm": 0.5889118313789368,
820
+ "learning_rate": 8.100716135913454e-05,
821
+ "loss": 0.6967,
822
+ "step": 2900
823
+ },
824
+ {
825
+ "epoch": 0.43226368084531563,
826
+ "grad_norm": 0.5345672369003296,
827
+ "learning_rate": 8.081669968002439e-05,
828
+ "loss": 0.6926,
829
+ "step": 2925
830
+ },
831
+ {
832
+ "epoch": 0.4359582422200619,
833
+ "grad_norm": 0.511101245880127,
834
+ "learning_rate": 8.062623800091422e-05,
835
+ "loss": 0.7248,
836
+ "step": 2950
837
+ },
838
+ {
839
+ "epoch": 0.43965280359480824,
840
+ "grad_norm": 0.511239767074585,
841
+ "learning_rate": 8.043577632180405e-05,
842
+ "loss": 0.7319,
843
+ "step": 2975
844
+ },
845
+ {
846
+ "epoch": 0.4433473649695545,
847
+ "grad_norm": 0.5121573805809021,
848
+ "learning_rate": 8.024531464269389e-05,
849
+ "loss": 0.7023,
850
+ "step": 3000
851
+ },
852
+ {
853
+ "epoch": 0.4470419263443008,
854
+ "grad_norm": 0.5658753514289856,
855
+ "learning_rate": 8.005485296358373e-05,
856
+ "loss": 0.6934,
857
+ "step": 3025
858
+ },
859
+ {
860
+ "epoch": 0.45073648771904706,
861
+ "grad_norm": 0.5475583672523499,
862
+ "learning_rate": 7.986439128447358e-05,
863
+ "loss": 0.6701,
864
+ "step": 3050
865
+ },
866
+ {
867
+ "epoch": 0.4544310490937934,
868
+ "grad_norm": 0.6107661724090576,
869
+ "learning_rate": 7.967392960536341e-05,
870
+ "loss": 0.7056,
871
+ "step": 3075
872
+ },
873
+ {
874
+ "epoch": 0.45812561046853967,
875
+ "grad_norm": 0.48424115777015686,
876
+ "learning_rate": 7.948346792625324e-05,
877
+ "loss": 0.7179,
878
+ "step": 3100
879
+ },
880
+ {
881
+ "epoch": 0.46182017184328594,
882
+ "grad_norm": 0.6184881329536438,
883
+ "learning_rate": 7.929300624714308e-05,
884
+ "loss": 0.7141,
885
+ "step": 3125
886
+ },
887
+ {
888
+ "epoch": 0.4655147332180322,
889
+ "grad_norm": 0.49919527769088745,
890
+ "learning_rate": 7.910254456803291e-05,
891
+ "loss": 0.7027,
892
+ "step": 3150
893
+ },
894
+ {
895
+ "epoch": 0.4692092945927785,
896
+ "grad_norm": 0.5012905597686768,
897
+ "learning_rate": 7.891208288892276e-05,
898
+ "loss": 0.6852,
899
+ "step": 3175
900
+ },
901
+ {
902
+ "epoch": 0.4729038559675248,
903
+ "grad_norm": 0.5033735036849976,
904
+ "learning_rate": 7.872162120981259e-05,
905
+ "loss": 0.7199,
906
+ "step": 3200
907
+ },
908
+ {
909
+ "epoch": 0.4765984173422711,
910
+ "grad_norm": 0.5746079087257385,
911
+ "learning_rate": 7.853115953070242e-05,
912
+ "loss": 0.715,
913
+ "step": 3225
914
+ },
915
+ {
916
+ "epoch": 0.48029297871701737,
917
+ "grad_norm": 0.5436145663261414,
918
+ "learning_rate": 7.834069785159225e-05,
919
+ "loss": 0.697,
920
+ "step": 3250
921
+ },
922
+ {
923
+ "epoch": 0.48398754009176365,
924
+ "grad_norm": 0.5836604833602905,
925
+ "learning_rate": 7.81502361724821e-05,
926
+ "loss": 0.7129,
927
+ "step": 3275
928
+ },
929
+ {
930
+ "epoch": 0.48768210146651,
931
+ "grad_norm": 0.5618935227394104,
932
+ "learning_rate": 7.795977449337195e-05,
933
+ "loss": 0.6993,
934
+ "step": 3300
935
+ },
936
+ {
937
+ "epoch": 0.49137666284125625,
938
+ "grad_norm": 0.6251245737075806,
939
+ "learning_rate": 7.776931281426178e-05,
940
+ "loss": 0.7132,
941
+ "step": 3325
942
+ },
943
+ {
944
+ "epoch": 0.4950712242160025,
945
+ "grad_norm": 0.5123202800750732,
946
+ "learning_rate": 7.757885113515161e-05,
947
+ "loss": 0.7218,
948
+ "step": 3350
949
+ },
950
+ {
951
+ "epoch": 0.4987657855907488,
952
+ "grad_norm": 0.5818086862564087,
953
+ "learning_rate": 7.738838945604144e-05,
954
+ "loss": 0.7154,
955
+ "step": 3375
956
+ },
957
+ {
958
+ "epoch": 0.5024603469654951,
959
+ "grad_norm": 0.5861947536468506,
960
+ "learning_rate": 7.719792777693129e-05,
961
+ "loss": 0.7013,
962
+ "step": 3400
963
+ },
964
+ {
965
+ "epoch": 0.5061549083402413,
966
+ "grad_norm": 0.4849907457828522,
967
+ "learning_rate": 7.700746609782112e-05,
968
+ "loss": 0.6902,
969
+ "step": 3425
970
+ },
971
+ {
972
+ "epoch": 0.5098494697149877,
973
+ "grad_norm": 0.5476916432380676,
974
+ "learning_rate": 7.681700441871096e-05,
975
+ "loss": 0.7147,
976
+ "step": 3450
977
+ },
978
+ {
979
+ "epoch": 0.513544031089734,
980
+ "grad_norm": 0.5822548866271973,
981
+ "learning_rate": 7.662654273960079e-05,
982
+ "loss": 0.7431,
983
+ "step": 3475
984
+ },
985
+ {
986
+ "epoch": 0.5172385924644802,
987
+ "grad_norm": 0.44818004965782166,
988
+ "learning_rate": 7.643608106049063e-05,
989
+ "loss": 0.718,
990
+ "step": 3500
991
+ },
992
+ {
993
+ "epoch": 0.5209331538392266,
994
+ "grad_norm": 0.544068455696106,
995
+ "learning_rate": 7.624561938138047e-05,
996
+ "loss": 0.7201,
997
+ "step": 3525
998
+ },
999
+ {
1000
+ "epoch": 0.5246277152139728,
1001
+ "grad_norm": 0.5535098910331726,
1002
+ "learning_rate": 7.605515770227031e-05,
1003
+ "loss": 0.6998,
1004
+ "step": 3550
1005
+ },
1006
+ {
1007
+ "epoch": 0.5283222765887191,
1008
+ "grad_norm": 0.5754445195198059,
1009
+ "learning_rate": 7.586469602316015e-05,
1010
+ "loss": 0.6918,
1011
+ "step": 3575
1012
+ },
1013
+ {
1014
+ "epoch": 0.5320168379634654,
1015
+ "grad_norm": 0.5976133942604065,
1016
+ "learning_rate": 7.567423434404998e-05,
1017
+ "loss": 0.693,
1018
+ "step": 3600
1019
+ },
1020
+ {
1021
+ "epoch": 0.5357113993382117,
1022
+ "grad_norm": 0.4844263195991516,
1023
+ "learning_rate": 7.548377266493982e-05,
1024
+ "loss": 0.68,
1025
+ "step": 3625
1026
+ },
1027
+ {
1028
+ "epoch": 0.539405960712958,
1029
+ "grad_norm": 0.5436462163925171,
1030
+ "learning_rate": 7.529331098582966e-05,
1031
+ "loss": 0.7075,
1032
+ "step": 3650
1033
+ },
1034
+ {
1035
+ "epoch": 0.5431005220877043,
1036
+ "grad_norm": 0.6490929126739502,
1037
+ "learning_rate": 7.510284930671949e-05,
1038
+ "loss": 0.6956,
1039
+ "step": 3675
1040
+ },
1041
+ {
1042
+ "epoch": 0.5467950834624505,
1043
+ "grad_norm": 0.47479814291000366,
1044
+ "learning_rate": 7.491238762760932e-05,
1045
+ "loss": 0.7026,
1046
+ "step": 3700
1047
+ },
1048
+ {
1049
+ "epoch": 0.5504896448371969,
1050
+ "grad_norm": 0.590874969959259,
1051
+ "learning_rate": 7.472192594849915e-05,
1052
+ "loss": 0.7117,
1053
+ "step": 3725
1054
+ },
1055
+ {
1056
+ "epoch": 0.5541842062119431,
1057
+ "grad_norm": 0.46487829089164734,
1058
+ "learning_rate": 7.4531464269389e-05,
1059
+ "loss": 0.6919,
1060
+ "step": 3750
1061
+ },
1062
+ {
1063
+ "epoch": 0.5578787675866894,
1064
+ "grad_norm": 0.6609780192375183,
1065
+ "learning_rate": 7.434100259027885e-05,
1066
+ "loss": 0.7089,
1067
+ "step": 3775
1068
+ },
1069
+ {
1070
+ "epoch": 0.5615733289614357,
1071
+ "grad_norm": 0.6165657639503479,
1072
+ "learning_rate": 7.415054091116868e-05,
1073
+ "loss": 0.7444,
1074
+ "step": 3800
1075
+ },
1076
+ {
1077
+ "epoch": 0.565267890336182,
1078
+ "grad_norm": 0.5194655656814575,
1079
+ "learning_rate": 7.396007923205851e-05,
1080
+ "loss": 0.7114,
1081
+ "step": 3825
1082
+ },
1083
+ {
1084
+ "epoch": 0.5689624517109283,
1085
+ "grad_norm": 0.4813441336154938,
1086
+ "learning_rate": 7.376961755294836e-05,
1087
+ "loss": 0.6953,
1088
+ "step": 3850
1089
+ },
1090
+ {
1091
+ "epoch": 0.5726570130856745,
1092
+ "grad_norm": 0.7607313990592957,
1093
+ "learning_rate": 7.357915587383819e-05,
1094
+ "loss": 0.7058,
1095
+ "step": 3875
1096
+ },
1097
+ {
1098
+ "epoch": 0.5763515744604208,
1099
+ "grad_norm": 0.48498719930648804,
1100
+ "learning_rate": 7.338869419472802e-05,
1101
+ "loss": 0.6866,
1102
+ "step": 3900
1103
+ },
1104
+ {
1105
+ "epoch": 0.5800461358351672,
1106
+ "grad_norm": 0.5969393253326416,
1107
+ "learning_rate": 7.319823251561786e-05,
1108
+ "loss": 0.6951,
1109
+ "step": 3925
1110
+ },
1111
+ {
1112
+ "epoch": 0.5837406972099134,
1113
+ "grad_norm": 0.6178887486457825,
1114
+ "learning_rate": 7.300777083650769e-05,
1115
+ "loss": 0.7036,
1116
+ "step": 3950
1117
+ },
1118
+ {
1119
+ "epoch": 0.5874352585846597,
1120
+ "grad_norm": 0.5318612456321716,
1121
+ "learning_rate": 7.281730915739754e-05,
1122
+ "loss": 0.6856,
1123
+ "step": 3975
1124
+ },
1125
+ {
1126
+ "epoch": 0.591129819959406,
1127
+ "grad_norm": 0.6101936101913452,
1128
+ "learning_rate": 7.262684747828737e-05,
1129
+ "loss": 0.7103,
1130
+ "step": 4000
1131
+ },
1132
+ {
1133
+ "epoch": 0.5948243813341523,
1134
+ "grad_norm": 0.5605831742286682,
1135
+ "learning_rate": 7.243638579917721e-05,
1136
+ "loss": 0.6684,
1137
+ "step": 4025
1138
+ },
1139
+ {
1140
+ "epoch": 0.5985189427088986,
1141
+ "grad_norm": 0.6576380133628845,
1142
+ "learning_rate": 7.224592412006705e-05,
1143
+ "loss": 0.6955,
1144
+ "step": 4050
1145
+ },
1146
+ {
1147
+ "epoch": 0.6022135040836448,
1148
+ "grad_norm": 0.49083924293518066,
1149
+ "learning_rate": 7.205546244095688e-05,
1150
+ "loss": 0.7089,
1151
+ "step": 4075
1152
+ },
1153
+ {
1154
+ "epoch": 0.6059080654583912,
1155
+ "grad_norm": 0.4783398509025574,
1156
+ "learning_rate": 7.186500076184673e-05,
1157
+ "loss": 0.6766,
1158
+ "step": 4100
1159
+ },
1160
+ {
1161
+ "epoch": 0.6096026268331375,
1162
+ "grad_norm": 0.5773366689682007,
1163
+ "learning_rate": 7.167453908273656e-05,
1164
+ "loss": 0.666,
1165
+ "step": 4125
1166
+ },
1167
+ {
1168
+ "epoch": 0.6132971882078837,
1169
+ "grad_norm": 0.5449897050857544,
1170
+ "learning_rate": 7.148407740362639e-05,
1171
+ "loss": 0.6795,
1172
+ "step": 4150
1173
+ },
1174
+ {
1175
+ "epoch": 0.61699174958263,
1176
+ "grad_norm": 0.519882082939148,
1177
+ "learning_rate": 7.129361572451622e-05,
1178
+ "loss": 0.6892,
1179
+ "step": 4175
1180
+ },
1181
+ {
1182
+ "epoch": 0.6206863109573763,
1183
+ "grad_norm": 0.5653222799301147,
1184
+ "learning_rate": 7.110315404540607e-05,
1185
+ "loss": 0.7029,
1186
+ "step": 4200
1187
+ },
1188
+ {
1189
+ "epoch": 0.6243808723321226,
1190
+ "grad_norm": 0.542448878288269,
1191
+ "learning_rate": 7.09126923662959e-05,
1192
+ "loss": 0.6885,
1193
+ "step": 4225
1194
+ },
1195
+ {
1196
+ "epoch": 0.6280754337068689,
1197
+ "grad_norm": 0.5602554082870483,
1198
+ "learning_rate": 7.072223068718575e-05,
1199
+ "loss": 0.6811,
1200
+ "step": 4250
1201
+ },
1202
+ {
1203
+ "epoch": 0.6317699950816151,
1204
+ "grad_norm": 0.5326575636863708,
1205
+ "learning_rate": 7.053176900807558e-05,
1206
+ "loss": 0.7032,
1207
+ "step": 4275
1208
+ },
1209
+ {
1210
+ "epoch": 0.6354645564563615,
1211
+ "grad_norm": 0.5822186470031738,
1212
+ "learning_rate": 7.034130732896541e-05,
1213
+ "loss": 0.6951,
1214
+ "step": 4300
1215
+ },
1216
+ {
1217
+ "epoch": 0.6391591178311078,
1218
+ "grad_norm": 0.5309107899665833,
1219
+ "learning_rate": 7.015084564985526e-05,
1220
+ "loss": 0.6891,
1221
+ "step": 4325
1222
+ },
1223
+ {
1224
+ "epoch": 0.642853679205854,
1225
+ "grad_norm": 0.6958228349685669,
1226
+ "learning_rate": 6.996038397074509e-05,
1227
+ "loss": 0.6932,
1228
+ "step": 4350
1229
+ },
1230
+ {
1231
+ "epoch": 0.6465482405806003,
1232
+ "grad_norm": 0.4864750802516937,
1233
+ "learning_rate": 6.976992229163493e-05,
1234
+ "loss": 0.6897,
1235
+ "step": 4375
1236
+ },
1237
+ {
1238
+ "epoch": 0.6502428019553466,
1239
+ "grad_norm": 0.5077944993972778,
1240
+ "learning_rate": 6.957946061252476e-05,
1241
+ "loss": 0.7067,
1242
+ "step": 4400
1243
+ },
1244
+ {
1245
+ "epoch": 0.6539373633300929,
1246
+ "grad_norm": 0.5589050054550171,
1247
+ "learning_rate": 6.938899893341459e-05,
1248
+ "loss": 0.6927,
1249
+ "step": 4425
1250
+ },
1251
+ {
1252
+ "epoch": 0.6576319247048392,
1253
+ "grad_norm": 0.6064692735671997,
1254
+ "learning_rate": 6.919853725430444e-05,
1255
+ "loss": 0.7186,
1256
+ "step": 4450
1257
+ },
1258
+ {
1259
+ "epoch": 0.6613264860795854,
1260
+ "grad_norm": 0.5546572208404541,
1261
+ "learning_rate": 6.900807557519427e-05,
1262
+ "loss": 0.6865,
1263
+ "step": 4475
1264
+ },
1265
+ {
1266
+ "epoch": 0.6650210474543318,
1267
+ "grad_norm": 0.6032342314720154,
1268
+ "learning_rate": 6.881761389608412e-05,
1269
+ "loss": 0.6999,
1270
+ "step": 4500
1271
+ },
1272
+ {
1273
+ "epoch": 0.668715608829078,
1274
+ "grad_norm": 0.5067450404167175,
1275
+ "learning_rate": 6.862715221697395e-05,
1276
+ "loss": 0.7068,
1277
+ "step": 4525
1278
+ },
1279
+ {
1280
+ "epoch": 0.6724101702038243,
1281
+ "grad_norm": 0.6697527170181274,
1282
+ "learning_rate": 6.84366905378638e-05,
1283
+ "loss": 0.7075,
1284
+ "step": 4550
1285
+ },
1286
+ {
1287
+ "epoch": 0.6761047315785707,
1288
+ "grad_norm": 0.48360082507133484,
1289
+ "learning_rate": 6.824622885875363e-05,
1290
+ "loss": 0.7076,
1291
+ "step": 4575
1292
+ },
1293
+ {
1294
+ "epoch": 0.6797992929533169,
1295
+ "grad_norm": 0.6387288570404053,
1296
+ "learning_rate": 6.805576717964346e-05,
1297
+ "loss": 0.6871,
1298
+ "step": 4600
1299
+ },
1300
+ {
1301
+ "epoch": 0.6834938543280632,
1302
+ "grad_norm": 0.6431862115859985,
1303
+ "learning_rate": 6.786530550053329e-05,
1304
+ "loss": 0.7138,
1305
+ "step": 4625
1306
+ },
1307
+ {
1308
+ "epoch": 0.6871884157028095,
1309
+ "grad_norm": 0.6050564050674438,
1310
+ "learning_rate": 6.767484382142313e-05,
1311
+ "loss": 0.6978,
1312
+ "step": 4650
1313
+ },
1314
+ {
1315
+ "epoch": 0.6908829770775557,
1316
+ "grad_norm": 0.7160177230834961,
1317
+ "learning_rate": 6.748438214231297e-05,
1318
+ "loss": 0.6813,
1319
+ "step": 4675
1320
+ },
1321
+ {
1322
+ "epoch": 0.6945775384523021,
1323
+ "grad_norm": 0.6984575986862183,
1324
+ "learning_rate": 6.72939204632028e-05,
1325
+ "loss": 0.7155,
1326
+ "step": 4700
1327
+ },
1328
+ {
1329
+ "epoch": 0.6982720998270483,
1330
+ "grad_norm": 0.5910038352012634,
1331
+ "learning_rate": 6.710345878409264e-05,
1332
+ "loss": 0.6689,
1333
+ "step": 4725
1334
+ },
1335
+ {
1336
+ "epoch": 0.7019666612017946,
1337
+ "grad_norm": 0.5897320508956909,
1338
+ "learning_rate": 6.691299710498248e-05,
1339
+ "loss": 0.7169,
1340
+ "step": 4750
1341
+ },
1342
+ {
1343
+ "epoch": 0.705661222576541,
1344
+ "grad_norm": 0.5735405683517456,
1345
+ "learning_rate": 6.672253542587232e-05,
1346
+ "loss": 0.6779,
1347
+ "step": 4775
1348
+ },
1349
+ {
1350
+ "epoch": 0.7093557839512872,
1351
+ "grad_norm": 0.6408699750900269,
1352
+ "learning_rate": 6.653207374676216e-05,
1353
+ "loss": 0.7069,
1354
+ "step": 4800
1355
+ },
1356
+ {
1357
+ "epoch": 0.7130503453260335,
1358
+ "grad_norm": 0.6292117834091187,
1359
+ "learning_rate": 6.6341612067652e-05,
1360
+ "loss": 0.698,
1361
+ "step": 4825
1362
+ },
1363
+ {
1364
+ "epoch": 0.7167449067007798,
1365
+ "grad_norm": 0.6101416349411011,
1366
+ "learning_rate": 6.615115038854183e-05,
1367
+ "loss": 0.6708,
1368
+ "step": 4850
1369
+ },
1370
+ {
1371
+ "epoch": 0.7204394680755261,
1372
+ "grad_norm": 0.6805480122566223,
1373
+ "learning_rate": 6.596068870943166e-05,
1374
+ "loss": 0.7115,
1375
+ "step": 4875
1376
+ },
1377
+ {
1378
+ "epoch": 0.7241340294502724,
1379
+ "grad_norm": 0.6465732455253601,
1380
+ "learning_rate": 6.57702270303215e-05,
1381
+ "loss": 0.688,
1382
+ "step": 4900
1383
+ },
1384
+ {
1385
+ "epoch": 0.7278285908250186,
1386
+ "grad_norm": 0.5873344540596008,
1387
+ "learning_rate": 6.557976535121134e-05,
1388
+ "loss": 0.7032,
1389
+ "step": 4925
1390
+ },
1391
+ {
1392
+ "epoch": 0.7315231521997649,
1393
+ "grad_norm": 0.5717042088508606,
1394
+ "learning_rate": 6.538930367210117e-05,
1395
+ "loss": 0.6907,
1396
+ "step": 4950
1397
+ },
1398
+ {
1399
+ "epoch": 0.7352177135745113,
1400
+ "grad_norm": 0.6366106867790222,
1401
+ "learning_rate": 6.519884199299102e-05,
1402
+ "loss": 0.7061,
1403
+ "step": 4975
1404
+ },
1405
+ {
1406
+ "epoch": 0.7389122749492575,
1407
+ "grad_norm": 0.7421902418136597,
1408
+ "learning_rate": 6.500838031388085e-05,
1409
+ "loss": 0.7267,
1410
+ "step": 5000
1411
+ },
1412
+ {
1413
+ "epoch": 0.7426068363240038,
1414
+ "grad_norm": 0.5897513031959534,
1415
+ "learning_rate": 6.48179186347707e-05,
1416
+ "loss": 0.7089,
1417
+ "step": 5025
1418
+ },
1419
+ {
1420
+ "epoch": 0.74630139769875,
1421
+ "grad_norm": 0.6692824959754944,
1422
+ "learning_rate": 6.462745695566053e-05,
1423
+ "loss": 0.7059,
1424
+ "step": 5050
1425
+ },
1426
+ {
1427
+ "epoch": 0.7499959590734964,
1428
+ "grad_norm": 0.5818034410476685,
1429
+ "learning_rate": 6.443699527655036e-05,
1430
+ "loss": 0.6734,
1431
+ "step": 5075
1432
+ },
1433
+ {
1434
+ "epoch": 0.7536905204482427,
1435
+ "grad_norm": 0.5975498557090759,
1436
+ "learning_rate": 6.42465335974402e-05,
1437
+ "loss": 0.6857,
1438
+ "step": 5100
1439
+ },
1440
+ {
1441
+ "epoch": 0.7573850818229889,
1442
+ "grad_norm": 0.5827130675315857,
1443
+ "learning_rate": 6.405607191833003e-05,
1444
+ "loss": 0.7156,
1445
+ "step": 5125
1446
+ },
1447
+ {
1448
+ "epoch": 0.7610796431977352,
1449
+ "grad_norm": 0.660932719707489,
1450
+ "learning_rate": 6.386561023921987e-05,
1451
+ "loss": 0.688,
1452
+ "step": 5150
1453
+ },
1454
+ {
1455
+ "epoch": 0.7647742045724816,
1456
+ "grad_norm": 0.5963577628135681,
1457
+ "learning_rate": 6.36751485601097e-05,
1458
+ "loss": 0.709,
1459
+ "step": 5175
1460
+ },
1461
+ {
1462
+ "epoch": 0.7684687659472278,
1463
+ "grad_norm": 0.6608302593231201,
1464
+ "learning_rate": 6.348468688099954e-05,
1465
+ "loss": 0.6761,
1466
+ "step": 5200
1467
+ },
1468
+ {
1469
+ "epoch": 0.7721633273219741,
1470
+ "grad_norm": 0.6137542724609375,
1471
+ "learning_rate": 6.329422520188938e-05,
1472
+ "loss": 0.6845,
1473
+ "step": 5225
1474
+ },
1475
+ {
1476
+ "epoch": 0.7758578886967203,
1477
+ "grad_norm": 0.6861995458602905,
1478
+ "learning_rate": 6.310376352277923e-05,
1479
+ "loss": 0.6746,
1480
+ "step": 5250
1481
+ },
1482
+ {
1483
+ "epoch": 0.7795524500714667,
1484
+ "grad_norm": 0.6537772417068481,
1485
+ "learning_rate": 6.291330184366906e-05,
1486
+ "loss": 0.6777,
1487
+ "step": 5275
1488
+ },
1489
+ {
1490
+ "epoch": 0.783247011446213,
1491
+ "grad_norm": 0.6634919047355652,
1492
+ "learning_rate": 6.27228401645589e-05,
1493
+ "loss": 0.6945,
1494
+ "step": 5300
1495
+ },
1496
+ {
1497
+ "epoch": 0.7869415728209592,
1498
+ "grad_norm": 0.610098123550415,
1499
+ "learning_rate": 6.253237848544873e-05,
1500
+ "loss": 0.6909,
1501
+ "step": 5325
1502
+ },
1503
+ {
1504
+ "epoch": 0.7906361341957056,
1505
+ "grad_norm": 0.6167535185813904,
1506
+ "learning_rate": 6.234191680633856e-05,
1507
+ "loss": 0.6988,
1508
+ "step": 5350
1509
+ },
1510
+ {
1511
+ "epoch": 0.7943306955704518,
1512
+ "grad_norm": 0.6502842903137207,
1513
+ "learning_rate": 6.215145512722841e-05,
1514
+ "loss": 0.6937,
1515
+ "step": 5375
1516
+ },
1517
+ {
1518
+ "epoch": 0.7980252569451981,
1519
+ "grad_norm": 0.5586534142494202,
1520
+ "learning_rate": 6.196099344811824e-05,
1521
+ "loss": 0.6891,
1522
+ "step": 5400
1523
+ },
1524
+ {
1525
+ "epoch": 0.8017198183199444,
1526
+ "grad_norm": 0.577847957611084,
1527
+ "learning_rate": 6.177053176900807e-05,
1528
+ "loss": 0.7111,
1529
+ "step": 5425
1530
+ },
1531
+ {
1532
+ "epoch": 0.8054143796946907,
1533
+ "grad_norm": 0.5086051225662231,
1534
+ "learning_rate": 6.158007008989792e-05,
1535
+ "loss": 0.6892,
1536
+ "step": 5450
1537
+ },
1538
+ {
1539
+ "epoch": 0.809108941069437,
1540
+ "grad_norm": 0.6650702953338623,
1541
+ "learning_rate": 6.138960841078775e-05,
1542
+ "loss": 0.6853,
1543
+ "step": 5475
1544
+ },
1545
+ {
1546
+ "epoch": 0.8128035024441833,
1547
+ "grad_norm": 0.730775773525238,
1548
+ "learning_rate": 6.11991467316776e-05,
1549
+ "loss": 0.6972,
1550
+ "step": 5500
1551
+ },
1552
+ {
1553
+ "epoch": 0.8164980638189295,
1554
+ "grad_norm": 0.6812962293624878,
1555
+ "learning_rate": 6.100868505256743e-05,
1556
+ "loss": 0.7179,
1557
+ "step": 5525
1558
+ },
1559
+ {
1560
+ "epoch": 0.8201926251936759,
1561
+ "grad_norm": 0.6698195934295654,
1562
+ "learning_rate": 6.081822337345726e-05,
1563
+ "loss": 0.6935,
1564
+ "step": 5550
1565
+ },
1566
+ {
1567
+ "epoch": 0.8238871865684221,
1568
+ "grad_norm": 0.7661596536636353,
1569
+ "learning_rate": 6.0627761694347096e-05,
1570
+ "loss": 0.7081,
1571
+ "step": 5575
1572
+ },
1573
+ {
1574
+ "epoch": 0.8275817479431684,
1575
+ "grad_norm": 0.63306725025177,
1576
+ "learning_rate": 6.043730001523694e-05,
1577
+ "loss": 0.6814,
1578
+ "step": 5600
1579
+ },
1580
+ {
1581
+ "epoch": 0.8312763093179147,
1582
+ "grad_norm": 0.638088047504425,
1583
+ "learning_rate": 6.0246838336126774e-05,
1584
+ "loss": 0.7162,
1585
+ "step": 5625
1586
+ },
1587
+ {
1588
+ "epoch": 0.834970870692661,
1589
+ "grad_norm": 0.6416764259338379,
1590
+ "learning_rate": 6.0056376657016614e-05,
1591
+ "loss": 0.6935,
1592
+ "step": 5650
1593
+ },
1594
+ {
1595
+ "epoch": 0.8386654320674073,
1596
+ "grad_norm": 0.6060255169868469,
1597
+ "learning_rate": 5.9865914977906447e-05,
1598
+ "loss": 0.6935,
1599
+ "step": 5675
1600
+ },
1601
+ {
1602
+ "epoch": 0.8423599934421535,
1603
+ "grad_norm": 0.6919652223587036,
1604
+ "learning_rate": 5.967545329879628e-05,
1605
+ "loss": 0.6781,
1606
+ "step": 5700
1607
+ },
1608
+ {
1609
+ "epoch": 0.8460545548168998,
1610
+ "grad_norm": 0.5610880851745605,
1611
+ "learning_rate": 5.9484991619686125e-05,
1612
+ "loss": 0.6924,
1613
+ "step": 5725
1614
+ },
1615
+ {
1616
+ "epoch": 0.8497491161916462,
1617
+ "grad_norm": 0.6481006145477295,
1618
+ "learning_rate": 5.929452994057596e-05,
1619
+ "loss": 0.6708,
1620
+ "step": 5750
1621
+ },
1622
+ {
1623
+ "epoch": 0.8534436775663924,
1624
+ "grad_norm": 0.618869423866272,
1625
+ "learning_rate": 5.91040682614658e-05,
1626
+ "loss": 0.6801,
1627
+ "step": 5775
1628
+ },
1629
+ {
1630
+ "epoch": 0.8571382389411387,
1631
+ "grad_norm": 0.5622214674949646,
1632
+ "learning_rate": 5.891360658235563e-05,
1633
+ "loss": 0.6932,
1634
+ "step": 5800
1635
+ },
1636
+ {
1637
+ "epoch": 0.860832800315885,
1638
+ "grad_norm": 0.6936132311820984,
1639
+ "learning_rate": 5.8723144903245476e-05,
1640
+ "loss": 0.6932,
1641
+ "step": 5825
1642
+ },
1643
+ {
1644
+ "epoch": 0.8645273616906313,
1645
+ "grad_norm": 0.6182092428207397,
1646
+ "learning_rate": 5.853268322413531e-05,
1647
+ "loss": 0.6767,
1648
+ "step": 5850
1649
+ },
1650
+ {
1651
+ "epoch": 0.8682219230653776,
1652
+ "grad_norm": 0.6932141184806824,
1653
+ "learning_rate": 5.834222154502514e-05,
1654
+ "loss": 0.694,
1655
+ "step": 5875
1656
+ },
1657
+ {
1658
+ "epoch": 0.8719164844401238,
1659
+ "grad_norm": 0.4943319261074066,
1660
+ "learning_rate": 5.815175986591498e-05,
1661
+ "loss": 0.6884,
1662
+ "step": 5900
1663
+ },
1664
+ {
1665
+ "epoch": 0.8756110458148701,
1666
+ "grad_norm": 0.730697512626648,
1667
+ "learning_rate": 5.7961298186804814e-05,
1668
+ "loss": 0.6906,
1669
+ "step": 5925
1670
+ },
1671
+ {
1672
+ "epoch": 0.8793056071896165,
1673
+ "grad_norm": 0.5535916090011597,
1674
+ "learning_rate": 5.777083650769466e-05,
1675
+ "loss": 0.6992,
1676
+ "step": 5950
1677
+ },
1678
+ {
1679
+ "epoch": 0.8830001685643627,
1680
+ "grad_norm": 0.6035041809082031,
1681
+ "learning_rate": 5.758037482858449e-05,
1682
+ "loss": 0.6637,
1683
+ "step": 5975
1684
+ },
1685
+ {
1686
+ "epoch": 0.886694729939109,
1687
+ "grad_norm": 0.6580167412757874,
1688
+ "learning_rate": 5.7389913149474325e-05,
1689
+ "loss": 0.7056,
1690
+ "step": 6000
1691
+ },
1692
+ {
1693
+ "epoch": 0.8903892913138552,
1694
+ "grad_norm": 0.5391905903816223,
1695
+ "learning_rate": 5.7199451470364165e-05,
1696
+ "loss": 0.7169,
1697
+ "step": 6025
1698
+ },
1699
+ {
1700
+ "epoch": 0.8940838526886016,
1701
+ "grad_norm": 0.7833768725395203,
1702
+ "learning_rate": 5.7008989791254e-05,
1703
+ "loss": 0.682,
1704
+ "step": 6050
1705
+ },
1706
+ {
1707
+ "epoch": 0.8977784140633479,
1708
+ "grad_norm": 0.6040502190589905,
1709
+ "learning_rate": 5.681852811214384e-05,
1710
+ "loss": 0.6893,
1711
+ "step": 6075
1712
+ },
1713
+ {
1714
+ "epoch": 0.9014729754380941,
1715
+ "grad_norm": 0.5723184943199158,
1716
+ "learning_rate": 5.6628066433033676e-05,
1717
+ "loss": 0.7041,
1718
+ "step": 6100
1719
+ },
1720
+ {
1721
+ "epoch": 0.9051675368128405,
1722
+ "grad_norm": 0.7001731395721436,
1723
+ "learning_rate": 5.643760475392351e-05,
1724
+ "loss": 0.69,
1725
+ "step": 6125
1726
+ },
1727
+ {
1728
+ "epoch": 0.9088620981875868,
1729
+ "grad_norm": 0.6454519629478455,
1730
+ "learning_rate": 5.624714307481335e-05,
1731
+ "loss": 0.6777,
1732
+ "step": 6150
1733
+ },
1734
+ {
1735
+ "epoch": 0.912556659562333,
1736
+ "grad_norm": 0.6187843680381775,
1737
+ "learning_rate": 5.6056681395703194e-05,
1738
+ "loss": 0.7069,
1739
+ "step": 6175
1740
+ },
1741
+ {
1742
+ "epoch": 0.9162512209370793,
1743
+ "grad_norm": 0.6245271563529968,
1744
+ "learning_rate": 5.586621971659303e-05,
1745
+ "loss": 0.6735,
1746
+ "step": 6200
1747
+ },
1748
+ {
1749
+ "epoch": 0.9199457823118256,
1750
+ "grad_norm": 0.513124406337738,
1751
+ "learning_rate": 5.567575803748286e-05,
1752
+ "loss": 0.6859,
1753
+ "step": 6225
1754
+ },
1755
+ {
1756
+ "epoch": 0.9236403436865719,
1757
+ "grad_norm": 0.5510721206665039,
1758
+ "learning_rate": 5.54852963583727e-05,
1759
+ "loss": 0.7195,
1760
+ "step": 6250
1761
+ },
1762
+ {
1763
+ "epoch": 0.9273349050613182,
1764
+ "grad_norm": 0.7087464332580566,
1765
+ "learning_rate": 5.529483467926253e-05,
1766
+ "loss": 0.6761,
1767
+ "step": 6275
1768
+ },
1769
+ {
1770
+ "epoch": 0.9310294664360644,
1771
+ "grad_norm": 0.6695664525032043,
1772
+ "learning_rate": 5.510437300015238e-05,
1773
+ "loss": 0.7013,
1774
+ "step": 6300
1775
+ },
1776
+ {
1777
+ "epoch": 0.9347240278108108,
1778
+ "grad_norm": 0.6182588934898376,
1779
+ "learning_rate": 5.491391132104221e-05,
1780
+ "loss": 0.6793,
1781
+ "step": 6325
1782
+ },
1783
+ {
1784
+ "epoch": 0.938418589185557,
1785
+ "grad_norm": 0.7019252181053162,
1786
+ "learning_rate": 5.472344964193204e-05,
1787
+ "loss": 0.7122,
1788
+ "step": 6350
1789
+ },
1790
+ {
1791
+ "epoch": 0.9421131505603033,
1792
+ "grad_norm": 0.772847592830658,
1793
+ "learning_rate": 5.453298796282188e-05,
1794
+ "loss": 0.6991,
1795
+ "step": 6375
1796
+ },
1797
+ {
1798
+ "epoch": 0.9458077119350496,
1799
+ "grad_norm": 0.7126289010047913,
1800
+ "learning_rate": 5.4342526283711715e-05,
1801
+ "loss": 0.6992,
1802
+ "step": 6400
1803
+ },
1804
+ {
1805
+ "epoch": 0.9495022733097959,
1806
+ "grad_norm": 0.7134938836097717,
1807
+ "learning_rate": 5.415206460460156e-05,
1808
+ "loss": 0.7091,
1809
+ "step": 6425
1810
+ },
1811
+ {
1812
+ "epoch": 0.9531968346845422,
1813
+ "grad_norm": 0.7651578187942505,
1814
+ "learning_rate": 5.3961602925491394e-05,
1815
+ "loss": 0.6829,
1816
+ "step": 6450
1817
+ },
1818
+ {
1819
+ "epoch": 0.9568913960592885,
1820
+ "grad_norm": 0.6493939161300659,
1821
+ "learning_rate": 5.377114124638123e-05,
1822
+ "loss": 0.6831,
1823
+ "step": 6475
1824
+ },
1825
+ {
1826
+ "epoch": 0.9605859574340347,
1827
+ "grad_norm": 0.5992809534072876,
1828
+ "learning_rate": 5.3580679567271066e-05,
1829
+ "loss": 0.6984,
1830
+ "step": 6500
1831
+ },
1832
+ {
1833
+ "epoch": 0.9642805188087811,
1834
+ "grad_norm": 0.6597899794578552,
1835
+ "learning_rate": 5.339021788816091e-05,
1836
+ "loss": 0.6893,
1837
+ "step": 6525
1838
+ },
1839
+ {
1840
+ "epoch": 0.9679750801835273,
1841
+ "grad_norm": 0.6459916234016418,
1842
+ "learning_rate": 5.3199756209050745e-05,
1843
+ "loss": 0.6935,
1844
+ "step": 6550
1845
+ },
1846
+ {
1847
+ "epoch": 0.9716696415582736,
1848
+ "grad_norm": 0.7714385986328125,
1849
+ "learning_rate": 5.300929452994058e-05,
1850
+ "loss": 0.6883,
1851
+ "step": 6575
1852
+ },
1853
+ {
1854
+ "epoch": 0.97536420293302,
1855
+ "grad_norm": 0.5793107748031616,
1856
+ "learning_rate": 5.281883285083041e-05,
1857
+ "loss": 0.6795,
1858
+ "step": 6600
1859
+ },
1860
+ {
1861
+ "epoch": 0.9790587643077662,
1862
+ "grad_norm": 0.5452476739883423,
1863
+ "learning_rate": 5.262837117172025e-05,
1864
+ "loss": 0.6809,
1865
+ "step": 6625
1866
+ },
1867
+ {
1868
+ "epoch": 0.9827533256825125,
1869
+ "grad_norm": 0.6292601823806763,
1870
+ "learning_rate": 5.2437909492610096e-05,
1871
+ "loss": 0.7021,
1872
+ "step": 6650
1873
+ },
1874
+ {
1875
+ "epoch": 0.9864478870572587,
1876
+ "grad_norm": 0.6509853601455688,
1877
+ "learning_rate": 5.224744781349993e-05,
1878
+ "loss": 0.6808,
1879
+ "step": 6675
1880
+ },
1881
+ {
1882
+ "epoch": 0.990142448432005,
1883
+ "grad_norm": 0.6169773936271667,
1884
+ "learning_rate": 5.205698613438976e-05,
1885
+ "loss": 0.677,
1886
+ "step": 6700
1887
+ },
1888
+ {
1889
+ "epoch": 0.9938370098067514,
1890
+ "grad_norm": 0.6769931316375732,
1891
+ "learning_rate": 5.1866524455279594e-05,
1892
+ "loss": 0.7188,
1893
+ "step": 6725
1894
+ },
1895
+ {
1896
+ "epoch": 0.9975315711814976,
1897
+ "grad_norm": 0.6493127346038818,
1898
+ "learning_rate": 5.167606277616944e-05,
1899
+ "loss": 0.68,
1900
+ "step": 6750
1901
+ },
1902
+ {
1903
+ "epoch": 1.001182259639919,
1904
+ "grad_norm": 0.6528682708740234,
1905
+ "learning_rate": 5.148560109705928e-05,
1906
+ "loss": 0.6982,
1907
+ "step": 6775
1908
+ },
1909
+ {
1910
+ "epoch": 1.004876821014665,
1911
+ "grad_norm": 0.6537097692489624,
1912
+ "learning_rate": 5.129513941794911e-05,
1913
+ "loss": 0.6513,
1914
+ "step": 6800
1915
+ },
1916
+ {
1917
+ "epoch": 1.0085713823894114,
1918
+ "grad_norm": 0.6426008939743042,
1919
+ "learning_rate": 5.1104677738838945e-05,
1920
+ "loss": 0.668,
1921
+ "step": 6825
1922
+ },
1923
+ {
1924
+ "epoch": 1.0122659437641577,
1925
+ "grad_norm": 0.5742406249046326,
1926
+ "learning_rate": 5.0914216059728784e-05,
1927
+ "loss": 0.67,
1928
+ "step": 6850
1929
+ },
1930
+ {
1931
+ "epoch": 1.015960505138904,
1932
+ "grad_norm": 0.7166649103164673,
1933
+ "learning_rate": 5.0723754380618623e-05,
1934
+ "loss": 0.6602,
1935
+ "step": 6875
1936
+ },
1937
+ {
1938
+ "epoch": 1.0196550665136503,
1939
+ "grad_norm": 0.7485601305961609,
1940
+ "learning_rate": 5.053329270150846e-05,
1941
+ "loss": 0.6567,
1942
+ "step": 6900
1943
+ },
1944
+ {
1945
+ "epoch": 1.0233496278883965,
1946
+ "grad_norm": 0.7126789689064026,
1947
+ "learning_rate": 5.0342831022398296e-05,
1948
+ "loss": 0.6624,
1949
+ "step": 6925
1950
+ },
1951
+ {
1952
+ "epoch": 1.0270441892631428,
1953
+ "grad_norm": 0.7238374948501587,
1954
+ "learning_rate": 5.015236934328813e-05,
1955
+ "loss": 0.6613,
1956
+ "step": 6950
1957
+ },
1958
+ {
1959
+ "epoch": 1.0307387506378891,
1960
+ "grad_norm": 0.6505608558654785,
1961
+ "learning_rate": 4.996190766417797e-05,
1962
+ "loss": 0.6554,
1963
+ "step": 6975
1964
+ },
1965
+ {
1966
+ "epoch": 1.0344333120126354,
1967
+ "grad_norm": 0.6918332576751709,
1968
+ "learning_rate": 4.977144598506781e-05,
1969
+ "loss": 0.6645,
1970
+ "step": 7000
1971
+ },
1972
+ {
1973
+ "epoch": 1.0381278733873818,
1974
+ "grad_norm": 0.5876255035400391,
1975
+ "learning_rate": 4.9580984305957646e-05,
1976
+ "loss": 0.6638,
1977
+ "step": 7025
1978
+ },
1979
+ {
1980
+ "epoch": 1.0418224347621279,
1981
+ "grad_norm": 0.7554610967636108,
1982
+ "learning_rate": 4.939052262684748e-05,
1983
+ "loss": 0.6742,
1984
+ "step": 7050
1985
+ },
1986
+ {
1987
+ "epoch": 1.0455169961368742,
1988
+ "grad_norm": 0.6300481557846069,
1989
+ "learning_rate": 4.920006094773732e-05,
1990
+ "loss": 0.6409,
1991
+ "step": 7075
1992
+ },
1993
+ {
1994
+ "epoch": 1.0492115575116205,
1995
+ "grad_norm": 0.5924395322799683,
1996
+ "learning_rate": 4.900959926862715e-05,
1997
+ "loss": 0.668,
1998
+ "step": 7100
1999
+ },
2000
+ {
2001
+ "epoch": 1.0529061188863669,
2002
+ "grad_norm": 0.6832597851753235,
2003
+ "learning_rate": 4.881913758951699e-05,
2004
+ "loss": 0.6431,
2005
+ "step": 7125
2006
+ },
2007
+ {
2008
+ "epoch": 1.0566006802611132,
2009
+ "grad_norm": 0.702418863773346,
2010
+ "learning_rate": 4.862867591040683e-05,
2011
+ "loss": 0.6463,
2012
+ "step": 7150
2013
+ },
2014
+ {
2015
+ "epoch": 1.0602952416358593,
2016
+ "grad_norm": 0.6264967918395996,
2017
+ "learning_rate": 4.843821423129666e-05,
2018
+ "loss": 0.653,
2019
+ "step": 7175
2020
+ },
2021
+ {
2022
+ "epoch": 1.0639898030106056,
2023
+ "grad_norm": 0.6441030502319336,
2024
+ "learning_rate": 4.82477525521865e-05,
2025
+ "loss": 0.6415,
2026
+ "step": 7200
2027
+ },
2028
+ {
2029
+ "epoch": 1.067684364385352,
2030
+ "grad_norm": 0.5445654392242432,
2031
+ "learning_rate": 4.805729087307634e-05,
2032
+ "loss": 0.6516,
2033
+ "step": 7225
2034
+ },
2035
+ {
2036
+ "epoch": 1.0713789257600983,
2037
+ "grad_norm": 0.634982168674469,
2038
+ "learning_rate": 4.786682919396618e-05,
2039
+ "loss": 0.6617,
2040
+ "step": 7250
2041
+ },
2042
+ {
2043
+ "epoch": 1.0750734871348446,
2044
+ "grad_norm": 0.5670004487037659,
2045
+ "learning_rate": 4.7676367514856013e-05,
2046
+ "loss": 0.644,
2047
+ "step": 7275
2048
+ },
2049
+ {
2050
+ "epoch": 1.0787680485095907,
2051
+ "grad_norm": 0.6136172413825989,
2052
+ "learning_rate": 4.7485905835745846e-05,
2053
+ "loss": 0.6404,
2054
+ "step": 7300
2055
+ },
2056
+ {
2057
+ "epoch": 1.082462609884337,
2058
+ "grad_norm": 0.6087863445281982,
2059
+ "learning_rate": 4.7295444156635686e-05,
2060
+ "loss": 0.666,
2061
+ "step": 7325
2062
+ },
2063
+ {
2064
+ "epoch": 1.0861571712590834,
2065
+ "grad_norm": 0.54926997423172,
2066
+ "learning_rate": 4.7104982477525525e-05,
2067
+ "loss": 0.6157,
2068
+ "step": 7350
2069
+ },
2070
+ {
2071
+ "epoch": 1.0898517326338297,
2072
+ "grad_norm": 0.6426320672035217,
2073
+ "learning_rate": 4.6914520798415364e-05,
2074
+ "loss": 0.6349,
2075
+ "step": 7375
2076
+ },
2077
+ {
2078
+ "epoch": 1.093546294008576,
2079
+ "grad_norm": 0.5854539275169373,
2080
+ "learning_rate": 4.67240591193052e-05,
2081
+ "loss": 0.6583,
2082
+ "step": 7400
2083
+ },
2084
+ {
2085
+ "epoch": 1.0972408553833224,
2086
+ "grad_norm": 0.7021641731262207,
2087
+ "learning_rate": 4.6533597440195036e-05,
2088
+ "loss": 0.6682,
2089
+ "step": 7425
2090
+ },
2091
+ {
2092
+ "epoch": 1.1009354167580685,
2093
+ "grad_norm": 0.7356472611427307,
2094
+ "learning_rate": 4.634313576108487e-05,
2095
+ "loss": 0.6563,
2096
+ "step": 7450
2097
+ },
2098
+ {
2099
+ "epoch": 1.1046299781328148,
2100
+ "grad_norm": 0.6147669553756714,
2101
+ "learning_rate": 4.615267408197471e-05,
2102
+ "loss": 0.667,
2103
+ "step": 7475
2104
+ },
2105
+ {
2106
+ "epoch": 1.1083245395075612,
2107
+ "grad_norm": 0.6394315958023071,
2108
+ "learning_rate": 4.596221240286455e-05,
2109
+ "loss": 0.6737,
2110
+ "step": 7500
2111
+ },
2112
+ {
2113
+ "epoch": 1.1120191008823075,
2114
+ "grad_norm": 0.7234614491462708,
2115
+ "learning_rate": 4.577175072375438e-05,
2116
+ "loss": 0.6556,
2117
+ "step": 7525
2118
+ },
2119
+ {
2120
+ "epoch": 1.1157136622570538,
2121
+ "grad_norm": 0.6812229156494141,
2122
+ "learning_rate": 4.558128904464422e-05,
2123
+ "loss": 0.6544,
2124
+ "step": 7550
2125
+ },
2126
+ {
2127
+ "epoch": 1.1194082236318,
2128
+ "grad_norm": 0.6218217611312866,
2129
+ "learning_rate": 4.539082736553405e-05,
2130
+ "loss": 0.668,
2131
+ "step": 7575
2132
+ },
2133
+ {
2134
+ "epoch": 1.1231027850065463,
2135
+ "grad_norm": 0.8202681541442871,
2136
+ "learning_rate": 4.52003656864239e-05,
2137
+ "loss": 0.679,
2138
+ "step": 7600
2139
+ },
2140
+ {
2141
+ "epoch": 1.1267973463812926,
2142
+ "grad_norm": 0.5360725522041321,
2143
+ "learning_rate": 4.500990400731373e-05,
2144
+ "loss": 0.6463,
2145
+ "step": 7625
2146
+ },
2147
+ {
2148
+ "epoch": 1.130491907756039,
2149
+ "grad_norm": 0.6142716407775879,
2150
+ "learning_rate": 4.481944232820357e-05,
2151
+ "loss": 0.659,
2152
+ "step": 7650
2153
+ },
2154
+ {
2155
+ "epoch": 1.1341864691307852,
2156
+ "grad_norm": 0.619349479675293,
2157
+ "learning_rate": 4.4628980649093404e-05,
2158
+ "loss": 0.6724,
2159
+ "step": 7675
2160
+ },
2161
+ {
2162
+ "epoch": 1.1378810305055314,
2163
+ "grad_norm": 0.6891987323760986,
2164
+ "learning_rate": 4.4438518969983236e-05,
2165
+ "loss": 0.6509,
2166
+ "step": 7700
2167
+ },
2168
+ {
2169
+ "epoch": 1.1415755918802777,
2170
+ "grad_norm": 0.7174720168113708,
2171
+ "learning_rate": 4.424805729087308e-05,
2172
+ "loss": 0.6715,
2173
+ "step": 7725
2174
+ },
2175
+ {
2176
+ "epoch": 1.145270153255024,
2177
+ "grad_norm": 0.7424497008323669,
2178
+ "learning_rate": 4.4057595611762915e-05,
2179
+ "loss": 0.6449,
2180
+ "step": 7750
2181
+ },
2182
+ {
2183
+ "epoch": 1.1489647146297703,
2184
+ "grad_norm": 0.6533998847007751,
2185
+ "learning_rate": 4.3867133932652754e-05,
2186
+ "loss": 0.6528,
2187
+ "step": 7775
2188
+ },
2189
+ {
2190
+ "epoch": 1.1526592760045167,
2191
+ "grad_norm": 0.7500383853912354,
2192
+ "learning_rate": 4.367667225354259e-05,
2193
+ "loss": 0.6592,
2194
+ "step": 7800
2195
+ },
2196
+ {
2197
+ "epoch": 1.156353837379263,
2198
+ "grad_norm": 0.6293950080871582,
2199
+ "learning_rate": 4.3486210574432427e-05,
2200
+ "loss": 0.6584,
2201
+ "step": 7825
2202
+ },
2203
+ {
2204
+ "epoch": 1.1600483987540091,
2205
+ "grad_norm": 0.8463473320007324,
2206
+ "learning_rate": 4.3295748895322266e-05,
2207
+ "loss": 0.6656,
2208
+ "step": 7850
2209
+ },
2210
+ {
2211
+ "epoch": 1.1637429601287554,
2212
+ "grad_norm": 0.6918061971664429,
2213
+ "learning_rate": 4.31052872162121e-05,
2214
+ "loss": 0.6603,
2215
+ "step": 7875
2216
+ },
2217
+ {
2218
+ "epoch": 1.1674375215035018,
2219
+ "grad_norm": 0.5433516502380371,
2220
+ "learning_rate": 4.291482553710194e-05,
2221
+ "loss": 0.6422,
2222
+ "step": 7900
2223
+ },
2224
+ {
2225
+ "epoch": 1.171132082878248,
2226
+ "grad_norm": 0.6414408087730408,
2227
+ "learning_rate": 4.272436385799177e-05,
2228
+ "loss": 0.6279,
2229
+ "step": 7925
2230
+ },
2231
+ {
2232
+ "epoch": 1.1748266442529944,
2233
+ "grad_norm": 0.814218282699585,
2234
+ "learning_rate": 4.253390217888161e-05,
2235
+ "loss": 0.6673,
2236
+ "step": 7950
2237
+ },
2238
+ {
2239
+ "epoch": 1.1785212056277405,
2240
+ "grad_norm": 0.7378386855125427,
2241
+ "learning_rate": 4.234344049977145e-05,
2242
+ "loss": 0.6651,
2243
+ "step": 7975
2244
+ },
2245
+ {
2246
+ "epoch": 1.1822157670024869,
2247
+ "grad_norm": 0.6620386242866516,
2248
+ "learning_rate": 4.215297882066129e-05,
2249
+ "loss": 0.6984,
2250
+ "step": 8000
2251
+ },
2252
+ {
2253
+ "epoch": 1.1859103283772332,
2254
+ "grad_norm": 0.6845581531524658,
2255
+ "learning_rate": 4.196251714155112e-05,
2256
+ "loss": 0.6524,
2257
+ "step": 8025
2258
+ },
2259
+ {
2260
+ "epoch": 1.1896048897519795,
2261
+ "grad_norm": 0.7139785289764404,
2262
+ "learning_rate": 4.1772055462440954e-05,
2263
+ "loss": 0.6453,
2264
+ "step": 8050
2265
+ },
2266
+ {
2267
+ "epoch": 1.1932994511267259,
2268
+ "grad_norm": 0.6536353230476379,
2269
+ "learning_rate": 4.1581593783330794e-05,
2270
+ "loss": 0.6456,
2271
+ "step": 8075
2272
+ },
2273
+ {
2274
+ "epoch": 1.196994012501472,
2275
+ "grad_norm": 0.6225493550300598,
2276
+ "learning_rate": 4.139113210422063e-05,
2277
+ "loss": 0.6192,
2278
+ "step": 8100
2279
+ },
2280
+ {
2281
+ "epoch": 1.2006885738762183,
2282
+ "grad_norm": 0.6810159683227539,
2283
+ "learning_rate": 4.120067042511047e-05,
2284
+ "loss": 0.6634,
2285
+ "step": 8125
2286
+ },
2287
+ {
2288
+ "epoch": 1.2043831352509646,
2289
+ "grad_norm": 0.5847315788269043,
2290
+ "learning_rate": 4.1010208746000305e-05,
2291
+ "loss": 0.6231,
2292
+ "step": 8150
2293
+ },
2294
+ {
2295
+ "epoch": 1.208077696625711,
2296
+ "grad_norm": 0.6385469436645508,
2297
+ "learning_rate": 4.0819747066890144e-05,
2298
+ "loss": 0.6619,
2299
+ "step": 8175
2300
+ },
2301
+ {
2302
+ "epoch": 1.2117722580004573,
2303
+ "grad_norm": 0.7124472260475159,
2304
+ "learning_rate": 4.0629285387779984e-05,
2305
+ "loss": 0.6626,
2306
+ "step": 8200
2307
+ },
2308
+ {
2309
+ "epoch": 1.2154668193752034,
2310
+ "grad_norm": 0.658824622631073,
2311
+ "learning_rate": 4.0438823708669817e-05,
2312
+ "loss": 0.6653,
2313
+ "step": 8225
2314
+ },
2315
+ {
2316
+ "epoch": 1.2191613807499497,
2317
+ "grad_norm": 0.6626468300819397,
2318
+ "learning_rate": 4.0248362029559656e-05,
2319
+ "loss": 0.6777,
2320
+ "step": 8250
2321
+ },
2322
+ {
2323
+ "epoch": 1.222855942124696,
2324
+ "grad_norm": 0.6238393783569336,
2325
+ "learning_rate": 4.005790035044949e-05,
2326
+ "loss": 0.6622,
2327
+ "step": 8275
2328
+ },
2329
+ {
2330
+ "epoch": 1.2265505034994424,
2331
+ "grad_norm": 0.685213565826416,
2332
+ "learning_rate": 3.986743867133933e-05,
2333
+ "loss": 0.6423,
2334
+ "step": 8300
2335
+ },
2336
+ {
2337
+ "epoch": 1.2302450648741887,
2338
+ "grad_norm": 0.7486940622329712,
2339
+ "learning_rate": 3.967697699222917e-05,
2340
+ "loss": 0.6631,
2341
+ "step": 8325
2342
+ },
2343
+ {
2344
+ "epoch": 1.2339396262489348,
2345
+ "grad_norm": 0.7994277477264404,
2346
+ "learning_rate": 3.948651531311901e-05,
2347
+ "loss": 0.6725,
2348
+ "step": 8350
2349
+ },
2350
+ {
2351
+ "epoch": 1.2376341876236812,
2352
+ "grad_norm": 0.6204445958137512,
2353
+ "learning_rate": 3.929605363400884e-05,
2354
+ "loss": 0.6411,
2355
+ "step": 8375
2356
+ },
2357
+ {
2358
+ "epoch": 1.2413287489984275,
2359
+ "grad_norm": 0.7625504732131958,
2360
+ "learning_rate": 3.910559195489867e-05,
2361
+ "loss": 0.6819,
2362
+ "step": 8400
2363
+ },
2364
+ {
2365
+ "epoch": 1.2450233103731738,
2366
+ "grad_norm": 0.6892343163490295,
2367
+ "learning_rate": 3.891513027578851e-05,
2368
+ "loss": 0.6614,
2369
+ "step": 8425
2370
+ },
2371
+ {
2372
+ "epoch": 1.2487178717479201,
2373
+ "grad_norm": 0.6849514245986938,
2374
+ "learning_rate": 3.872466859667835e-05,
2375
+ "loss": 0.6442,
2376
+ "step": 8450
2377
+ },
2378
+ {
2379
+ "epoch": 1.2524124331226663,
2380
+ "grad_norm": 0.7257765531539917,
2381
+ "learning_rate": 3.853420691756819e-05,
2382
+ "loss": 0.6475,
2383
+ "step": 8475
2384
+ },
2385
+ {
2386
+ "epoch": 1.2561069944974126,
2387
+ "grad_norm": 0.7827818393707275,
2388
+ "learning_rate": 3.834374523845802e-05,
2389
+ "loss": 0.6317,
2390
+ "step": 8500
2391
+ },
2392
+ {
2393
+ "epoch": 1.259801555872159,
2394
+ "grad_norm": 0.7970981597900391,
2395
+ "learning_rate": 3.815328355934786e-05,
2396
+ "loss": 0.6585,
2397
+ "step": 8525
2398
+ },
2399
+ {
2400
+ "epoch": 1.2634961172469052,
2401
+ "grad_norm": 0.7086262106895447,
2402
+ "learning_rate": 3.7962821880237695e-05,
2403
+ "loss": 0.6499,
2404
+ "step": 8550
2405
+ },
2406
+ {
2407
+ "epoch": 1.2671906786216516,
2408
+ "grad_norm": 0.654151439666748,
2409
+ "learning_rate": 3.7772360201127535e-05,
2410
+ "loss": 0.6587,
2411
+ "step": 8575
2412
+ },
2413
+ {
2414
+ "epoch": 1.2708852399963977,
2415
+ "grad_norm": 0.6484542489051819,
2416
+ "learning_rate": 3.7581898522017374e-05,
2417
+ "loss": 0.6533,
2418
+ "step": 8600
2419
+ },
2420
+ {
2421
+ "epoch": 1.274579801371144,
2422
+ "grad_norm": 0.5822983384132385,
2423
+ "learning_rate": 3.7391436842907207e-05,
2424
+ "loss": 0.6535,
2425
+ "step": 8625
2426
+ },
2427
+ {
2428
+ "epoch": 1.2782743627458903,
2429
+ "grad_norm": 0.6506041884422302,
2430
+ "learning_rate": 3.7200975163797046e-05,
2431
+ "loss": 0.6527,
2432
+ "step": 8650
2433
+ },
2434
+ {
2435
+ "epoch": 1.2819689241206367,
2436
+ "grad_norm": 0.6804136037826538,
2437
+ "learning_rate": 3.701051348468688e-05,
2438
+ "loss": 0.642,
2439
+ "step": 8675
2440
+ },
2441
+ {
2442
+ "epoch": 1.285663485495383,
2443
+ "grad_norm": 0.7997829914093018,
2444
+ "learning_rate": 3.6820051805576725e-05,
2445
+ "loss": 0.6489,
2446
+ "step": 8700
2447
+ },
2448
+ {
2449
+ "epoch": 1.2893580468701291,
2450
+ "grad_norm": 0.7355867028236389,
2451
+ "learning_rate": 3.662959012646656e-05,
2452
+ "loss": 0.6777,
2453
+ "step": 8725
2454
+ },
2455
+ {
2456
+ "epoch": 1.2930526082448754,
2457
+ "grad_norm": 9.047796249389648,
2458
+ "learning_rate": 3.643912844735639e-05,
2459
+ "loss": 0.6777,
2460
+ "step": 8750
2461
+ },
2462
+ {
2463
+ "epoch": 1.2967471696196218,
2464
+ "grad_norm": 0.7236223220825195,
2465
+ "learning_rate": 3.624866676824623e-05,
2466
+ "loss": 0.6777,
2467
+ "step": 8775
2468
+ },
2469
+ {
2470
+ "epoch": 1.300441730994368,
2471
+ "grad_norm": 0.6845753192901611,
2472
+ "learning_rate": 3.605820508913607e-05,
2473
+ "loss": 0.6284,
2474
+ "step": 8800
2475
+ },
2476
+ {
2477
+ "epoch": 1.3041362923691144,
2478
+ "grad_norm": 0.7639452815055847,
2479
+ "learning_rate": 3.586774341002591e-05,
2480
+ "loss": 0.6822,
2481
+ "step": 8825
2482
+ },
2483
+ {
2484
+ "epoch": 1.3078308537438605,
2485
+ "grad_norm": 0.6909865736961365,
2486
+ "learning_rate": 3.567728173091574e-05,
2487
+ "loss": 0.6737,
2488
+ "step": 8850
2489
+ },
2490
+ {
2491
+ "epoch": 1.311525415118607,
2492
+ "grad_norm": 0.6128563284873962,
2493
+ "learning_rate": 3.548682005180558e-05,
2494
+ "loss": 0.666,
2495
+ "step": 8875
2496
+ },
2497
+ {
2498
+ "epoch": 1.3152199764933532,
2499
+ "grad_norm": 0.7517656087875366,
2500
+ "learning_rate": 3.529635837269541e-05,
2501
+ "loss": 0.6389,
2502
+ "step": 8900
2503
+ },
2504
+ {
2505
+ "epoch": 1.3189145378680995,
2506
+ "grad_norm": 0.7127660512924194,
2507
+ "learning_rate": 3.510589669358525e-05,
2508
+ "loss": 0.6334,
2509
+ "step": 8925
2510
+ },
2511
+ {
2512
+ "epoch": 1.3226090992428459,
2513
+ "grad_norm": 0.7129451632499695,
2514
+ "learning_rate": 3.491543501447509e-05,
2515
+ "loss": 0.6545,
2516
+ "step": 8950
2517
+ },
2518
+ {
2519
+ "epoch": 1.3263036606175922,
2520
+ "grad_norm": 0.7367307543754578,
2521
+ "learning_rate": 3.4724973335364925e-05,
2522
+ "loss": 0.6329,
2523
+ "step": 8975
2524
+ },
2525
+ {
2526
+ "epoch": 1.3299982219923385,
2527
+ "grad_norm": 0.7707272171974182,
2528
+ "learning_rate": 3.4534511656254764e-05,
2529
+ "loss": 0.6469,
2530
+ "step": 9000
2531
+ },
2532
+ {
2533
+ "epoch": 1.3336927833670846,
2534
+ "grad_norm": 0.5796623826026917,
2535
+ "learning_rate": 3.43440499771446e-05,
2536
+ "loss": 0.6533,
2537
+ "step": 9025
2538
+ },
2539
+ {
2540
+ "epoch": 1.337387344741831,
2541
+ "grad_norm": 210.8633270263672,
2542
+ "learning_rate": 3.4153588298034436e-05,
2543
+ "loss": 0.663,
2544
+ "step": 9050
2545
+ },
2546
+ {
2547
+ "epoch": 1.3410819061165773,
2548
+ "grad_norm": 0.6077564358711243,
2549
+ "learning_rate": 3.3963126618924275e-05,
2550
+ "loss": 0.6529,
2551
+ "step": 9075
2552
+ },
2553
+ {
2554
+ "epoch": 1.3447764674913236,
2555
+ "grad_norm": 0.5756903290748596,
2556
+ "learning_rate": 3.3772664939814115e-05,
2557
+ "loss": 0.6379,
2558
+ "step": 9100
2559
+ },
2560
+ {
2561
+ "epoch": 1.34847102886607,
2562
+ "grad_norm": 0.6951320171356201,
2563
+ "learning_rate": 3.358220326070395e-05,
2564
+ "loss": 0.6572,
2565
+ "step": 9125
2566
+ },
2567
+ {
2568
+ "epoch": 1.352165590240816,
2569
+ "grad_norm": 0.654563307762146,
2570
+ "learning_rate": 3.339174158159378e-05,
2571
+ "loss": 0.6571,
2572
+ "step": 9150
2573
+ },
2574
+ {
2575
+ "epoch": 1.3558601516155624,
2576
+ "grad_norm": 0.8268250823020935,
2577
+ "learning_rate": 3.320127990248362e-05,
2578
+ "loss": 0.6952,
2579
+ "step": 9175
2580
+ },
2581
+ {
2582
+ "epoch": 1.3595547129903087,
2583
+ "grad_norm": 0.7915245890617371,
2584
+ "learning_rate": 3.301081822337346e-05,
2585
+ "loss": 0.6442,
2586
+ "step": 9200
2587
+ },
2588
+ {
2589
+ "epoch": 1.363249274365055,
2590
+ "grad_norm": 0.7299513816833496,
2591
+ "learning_rate": 3.28203565442633e-05,
2592
+ "loss": 0.6347,
2593
+ "step": 9225
2594
+ },
2595
+ {
2596
+ "epoch": 1.3669438357398014,
2597
+ "grad_norm": 0.6474806070327759,
2598
+ "learning_rate": 3.262989486515313e-05,
2599
+ "loss": 0.6604,
2600
+ "step": 9250
2601
+ },
2602
+ {
2603
+ "epoch": 1.3706383971145475,
2604
+ "grad_norm": 0.6813268661499023,
2605
+ "learning_rate": 3.243943318604297e-05,
2606
+ "loss": 0.66,
2607
+ "step": 9275
2608
+ },
2609
+ {
2610
+ "epoch": 1.3743329584892938,
2611
+ "grad_norm": 0.7166799306869507,
2612
+ "learning_rate": 3.224897150693281e-05,
2613
+ "loss": 0.6689,
2614
+ "step": 9300
2615
+ },
2616
+ {
2617
+ "epoch": 1.3780275198640402,
2618
+ "grad_norm": 0.6958301663398743,
2619
+ "learning_rate": 3.205850982782264e-05,
2620
+ "loss": 0.6512,
2621
+ "step": 9325
2622
+ },
2623
+ {
2624
+ "epoch": 1.3817220812387865,
2625
+ "grad_norm": 0.8137691617012024,
2626
+ "learning_rate": 3.186804814871248e-05,
2627
+ "loss": 0.6691,
2628
+ "step": 9350
2629
+ },
2630
+ {
2631
+ "epoch": 1.3854166426135328,
2632
+ "grad_norm": 0.6115707159042358,
2633
+ "learning_rate": 3.1677586469602315e-05,
2634
+ "loss": 0.6733,
2635
+ "step": 9375
2636
+ },
2637
+ {
2638
+ "epoch": 1.389111203988279,
2639
+ "grad_norm": 0.7478678822517395,
2640
+ "learning_rate": 3.1487124790492154e-05,
2641
+ "loss": 0.6514,
2642
+ "step": 9400
2643
+ },
2644
+ {
2645
+ "epoch": 1.3928057653630252,
2646
+ "grad_norm": 0.7280460000038147,
2647
+ "learning_rate": 3.1296663111381993e-05,
2648
+ "loss": 0.6375,
2649
+ "step": 9425
2650
+ },
2651
+ {
2652
+ "epoch": 1.3965003267377716,
2653
+ "grad_norm": 0.6709932088851929,
2654
+ "learning_rate": 3.110620143227183e-05,
2655
+ "loss": 0.6843,
2656
+ "step": 9450
2657
+ },
2658
+ {
2659
+ "epoch": 1.400194888112518,
2660
+ "grad_norm": 0.6445898413658142,
2661
+ "learning_rate": 3.0915739753161666e-05,
2662
+ "loss": 0.6395,
2663
+ "step": 9475
2664
+ },
2665
+ {
2666
+ "epoch": 1.4038894494872642,
2667
+ "grad_norm": 0.6072065830230713,
2668
+ "learning_rate": 3.07252780740515e-05,
2669
+ "loss": 0.6615,
2670
+ "step": 9500
2671
+ },
2672
+ {
2673
+ "epoch": 1.4075840108620103,
2674
+ "grad_norm": 0.7841944098472595,
2675
+ "learning_rate": 3.053481639494134e-05,
2676
+ "loss": 0.6388,
2677
+ "step": 9525
2678
+ },
2679
+ {
2680
+ "epoch": 1.4112785722367567,
2681
+ "grad_norm": 0.7215288281440735,
2682
+ "learning_rate": 3.0344354715831174e-05,
2683
+ "loss": 0.6694,
2684
+ "step": 9550
2685
+ },
2686
+ {
2687
+ "epoch": 1.414973133611503,
2688
+ "grad_norm": 0.5916579961776733,
2689
+ "learning_rate": 3.0153893036721016e-05,
2690
+ "loss": 0.7004,
2691
+ "step": 9575
2692
+ },
2693
+ {
2694
+ "epoch": 1.4186676949862493,
2695
+ "grad_norm": 0.6357461214065552,
2696
+ "learning_rate": 2.996343135761085e-05,
2697
+ "loss": 0.6416,
2698
+ "step": 9600
2699
+ },
2700
+ {
2701
+ "epoch": 1.4223622563609957,
2702
+ "grad_norm": 0.735261857509613,
2703
+ "learning_rate": 2.977296967850069e-05,
2704
+ "loss": 0.6374,
2705
+ "step": 9625
2706
+ },
2707
+ {
2708
+ "epoch": 1.4260568177357418,
2709
+ "grad_norm": 0.7285844087600708,
2710
+ "learning_rate": 2.9582507999390525e-05,
2711
+ "loss": 0.6448,
2712
+ "step": 9650
2713
+ },
2714
+ {
2715
+ "epoch": 1.429751379110488,
2716
+ "grad_norm": 0.7573617100715637,
2717
+ "learning_rate": 2.9392046320280357e-05,
2718
+ "loss": 0.6672,
2719
+ "step": 9675
2720
+ },
2721
+ {
2722
+ "epoch": 1.4334459404852344,
2723
+ "grad_norm": 0.5082629919052124,
2724
+ "learning_rate": 2.92015846411702e-05,
2725
+ "loss": 0.6514,
2726
+ "step": 9700
2727
+ },
2728
+ {
2729
+ "epoch": 1.4371405018599808,
2730
+ "grad_norm": 0.6786466836929321,
2731
+ "learning_rate": 2.9011122962060033e-05,
2732
+ "loss": 0.6542,
2733
+ "step": 9725
2734
+ },
2735
+ {
2736
+ "epoch": 1.440835063234727,
2737
+ "grad_norm": 0.6085937023162842,
2738
+ "learning_rate": 2.8820661282949872e-05,
2739
+ "loss": 0.6581,
2740
+ "step": 9750
2741
+ },
2742
+ {
2743
+ "epoch": 1.4445296246094732,
2744
+ "grad_norm": 0.6520203351974487,
2745
+ "learning_rate": 2.8630199603839708e-05,
2746
+ "loss": 0.6469,
2747
+ "step": 9775
2748
+ },
2749
+ {
2750
+ "epoch": 1.4482241859842195,
2751
+ "grad_norm": 0.5597354769706726,
2752
+ "learning_rate": 2.8439737924729548e-05,
2753
+ "loss": 0.6418,
2754
+ "step": 9800
2755
+ },
2756
+ {
2757
+ "epoch": 1.4519187473589659,
2758
+ "grad_norm": 0.6233022809028625,
2759
+ "learning_rate": 2.8249276245619384e-05,
2760
+ "loss": 0.6371,
2761
+ "step": 9825
2762
+ },
2763
+ {
2764
+ "epoch": 1.4556133087337122,
2765
+ "grad_norm": 0.880703866481781,
2766
+ "learning_rate": 2.8058814566509216e-05,
2767
+ "loss": 0.6647,
2768
+ "step": 9850
2769
+ },
2770
+ {
2771
+ "epoch": 1.4593078701084585,
2772
+ "grad_norm": 0.6821489334106445,
2773
+ "learning_rate": 2.786835288739906e-05,
2774
+ "loss": 0.6545,
2775
+ "step": 9875
2776
+ },
2777
+ {
2778
+ "epoch": 1.4630024314832046,
2779
+ "grad_norm": 0.6734182834625244,
2780
+ "learning_rate": 2.767789120828889e-05,
2781
+ "loss": 0.6385,
2782
+ "step": 9900
2783
+ },
2784
+ {
2785
+ "epoch": 1.466696992857951,
2786
+ "grad_norm": 0.8161661028862,
2787
+ "learning_rate": 2.748742952917873e-05,
2788
+ "loss": 0.6526,
2789
+ "step": 9925
2790
+ },
2791
+ {
2792
+ "epoch": 1.4703915542326973,
2793
+ "grad_norm": 0.6308382153511047,
2794
+ "learning_rate": 2.7296967850068567e-05,
2795
+ "loss": 0.6561,
2796
+ "step": 9950
2797
+ },
2798
+ {
2799
+ "epoch": 1.4740861156074436,
2800
+ "grad_norm": 0.791493833065033,
2801
+ "learning_rate": 2.7106506170958406e-05,
2802
+ "loss": 0.6607,
2803
+ "step": 9975
2804
+ },
2805
+ {
2806
+ "epoch": 1.47778067698219,
2807
+ "grad_norm": 0.7888880372047424,
2808
+ "learning_rate": 2.6916044491848243e-05,
2809
+ "loss": 0.6511,
2810
+ "step": 10000
2811
+ },
2812
+ {
2813
+ "epoch": 1.481475238356936,
2814
+ "grad_norm": 0.7792957425117493,
2815
+ "learning_rate": 2.6725582812738075e-05,
2816
+ "loss": 0.6522,
2817
+ "step": 10025
2818
+ },
2819
+ {
2820
+ "epoch": 1.4851697997316826,
2821
+ "grad_norm": 0.6947233080863953,
2822
+ "learning_rate": 2.6535121133627915e-05,
2823
+ "loss": 0.6412,
2824
+ "step": 10050
2825
+ },
2826
+ {
2827
+ "epoch": 1.4888643611064287,
2828
+ "grad_norm": 0.6176926493644714,
2829
+ "learning_rate": 2.634465945451775e-05,
2830
+ "loss": 0.6486,
2831
+ "step": 10075
2832
+ },
2833
+ {
2834
+ "epoch": 1.492558922481175,
2835
+ "grad_norm": 0.700943112373352,
2836
+ "learning_rate": 2.615419777540759e-05,
2837
+ "loss": 0.6475,
2838
+ "step": 10100
2839
+ },
2840
+ {
2841
+ "epoch": 1.4962534838559214,
2842
+ "grad_norm": 0.6516005396842957,
2843
+ "learning_rate": 2.5963736096297426e-05,
2844
+ "loss": 0.6589,
2845
+ "step": 10125
2846
+ },
2847
+ {
2848
+ "epoch": 1.4999480452306675,
2849
+ "grad_norm": 0.8346360921859741,
2850
+ "learning_rate": 2.5773274417187265e-05,
2851
+ "loss": 0.6444,
2852
+ "step": 10150
2853
+ },
2854
+ {
2855
+ "epoch": 1.503642606605414,
2856
+ "grad_norm": 0.6748323440551758,
2857
+ "learning_rate": 2.55828127380771e-05,
2858
+ "loss": 0.6539,
2859
+ "step": 10175
2860
+ },
2861
+ {
2862
+ "epoch": 1.5073371679801602,
2863
+ "grad_norm": 0.6239715814590454,
2864
+ "learning_rate": 2.5392351058966934e-05,
2865
+ "loss": 0.6137,
2866
+ "step": 10200
2867
+ },
2868
+ {
2869
+ "epoch": 1.5110317293549065,
2870
+ "grad_norm": 0.7011853456497192,
2871
+ "learning_rate": 2.5201889379856774e-05,
2872
+ "loss": 0.6415,
2873
+ "step": 10225
2874
+ },
2875
+ {
2876
+ "epoch": 1.5147262907296528,
2877
+ "grad_norm": 0.6292597055435181,
2878
+ "learning_rate": 2.501142770074661e-05,
2879
+ "loss": 0.6341,
2880
+ "step": 10250
2881
+ },
2882
+ {
2883
+ "epoch": 1.518420852104399,
2884
+ "grad_norm": 0.7244909405708313,
2885
+ "learning_rate": 2.482096602163645e-05,
2886
+ "loss": 0.658,
2887
+ "step": 10275
2888
+ },
2889
+ {
2890
+ "epoch": 1.5221154134791455,
2891
+ "grad_norm": 0.6337189674377441,
2892
+ "learning_rate": 2.4630504342526285e-05,
2893
+ "loss": 0.6804,
2894
+ "step": 10300
2895
+ },
2896
+ {
2897
+ "epoch": 1.5258099748538916,
2898
+ "grad_norm": 0.720902681350708,
2899
+ "learning_rate": 2.444004266341612e-05,
2900
+ "loss": 0.6819,
2901
+ "step": 10325
2902
+ },
2903
+ {
2904
+ "epoch": 1.529504536228638,
2905
+ "grad_norm": 0.5961156487464905,
2906
+ "learning_rate": 2.4249580984305957e-05,
2907
+ "loss": 0.6417,
2908
+ "step": 10350
2909
+ },
2910
+ {
2911
+ "epoch": 1.5331990976033842,
2912
+ "grad_norm": 0.8305853605270386,
2913
+ "learning_rate": 2.4059119305195797e-05,
2914
+ "loss": 0.6694,
2915
+ "step": 10375
2916
+ },
2917
+ {
2918
+ "epoch": 1.5368936589781304,
2919
+ "grad_norm": 0.7062313556671143,
2920
+ "learning_rate": 2.3868657626085633e-05,
2921
+ "loss": 0.6587,
2922
+ "step": 10400
2923
+ },
2924
+ {
2925
+ "epoch": 1.540588220352877,
2926
+ "grad_norm": 0.6674323081970215,
2927
+ "learning_rate": 2.3678195946975472e-05,
2928
+ "loss": 0.6557,
2929
+ "step": 10425
2930
+ },
2931
+ {
2932
+ "epoch": 1.544282781727623,
2933
+ "grad_norm": 0.7407240271568298,
2934
+ "learning_rate": 2.3487734267865308e-05,
2935
+ "loss": 0.6599,
2936
+ "step": 10450
2937
+ },
2938
+ {
2939
+ "epoch": 1.5479773431023693,
2940
+ "grad_norm": 0.783926248550415,
2941
+ "learning_rate": 2.3297272588755144e-05,
2942
+ "loss": 0.6616,
2943
+ "step": 10475
2944
+ },
2945
+ {
2946
+ "epoch": 1.5516719044771157,
2947
+ "grad_norm": 0.6342896819114685,
2948
+ "learning_rate": 2.310681090964498e-05,
2949
+ "loss": 0.6747,
2950
+ "step": 10500
2951
+ },
2952
+ {
2953
+ "epoch": 1.5553664658518618,
2954
+ "grad_norm": 0.6193211674690247,
2955
+ "learning_rate": 2.2916349230534816e-05,
2956
+ "loss": 0.6294,
2957
+ "step": 10525
2958
+ },
2959
+ {
2960
+ "epoch": 1.5590610272266083,
2961
+ "grad_norm": 0.6950103640556335,
2962
+ "learning_rate": 2.2725887551424656e-05,
2963
+ "loss": 0.6483,
2964
+ "step": 10550
2965
+ },
2966
+ {
2967
+ "epoch": 1.5627555886013544,
2968
+ "grad_norm": 0.7468893527984619,
2969
+ "learning_rate": 2.253542587231449e-05,
2970
+ "loss": 0.6542,
2971
+ "step": 10575
2972
+ },
2973
+ {
2974
+ "epoch": 1.5664501499761008,
2975
+ "grad_norm": 0.6315162777900696,
2976
+ "learning_rate": 2.2344964193204328e-05,
2977
+ "loss": 0.6576,
2978
+ "step": 10600
2979
+ },
2980
+ {
2981
+ "epoch": 1.570144711350847,
2982
+ "grad_norm": 0.7328910231590271,
2983
+ "learning_rate": 2.2154502514094167e-05,
2984
+ "loss": 0.6643,
2985
+ "step": 10625
2986
+ },
2987
+ {
2988
+ "epoch": 1.5738392727255934,
2989
+ "grad_norm": 0.7641509771347046,
2990
+ "learning_rate": 2.1964040834984e-05,
2991
+ "loss": 0.6406,
2992
+ "step": 10650
2993
+ },
2994
+ {
2995
+ "epoch": 1.5775338341003398,
2996
+ "grad_norm": 0.6303021311759949,
2997
+ "learning_rate": 2.177357915587384e-05,
2998
+ "loss": 0.6414,
2999
+ "step": 10675
3000
+ },
3001
+ {
3002
+ "epoch": 1.5812283954750859,
3003
+ "grad_norm": 0.7340176701545715,
3004
+ "learning_rate": 2.1583117476763675e-05,
3005
+ "loss": 0.6676,
3006
+ "step": 10700
3007
+ },
3008
+ {
3009
+ "epoch": 1.5849229568498322,
3010
+ "grad_norm": 0.7646533846855164,
3011
+ "learning_rate": 2.1392655797653515e-05,
3012
+ "loss": 0.6595,
3013
+ "step": 10725
3014
+ },
3015
+ {
3016
+ "epoch": 1.5886175182245785,
3017
+ "grad_norm": 0.6361941695213318,
3018
+ "learning_rate": 2.120219411854335e-05,
3019
+ "loss": 0.6683,
3020
+ "step": 10750
3021
+ },
3022
+ {
3023
+ "epoch": 1.5923120795993249,
3024
+ "grad_norm": 0.7954297065734863,
3025
+ "learning_rate": 2.1011732439433187e-05,
3026
+ "loss": 0.6389,
3027
+ "step": 10775
3028
+ },
3029
+ {
3030
+ "epoch": 1.5960066409740712,
3031
+ "grad_norm": 0.6926315426826477,
3032
+ "learning_rate": 2.0821270760323026e-05,
3033
+ "loss": 0.6377,
3034
+ "step": 10800
3035
+ },
3036
+ {
3037
+ "epoch": 1.5997012023488173,
3038
+ "grad_norm": 0.7757145762443542,
3039
+ "learning_rate": 2.063080908121286e-05,
3040
+ "loss": 0.6499,
3041
+ "step": 10825
3042
+ },
3043
+ {
3044
+ "epoch": 1.6033957637235636,
3045
+ "grad_norm": 0.6862484812736511,
3046
+ "learning_rate": 2.0440347402102698e-05,
3047
+ "loss": 0.6465,
3048
+ "step": 10850
3049
+ },
3050
+ {
3051
+ "epoch": 1.60709032509831,
3052
+ "grad_norm": 0.7413581013679504,
3053
+ "learning_rate": 2.0249885722992534e-05,
3054
+ "loss": 0.628,
3055
+ "step": 10875
3056
+ },
3057
+ {
3058
+ "epoch": 1.6107848864730563,
3059
+ "grad_norm": 0.7850485444068909,
3060
+ "learning_rate": 2.005942404388237e-05,
3061
+ "loss": 0.6648,
3062
+ "step": 10900
3063
+ },
3064
+ {
3065
+ "epoch": 1.6144794478478026,
3066
+ "grad_norm": 0.6554867029190063,
3067
+ "learning_rate": 1.986896236477221e-05,
3068
+ "loss": 0.6386,
3069
+ "step": 10925
3070
+ },
3071
+ {
3072
+ "epoch": 1.6181740092225487,
3073
+ "grad_norm": 0.6911448836326599,
3074
+ "learning_rate": 1.9678500685662046e-05,
3075
+ "loss": 0.6474,
3076
+ "step": 10950
3077
+ },
3078
+ {
3079
+ "epoch": 1.6218685705972953,
3080
+ "grad_norm": 0.838879406452179,
3081
+ "learning_rate": 1.9488039006551885e-05,
3082
+ "loss": 0.6406,
3083
+ "step": 10975
3084
+ },
3085
+ {
3086
+ "epoch": 1.6255631319720414,
3087
+ "grad_norm": 0.678164005279541,
3088
+ "learning_rate": 1.929757732744172e-05,
3089
+ "loss": 0.6462,
3090
+ "step": 11000
3091
+ }
3092
+ ],
3093
+ "logging_steps": 25,
3094
+ "max_steps": 13532,
3095
+ "num_input_tokens_seen": 0,
3096
+ "num_train_epochs": 2,
3097
+ "save_steps": 1000,
3098
+ "stateful_callbacks": {
3099
+ "TrainerControl": {
3100
+ "args": {
3101
+ "should_epoch_stop": false,
3102
+ "should_evaluate": false,
3103
+ "should_log": false,
3104
+ "should_save": true,
3105
+ "should_training_stop": false
3106
+ },
3107
+ "attributes": {}
3108
+ }
3109
+ },
3110
+ "total_flos": 4.400437197467376e+19,
3111
+ "train_batch_size": 1,
3112
+ "trial_name": null,
3113
+ "trial_params": null
3114
+ }
checkpoint-11000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddec6eef92f76dd21b66ba65fc3f8486e2d925551fb3a26f493b39225b02363f
3
+ size 5969
checkpoint-11000/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-12000/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/Qwen3-8B-Base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
checkpoint-12000/adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/Qwen3-8B-Base",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": [
22
+ "lm_head",
23
+ "embed_tokens"
24
+ ],
25
+ "peft_type": "LORA",
26
+ "r": 32,
27
+ "rank_pattern": {},
28
+ "revision": null,
29
+ "target_modules": [
30
+ "down_proj",
31
+ "gate_proj",
32
+ "k_proj",
33
+ "o_proj",
34
+ "q_proj",
35
+ "v_proj",
36
+ "up_proj"
37
+ ],
38
+ "task_type": "CAUSAL_LM",
39
+ "trainable_token_indices": null,
40
+ "use_dora": false,
41
+ "use_rslora": false
42
+ }
checkpoint-12000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5e8edc45c0b1526092c10ed430cec82a6166a7de0705b3df93813989a1b46a2
3
+ size 2838563408
checkpoint-12000/added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
checkpoint-12000/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-12000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bc8e504029ba1a09e845baa394a468590e1ba5ccab3db39116c7d85d0c1731bc
3
+ size 2706136909
checkpoint-12000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de69a2834426ff9ef8199d077e00892579278af31d8969d77f98235b5cfc010a
3
+ size 14645
checkpoint-12000/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fb63a0d7544f9719b5d1dd3cc0ef925a617eed672dfb021b0147d8e500d785b
3
+ size 1465
checkpoint-12000/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|vision_pad|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
checkpoint-12000/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
3
+ size 11422654
checkpoint-12000/tokenizer_config.json ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<tool_response>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": false
188
+ },
189
+ "151666": {
190
+ "content": "</tool_response>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": false
196
+ },
197
+ "151667": {
198
+ "content": "<think>",
199
+ "lstrip": false,
200
+ "normalized": false,
201
+ "rstrip": false,
202
+ "single_word": false,
203
+ "special": false
204
+ },
205
+ "151668": {
206
+ "content": "</think>",
207
+ "lstrip": false,
208
+ "normalized": false,
209
+ "rstrip": false,
210
+ "single_word": false,
211
+ "special": false
212
+ }
213
+ },
214
+ "additional_special_tokens": [
215
+ "<|im_start|>",
216
+ "<|im_end|>",
217
+ "<|object_ref_start|>",
218
+ "<|object_ref_end|>",
219
+ "<|box_start|>",
220
+ "<|box_end|>",
221
+ "<|quad_start|>",
222
+ "<|quad_end|>",
223
+ "<|vision_start|>",
224
+ "<|vision_end|>",
225
+ "<|vision_pad|>",
226
+ "<|image_pad|>",
227
+ "<|video_pad|>"
228
+ ],
229
+ "bos_token": null,
230
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is defined and message.reasoning_content is not none %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in message.content %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
231
+ "clean_up_tokenization_spaces": false,
232
+ "eos_token": "<|endoftext|>",
233
+ "errors": "replace",
234
+ "extra_special_tokens": {},
235
+ "model_max_length": 32768,
236
+ "pad_token": "<|vision_pad|>",
237
+ "padding_side": "right",
238
+ "split_special_tokens": false,
239
+ "tokenizer_class": "Qwen2Tokenizer",
240
+ "unk_token": null
241
+ }
checkpoint-12000/trainer_state.json ADDED
@@ -0,0 +1,3394 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 1.7733455869618928,
6
+ "eval_steps": 500,
7
+ "global_step": 12000,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 0.0036945613747462877,
14
+ "grad_norm": 2.2292165756225586,
15
+ "learning_rate": 5.911330049261084e-06,
16
+ "loss": 0.9395,
17
+ "step": 25
18
+ },
19
+ {
20
+ "epoch": 0.007389122749492575,
21
+ "grad_norm": 0.8381065130233765,
22
+ "learning_rate": 1.206896551724138e-05,
23
+ "loss": 0.89,
24
+ "step": 50
25
+ },
26
+ {
27
+ "epoch": 0.011083684124238862,
28
+ "grad_norm": 0.9238471984863281,
29
+ "learning_rate": 1.8226600985221676e-05,
30
+ "loss": 0.8384,
31
+ "step": 75
32
+ },
33
+ {
34
+ "epoch": 0.01477824549898515,
35
+ "grad_norm": 0.6837311387062073,
36
+ "learning_rate": 2.438423645320197e-05,
37
+ "loss": 0.784,
38
+ "step": 100
39
+ },
40
+ {
41
+ "epoch": 0.01847280687373144,
42
+ "grad_norm": 0.7093706727027893,
43
+ "learning_rate": 3.0541871921182266e-05,
44
+ "loss": 0.7675,
45
+ "step": 125
46
+ },
47
+ {
48
+ "epoch": 0.022167368248477724,
49
+ "grad_norm": 0.6208077073097229,
50
+ "learning_rate": 3.669950738916256e-05,
51
+ "loss": 0.7466,
52
+ "step": 150
53
+ },
54
+ {
55
+ "epoch": 0.025861929623224013,
56
+ "grad_norm": 0.8929094076156616,
57
+ "learning_rate": 4.2857142857142856e-05,
58
+ "loss": 0.7386,
59
+ "step": 175
60
+ },
61
+ {
62
+ "epoch": 0.0295564909979703,
63
+ "grad_norm": 0.7828120589256287,
64
+ "learning_rate": 4.901477832512316e-05,
65
+ "loss": 0.7173,
66
+ "step": 200
67
+ },
68
+ {
69
+ "epoch": 0.03325105237271659,
70
+ "grad_norm": 0.7134449481964111,
71
+ "learning_rate": 5.517241379310345e-05,
72
+ "loss": 0.7108,
73
+ "step": 225
74
+ },
75
+ {
76
+ "epoch": 0.03694561374746288,
77
+ "grad_norm": 0.7464851140975952,
78
+ "learning_rate": 6.133004926108375e-05,
79
+ "loss": 0.7332,
80
+ "step": 250
81
+ },
82
+ {
83
+ "epoch": 0.04064017512220916,
84
+ "grad_norm": 0.677793025970459,
85
+ "learning_rate": 6.748768472906404e-05,
86
+ "loss": 0.7194,
87
+ "step": 275
88
+ },
89
+ {
90
+ "epoch": 0.04433473649695545,
91
+ "grad_norm": 0.7936354875564575,
92
+ "learning_rate": 7.364532019704434e-05,
93
+ "loss": 0.7253,
94
+ "step": 300
95
+ },
96
+ {
97
+ "epoch": 0.04802929787170174,
98
+ "grad_norm": 0.6711100935935974,
99
+ "learning_rate": 7.980295566502463e-05,
100
+ "loss": 0.7018,
101
+ "step": 325
102
+ },
103
+ {
104
+ "epoch": 0.051723859246448026,
105
+ "grad_norm": 0.5816489458084106,
106
+ "learning_rate": 8.596059113300493e-05,
107
+ "loss": 0.7298,
108
+ "step": 350
109
+ },
110
+ {
111
+ "epoch": 0.055418420621194314,
112
+ "grad_norm": 0.6680681705474854,
113
+ "learning_rate": 9.211822660098522e-05,
114
+ "loss": 0.7149,
115
+ "step": 375
116
+ },
117
+ {
118
+ "epoch": 0.0591129819959406,
119
+ "grad_norm": 0.5643934607505798,
120
+ "learning_rate": 9.827586206896552e-05,
121
+ "loss": 0.763,
122
+ "step": 400
123
+ },
124
+ {
125
+ "epoch": 0.06280754337068689,
126
+ "grad_norm": 0.5739309191703796,
127
+ "learning_rate": 9.986286759104069e-05,
128
+ "loss": 0.7345,
129
+ "step": 425
130
+ },
131
+ {
132
+ "epoch": 0.06650210474543318,
133
+ "grad_norm": 0.5929909944534302,
134
+ "learning_rate": 9.967240591193052e-05,
135
+ "loss": 0.7364,
136
+ "step": 450
137
+ },
138
+ {
139
+ "epoch": 0.07019666612017947,
140
+ "grad_norm": 0.609235405921936,
141
+ "learning_rate": 9.948194423282036e-05,
142
+ "loss": 0.7294,
143
+ "step": 475
144
+ },
145
+ {
146
+ "epoch": 0.07389122749492576,
147
+ "grad_norm": 0.4643324613571167,
148
+ "learning_rate": 9.92914825537102e-05,
149
+ "loss": 0.7344,
150
+ "step": 500
151
+ },
152
+ {
153
+ "epoch": 0.07758578886967203,
154
+ "grad_norm": 0.5267598032951355,
155
+ "learning_rate": 9.910102087460003e-05,
156
+ "loss": 0.7249,
157
+ "step": 525
158
+ },
159
+ {
160
+ "epoch": 0.08128035024441832,
161
+ "grad_norm": 0.47951069474220276,
162
+ "learning_rate": 9.891055919548987e-05,
163
+ "loss": 0.7256,
164
+ "step": 550
165
+ },
166
+ {
167
+ "epoch": 0.08497491161916461,
168
+ "grad_norm": 0.4505012333393097,
169
+ "learning_rate": 9.87200975163797e-05,
170
+ "loss": 0.7359,
171
+ "step": 575
172
+ },
173
+ {
174
+ "epoch": 0.0886694729939109,
175
+ "grad_norm": 0.5320091247558594,
176
+ "learning_rate": 9.852963583726955e-05,
177
+ "loss": 0.6856,
178
+ "step": 600
179
+ },
180
+ {
181
+ "epoch": 0.09236403436865719,
182
+ "grad_norm": 0.5583036541938782,
183
+ "learning_rate": 9.833917415815939e-05,
184
+ "loss": 0.7235,
185
+ "step": 625
186
+ },
187
+ {
188
+ "epoch": 0.09605859574340347,
189
+ "grad_norm": 0.5139252543449402,
190
+ "learning_rate": 9.814871247904922e-05,
191
+ "loss": 0.7272,
192
+ "step": 650
193
+ },
194
+ {
195
+ "epoch": 0.09975315711814976,
196
+ "grad_norm": 0.4989326000213623,
197
+ "learning_rate": 9.795825079993906e-05,
198
+ "loss": 0.6952,
199
+ "step": 675
200
+ },
201
+ {
202
+ "epoch": 0.10344771849289605,
203
+ "grad_norm": 0.47355732321739197,
204
+ "learning_rate": 9.776778912082889e-05,
205
+ "loss": 0.7266,
206
+ "step": 700
207
+ },
208
+ {
209
+ "epoch": 0.10714227986764234,
210
+ "grad_norm": 0.3588508367538452,
211
+ "learning_rate": 9.757732744171874e-05,
212
+ "loss": 0.7406,
213
+ "step": 725
214
+ },
215
+ {
216
+ "epoch": 0.11083684124238863,
217
+ "grad_norm": 0.4120556712150574,
218
+ "learning_rate": 9.738686576260857e-05,
219
+ "loss": 0.7443,
220
+ "step": 750
221
+ },
222
+ {
223
+ "epoch": 0.11453140261713492,
224
+ "grad_norm": 0.5160555839538574,
225
+ "learning_rate": 9.71964040834984e-05,
226
+ "loss": 0.7134,
227
+ "step": 775
228
+ },
229
+ {
230
+ "epoch": 0.1182259639918812,
231
+ "grad_norm": 0.5423145890235901,
232
+ "learning_rate": 9.700594240438823e-05,
233
+ "loss": 0.7289,
234
+ "step": 800
235
+ },
236
+ {
237
+ "epoch": 0.1219205253666275,
238
+ "grad_norm": 0.5352346301078796,
239
+ "learning_rate": 9.681548072527808e-05,
240
+ "loss": 0.7144,
241
+ "step": 825
242
+ },
243
+ {
244
+ "epoch": 0.12561508674137378,
245
+ "grad_norm": 0.47908860445022583,
246
+ "learning_rate": 9.662501904616791e-05,
247
+ "loss": 0.7175,
248
+ "step": 850
249
+ },
250
+ {
251
+ "epoch": 0.12930964811612006,
252
+ "grad_norm": 0.47986069321632385,
253
+ "learning_rate": 9.643455736705776e-05,
254
+ "loss": 0.6983,
255
+ "step": 875
256
+ },
257
+ {
258
+ "epoch": 0.13300420949086636,
259
+ "grad_norm": 0.6903620958328247,
260
+ "learning_rate": 9.624409568794759e-05,
261
+ "loss": 0.7086,
262
+ "step": 900
263
+ },
264
+ {
265
+ "epoch": 0.13669877086561263,
266
+ "grad_norm": 0.44413208961486816,
267
+ "learning_rate": 9.605363400883742e-05,
268
+ "loss": 0.7306,
269
+ "step": 925
270
+ },
271
+ {
272
+ "epoch": 0.14039333224035894,
273
+ "grad_norm": 0.4634678065776825,
274
+ "learning_rate": 9.586317232972727e-05,
275
+ "loss": 0.7061,
276
+ "step": 950
277
+ },
278
+ {
279
+ "epoch": 0.1440878936151052,
280
+ "grad_norm": 0.5110129714012146,
281
+ "learning_rate": 9.56727106506171e-05,
282
+ "loss": 0.7406,
283
+ "step": 975
284
+ },
285
+ {
286
+ "epoch": 0.1477824549898515,
287
+ "grad_norm": 0.5460866093635559,
288
+ "learning_rate": 9.548224897150694e-05,
289
+ "loss": 0.721,
290
+ "step": 1000
291
+ },
292
+ {
293
+ "epoch": 0.1514770163645978,
294
+ "grad_norm": 0.5179885029792786,
295
+ "learning_rate": 9.529178729239677e-05,
296
+ "loss": 0.7068,
297
+ "step": 1025
298
+ },
299
+ {
300
+ "epoch": 0.15517157773934406,
301
+ "grad_norm": 0.40280836820602417,
302
+ "learning_rate": 9.51013256132866e-05,
303
+ "loss": 0.7009,
304
+ "step": 1050
305
+ },
306
+ {
307
+ "epoch": 0.15886613911409037,
308
+ "grad_norm": 1.2706756591796875,
309
+ "learning_rate": 9.491086393417645e-05,
310
+ "loss": 0.7125,
311
+ "step": 1075
312
+ },
313
+ {
314
+ "epoch": 0.16256070048883664,
315
+ "grad_norm": 0.4963163435459137,
316
+ "learning_rate": 9.47204022550663e-05,
317
+ "loss": 0.7149,
318
+ "step": 1100
319
+ },
320
+ {
321
+ "epoch": 0.16625526186358294,
322
+ "grad_norm": 0.5147728323936462,
323
+ "learning_rate": 9.452994057595613e-05,
324
+ "loss": 0.7245,
325
+ "step": 1125
326
+ },
327
+ {
328
+ "epoch": 0.16994982323832922,
329
+ "grad_norm": 0.5933899879455566,
330
+ "learning_rate": 9.433947889684596e-05,
331
+ "loss": 0.7261,
332
+ "step": 1150
333
+ },
334
+ {
335
+ "epoch": 0.17364438461307552,
336
+ "grad_norm": 0.4750466048717499,
337
+ "learning_rate": 9.414901721773579e-05,
338
+ "loss": 0.7206,
339
+ "step": 1175
340
+ },
341
+ {
342
+ "epoch": 0.1773389459878218,
343
+ "grad_norm": 0.46546968817710876,
344
+ "learning_rate": 9.395855553862564e-05,
345
+ "loss": 0.7121,
346
+ "step": 1200
347
+ },
348
+ {
349
+ "epoch": 0.1810335073625681,
350
+ "grad_norm": 0.6512172818183899,
351
+ "learning_rate": 9.376809385951547e-05,
352
+ "loss": 0.7212,
353
+ "step": 1225
354
+ },
355
+ {
356
+ "epoch": 0.18472806873731437,
357
+ "grad_norm": 0.34932607412338257,
358
+ "learning_rate": 9.35776321804053e-05,
359
+ "loss": 0.704,
360
+ "step": 1250
361
+ },
362
+ {
363
+ "epoch": 0.18842263011206067,
364
+ "grad_norm": 0.4648846983909607,
365
+ "learning_rate": 9.338717050129514e-05,
366
+ "loss": 0.7419,
367
+ "step": 1275
368
+ },
369
+ {
370
+ "epoch": 0.19211719148680695,
371
+ "grad_norm": 0.4566064774990082,
372
+ "learning_rate": 9.319670882218498e-05,
373
+ "loss": 0.7318,
374
+ "step": 1300
375
+ },
376
+ {
377
+ "epoch": 0.19581175286155325,
378
+ "grad_norm": 0.5357668399810791,
379
+ "learning_rate": 9.300624714307481e-05,
380
+ "loss": 0.6973,
381
+ "step": 1325
382
+ },
383
+ {
384
+ "epoch": 0.19950631423629953,
385
+ "grad_norm": 0.4423241913318634,
386
+ "learning_rate": 9.281578546396466e-05,
387
+ "loss": 0.7298,
388
+ "step": 1350
389
+ },
390
+ {
391
+ "epoch": 0.20320087561104583,
392
+ "grad_norm": 0.4530033767223358,
393
+ "learning_rate": 9.26253237848545e-05,
394
+ "loss": 0.7161,
395
+ "step": 1375
396
+ },
397
+ {
398
+ "epoch": 0.2068954369857921,
399
+ "grad_norm": 0.4678841233253479,
400
+ "learning_rate": 9.243486210574433e-05,
401
+ "loss": 0.6972,
402
+ "step": 1400
403
+ },
404
+ {
405
+ "epoch": 0.21058999836053838,
406
+ "grad_norm": 0.6039907336235046,
407
+ "learning_rate": 9.224440042663417e-05,
408
+ "loss": 0.7165,
409
+ "step": 1425
410
+ },
411
+ {
412
+ "epoch": 0.21428455973528468,
413
+ "grad_norm": 0.4463271498680115,
414
+ "learning_rate": 9.2053938747524e-05,
415
+ "loss": 0.6863,
416
+ "step": 1450
417
+ },
418
+ {
419
+ "epoch": 0.21797912111003095,
420
+ "grad_norm": 0.5739301443099976,
421
+ "learning_rate": 9.186347706841384e-05,
422
+ "loss": 0.6907,
423
+ "step": 1475
424
+ },
425
+ {
426
+ "epoch": 0.22167368248477726,
427
+ "grad_norm": 0.4577805697917938,
428
+ "learning_rate": 9.167301538930367e-05,
429
+ "loss": 0.7114,
430
+ "step": 1500
431
+ },
432
+ {
433
+ "epoch": 0.22536824385952353,
434
+ "grad_norm": 0.4522150158882141,
435
+ "learning_rate": 9.14825537101935e-05,
436
+ "loss": 0.6877,
437
+ "step": 1525
438
+ },
439
+ {
440
+ "epoch": 0.22906280523426983,
441
+ "grad_norm": 0.49612903594970703,
442
+ "learning_rate": 9.129209203108335e-05,
443
+ "loss": 0.7112,
444
+ "step": 1550
445
+ },
446
+ {
447
+ "epoch": 0.2327573666090161,
448
+ "grad_norm": 0.4710284471511841,
449
+ "learning_rate": 9.11016303519732e-05,
450
+ "loss": 0.7062,
451
+ "step": 1575
452
+ },
453
+ {
454
+ "epoch": 0.2364519279837624,
455
+ "grad_norm": 0.5009223818778992,
456
+ "learning_rate": 9.091116867286303e-05,
457
+ "loss": 0.7275,
458
+ "step": 1600
459
+ },
460
+ {
461
+ "epoch": 0.24014648935850869,
462
+ "grad_norm": 0.5547946691513062,
463
+ "learning_rate": 9.072070699375286e-05,
464
+ "loss": 0.6993,
465
+ "step": 1625
466
+ },
467
+ {
468
+ "epoch": 0.243841050733255,
469
+ "grad_norm": 0.4580361843109131,
470
+ "learning_rate": 9.05302453146427e-05,
471
+ "loss": 0.7106,
472
+ "step": 1650
473
+ },
474
+ {
475
+ "epoch": 0.24753561210800126,
476
+ "grad_norm": 0.4767173230648041,
477
+ "learning_rate": 9.033978363553254e-05,
478
+ "loss": 0.7103,
479
+ "step": 1675
480
+ },
481
+ {
482
+ "epoch": 0.25123017348274757,
483
+ "grad_norm": 0.502202570438385,
484
+ "learning_rate": 9.014932195642237e-05,
485
+ "loss": 0.6921,
486
+ "step": 1700
487
+ },
488
+ {
489
+ "epoch": 0.25492473485749384,
490
+ "grad_norm": 0.5283953547477722,
491
+ "learning_rate": 8.99588602773122e-05,
492
+ "loss": 0.7077,
493
+ "step": 1725
494
+ },
495
+ {
496
+ "epoch": 0.2586192962322401,
497
+ "grad_norm": 0.4994209408760071,
498
+ "learning_rate": 8.976839859820204e-05,
499
+ "loss": 0.7,
500
+ "step": 1750
501
+ },
502
+ {
503
+ "epoch": 0.2623138576069864,
504
+ "grad_norm": 0.48279210925102234,
505
+ "learning_rate": 8.957793691909188e-05,
506
+ "loss": 0.7114,
507
+ "step": 1775
508
+ },
509
+ {
510
+ "epoch": 0.2660084189817327,
511
+ "grad_norm": 0.6055914759635925,
512
+ "learning_rate": 8.938747523998172e-05,
513
+ "loss": 0.7081,
514
+ "step": 1800
515
+ },
516
+ {
517
+ "epoch": 0.269702980356479,
518
+ "grad_norm": 0.489519327878952,
519
+ "learning_rate": 8.919701356087156e-05,
520
+ "loss": 0.6946,
521
+ "step": 1825
522
+ },
523
+ {
524
+ "epoch": 0.27339754173122527,
525
+ "grad_norm": 0.5379961133003235,
526
+ "learning_rate": 8.90065518817614e-05,
527
+ "loss": 0.6996,
528
+ "step": 1850
529
+ },
530
+ {
531
+ "epoch": 0.27709210310597154,
532
+ "grad_norm": 0.47824332118034363,
533
+ "learning_rate": 8.881609020265123e-05,
534
+ "loss": 0.6881,
535
+ "step": 1875
536
+ },
537
+ {
538
+ "epoch": 0.2807866644807179,
539
+ "grad_norm": 1551.0594482421875,
540
+ "learning_rate": 8.862562852354107e-05,
541
+ "loss": 0.6998,
542
+ "step": 1900
543
+ },
544
+ {
545
+ "epoch": 0.28448122585546415,
546
+ "grad_norm": 0.4107681214809418,
547
+ "learning_rate": 8.84351668444309e-05,
548
+ "loss": 0.7088,
549
+ "step": 1925
550
+ },
551
+ {
552
+ "epoch": 0.2881757872302104,
553
+ "grad_norm": 0.4558309316635132,
554
+ "learning_rate": 8.824470516532074e-05,
555
+ "loss": 0.712,
556
+ "step": 1950
557
+ },
558
+ {
559
+ "epoch": 0.2918703486049567,
560
+ "grad_norm": 0.539107620716095,
561
+ "learning_rate": 8.805424348621057e-05,
562
+ "loss": 0.7159,
563
+ "step": 1975
564
+ },
565
+ {
566
+ "epoch": 0.295564909979703,
567
+ "grad_norm": 0.5768142938613892,
568
+ "learning_rate": 8.786378180710042e-05,
569
+ "loss": 0.7072,
570
+ "step": 2000
571
+ },
572
+ {
573
+ "epoch": 0.2992594713544493,
574
+ "grad_norm": 0.5575465559959412,
575
+ "learning_rate": 8.767332012799025e-05,
576
+ "loss": 0.7118,
577
+ "step": 2025
578
+ },
579
+ {
580
+ "epoch": 0.3029540327291956,
581
+ "grad_norm": 0.5190144181251526,
582
+ "learning_rate": 8.748285844888008e-05,
583
+ "loss": 0.7099,
584
+ "step": 2050
585
+ },
586
+ {
587
+ "epoch": 0.30664859410394185,
588
+ "grad_norm": 0.4934520125389099,
589
+ "learning_rate": 8.729239676976993e-05,
590
+ "loss": 0.692,
591
+ "step": 2075
592
+ },
593
+ {
594
+ "epoch": 0.3103431554786881,
595
+ "grad_norm": 0.42613571882247925,
596
+ "learning_rate": 8.710193509065976e-05,
597
+ "loss": 0.7277,
598
+ "step": 2100
599
+ },
600
+ {
601
+ "epoch": 0.31403771685343446,
602
+ "grad_norm": 0.5124602317810059,
603
+ "learning_rate": 8.691147341154961e-05,
604
+ "loss": 0.6801,
605
+ "step": 2125
606
+ },
607
+ {
608
+ "epoch": 0.31773227822818073,
609
+ "grad_norm": 0.5284898281097412,
610
+ "learning_rate": 8.672101173243944e-05,
611
+ "loss": 0.7103,
612
+ "step": 2150
613
+ },
614
+ {
615
+ "epoch": 0.321426839602927,
616
+ "grad_norm": 0.43099457025527954,
617
+ "learning_rate": 8.653055005332927e-05,
618
+ "loss": 0.7023,
619
+ "step": 2175
620
+ },
621
+ {
622
+ "epoch": 0.3251214009776733,
623
+ "grad_norm": 0.5190865993499756,
624
+ "learning_rate": 8.63400883742191e-05,
625
+ "loss": 0.7144,
626
+ "step": 2200
627
+ },
628
+ {
629
+ "epoch": 0.3288159623524196,
630
+ "grad_norm": 0.4722968637943268,
631
+ "learning_rate": 8.614962669510895e-05,
632
+ "loss": 0.7351,
633
+ "step": 2225
634
+ },
635
+ {
636
+ "epoch": 0.3325105237271659,
637
+ "grad_norm": 0.6091466546058655,
638
+ "learning_rate": 8.595916501599878e-05,
639
+ "loss": 0.7062,
640
+ "step": 2250
641
+ },
642
+ {
643
+ "epoch": 0.33620508510191216,
644
+ "grad_norm": 0.6135897040367126,
645
+ "learning_rate": 8.576870333688862e-05,
646
+ "loss": 0.7117,
647
+ "step": 2275
648
+ },
649
+ {
650
+ "epoch": 0.33989964647665843,
651
+ "grad_norm": 0.5224157571792603,
652
+ "learning_rate": 8.557824165777846e-05,
653
+ "loss": 0.7068,
654
+ "step": 2300
655
+ },
656
+ {
657
+ "epoch": 0.34359420785140476,
658
+ "grad_norm": 0.4863536059856415,
659
+ "learning_rate": 8.53877799786683e-05,
660
+ "loss": 0.6952,
661
+ "step": 2325
662
+ },
663
+ {
664
+ "epoch": 0.34728876922615104,
665
+ "grad_norm": 0.4728885889053345,
666
+ "learning_rate": 8.519731829955814e-05,
667
+ "loss": 0.7289,
668
+ "step": 2350
669
+ },
670
+ {
671
+ "epoch": 0.3509833306008973,
672
+ "grad_norm": 0.5152695775032043,
673
+ "learning_rate": 8.500685662044798e-05,
674
+ "loss": 0.6986,
675
+ "step": 2375
676
+ },
677
+ {
678
+ "epoch": 0.3546778919756436,
679
+ "grad_norm": 0.4407690465450287,
680
+ "learning_rate": 8.481639494133781e-05,
681
+ "loss": 0.6983,
682
+ "step": 2400
683
+ },
684
+ {
685
+ "epoch": 0.3583724533503899,
686
+ "grad_norm": 0.4756406545639038,
687
+ "learning_rate": 8.462593326222764e-05,
688
+ "loss": 0.6626,
689
+ "step": 2425
690
+ },
691
+ {
692
+ "epoch": 0.3620670147251362,
693
+ "grad_norm": 0.48595255613327026,
694
+ "learning_rate": 8.443547158311747e-05,
695
+ "loss": 0.6892,
696
+ "step": 2450
697
+ },
698
+ {
699
+ "epoch": 0.36576157609988247,
700
+ "grad_norm": 0.47830772399902344,
701
+ "learning_rate": 8.424500990400732e-05,
702
+ "loss": 0.7162,
703
+ "step": 2475
704
+ },
705
+ {
706
+ "epoch": 0.36945613747462874,
707
+ "grad_norm": 0.43090149760246277,
708
+ "learning_rate": 8.405454822489715e-05,
709
+ "loss": 0.6913,
710
+ "step": 2500
711
+ },
712
+ {
713
+ "epoch": 0.373150698849375,
714
+ "grad_norm": 0.5338718295097351,
715
+ "learning_rate": 8.386408654578698e-05,
716
+ "loss": 0.7159,
717
+ "step": 2525
718
+ },
719
+ {
720
+ "epoch": 0.37684526022412135,
721
+ "grad_norm": 0.4907350242137909,
722
+ "learning_rate": 8.367362486667683e-05,
723
+ "loss": 0.7022,
724
+ "step": 2550
725
+ },
726
+ {
727
+ "epoch": 0.3805398215988676,
728
+ "grad_norm": 0.44093430042266846,
729
+ "learning_rate": 8.348316318756668e-05,
730
+ "loss": 0.7124,
731
+ "step": 2575
732
+ },
733
+ {
734
+ "epoch": 0.3842343829736139,
735
+ "grad_norm": 0.5388796925544739,
736
+ "learning_rate": 8.329270150845651e-05,
737
+ "loss": 0.7304,
738
+ "step": 2600
739
+ },
740
+ {
741
+ "epoch": 0.38792894434836017,
742
+ "grad_norm": 0.4456349313259125,
743
+ "learning_rate": 8.310223982934634e-05,
744
+ "loss": 0.6964,
745
+ "step": 2625
746
+ },
747
+ {
748
+ "epoch": 0.3916235057231065,
749
+ "grad_norm": 0.4602237343788147,
750
+ "learning_rate": 8.291177815023617e-05,
751
+ "loss": 0.6707,
752
+ "step": 2650
753
+ },
754
+ {
755
+ "epoch": 0.3953180670978528,
756
+ "grad_norm": 0.4726378917694092,
757
+ "learning_rate": 8.272131647112601e-05,
758
+ "loss": 0.694,
759
+ "step": 2675
760
+ },
761
+ {
762
+ "epoch": 0.39901262847259905,
763
+ "grad_norm": 0.500451922416687,
764
+ "learning_rate": 8.253085479201585e-05,
765
+ "loss": 0.6812,
766
+ "step": 2700
767
+ },
768
+ {
769
+ "epoch": 0.4027071898473453,
770
+ "grad_norm": 0.4073813259601593,
771
+ "learning_rate": 8.234039311290569e-05,
772
+ "loss": 0.7028,
773
+ "step": 2725
774
+ },
775
+ {
776
+ "epoch": 0.40640175122209166,
777
+ "grad_norm": 0.43644702434539795,
778
+ "learning_rate": 8.214993143379552e-05,
779
+ "loss": 0.6936,
780
+ "step": 2750
781
+ },
782
+ {
783
+ "epoch": 0.41009631259683793,
784
+ "grad_norm": 0.5256789922714233,
785
+ "learning_rate": 8.195946975468535e-05,
786
+ "loss": 0.7035,
787
+ "step": 2775
788
+ },
789
+ {
790
+ "epoch": 0.4137908739715842,
791
+ "grad_norm": 0.48385316133499146,
792
+ "learning_rate": 8.17690080755752e-05,
793
+ "loss": 0.6736,
794
+ "step": 2800
795
+ },
796
+ {
797
+ "epoch": 0.4174854353463305,
798
+ "grad_norm": 0.49825233221054077,
799
+ "learning_rate": 8.157854639646504e-05,
800
+ "loss": 0.7019,
801
+ "step": 2825
802
+ },
803
+ {
804
+ "epoch": 0.42117999672107675,
805
+ "grad_norm": 0.5086994171142578,
806
+ "learning_rate": 8.138808471735488e-05,
807
+ "loss": 0.6918,
808
+ "step": 2850
809
+ },
810
+ {
811
+ "epoch": 0.4248745580958231,
812
+ "grad_norm": 0.5430259108543396,
813
+ "learning_rate": 8.119762303824471e-05,
814
+ "loss": 0.7175,
815
+ "step": 2875
816
+ },
817
+ {
818
+ "epoch": 0.42856911947056936,
819
+ "grad_norm": 0.5889118313789368,
820
+ "learning_rate": 8.100716135913454e-05,
821
+ "loss": 0.6967,
822
+ "step": 2900
823
+ },
824
+ {
825
+ "epoch": 0.43226368084531563,
826
+ "grad_norm": 0.5345672369003296,
827
+ "learning_rate": 8.081669968002439e-05,
828
+ "loss": 0.6926,
829
+ "step": 2925
830
+ },
831
+ {
832
+ "epoch": 0.4359582422200619,
833
+ "grad_norm": 0.511101245880127,
834
+ "learning_rate": 8.062623800091422e-05,
835
+ "loss": 0.7248,
836
+ "step": 2950
837
+ },
838
+ {
839
+ "epoch": 0.43965280359480824,
840
+ "grad_norm": 0.511239767074585,
841
+ "learning_rate": 8.043577632180405e-05,
842
+ "loss": 0.7319,
843
+ "step": 2975
844
+ },
845
+ {
846
+ "epoch": 0.4433473649695545,
847
+ "grad_norm": 0.5121573805809021,
848
+ "learning_rate": 8.024531464269389e-05,
849
+ "loss": 0.7023,
850
+ "step": 3000
851
+ },
852
+ {
853
+ "epoch": 0.4470419263443008,
854
+ "grad_norm": 0.5658753514289856,
855
+ "learning_rate": 8.005485296358373e-05,
856
+ "loss": 0.6934,
857
+ "step": 3025
858
+ },
859
+ {
860
+ "epoch": 0.45073648771904706,
861
+ "grad_norm": 0.5475583672523499,
862
+ "learning_rate": 7.986439128447358e-05,
863
+ "loss": 0.6701,
864
+ "step": 3050
865
+ },
866
+ {
867
+ "epoch": 0.4544310490937934,
868
+ "grad_norm": 0.6107661724090576,
869
+ "learning_rate": 7.967392960536341e-05,
870
+ "loss": 0.7056,
871
+ "step": 3075
872
+ },
873
+ {
874
+ "epoch": 0.45812561046853967,
875
+ "grad_norm": 0.48424115777015686,
876
+ "learning_rate": 7.948346792625324e-05,
877
+ "loss": 0.7179,
878
+ "step": 3100
879
+ },
880
+ {
881
+ "epoch": 0.46182017184328594,
882
+ "grad_norm": 0.6184881329536438,
883
+ "learning_rate": 7.929300624714308e-05,
884
+ "loss": 0.7141,
885
+ "step": 3125
886
+ },
887
+ {
888
+ "epoch": 0.4655147332180322,
889
+ "grad_norm": 0.49919527769088745,
890
+ "learning_rate": 7.910254456803291e-05,
891
+ "loss": 0.7027,
892
+ "step": 3150
893
+ },
894
+ {
895
+ "epoch": 0.4692092945927785,
896
+ "grad_norm": 0.5012905597686768,
897
+ "learning_rate": 7.891208288892276e-05,
898
+ "loss": 0.6852,
899
+ "step": 3175
900
+ },
901
+ {
902
+ "epoch": 0.4729038559675248,
903
+ "grad_norm": 0.5033735036849976,
904
+ "learning_rate": 7.872162120981259e-05,
905
+ "loss": 0.7199,
906
+ "step": 3200
907
+ },
908
+ {
909
+ "epoch": 0.4765984173422711,
910
+ "grad_norm": 0.5746079087257385,
911
+ "learning_rate": 7.853115953070242e-05,
912
+ "loss": 0.715,
913
+ "step": 3225
914
+ },
915
+ {
916
+ "epoch": 0.48029297871701737,
917
+ "grad_norm": 0.5436145663261414,
918
+ "learning_rate": 7.834069785159225e-05,
919
+ "loss": 0.697,
920
+ "step": 3250
921
+ },
922
+ {
923
+ "epoch": 0.48398754009176365,
924
+ "grad_norm": 0.5836604833602905,
925
+ "learning_rate": 7.81502361724821e-05,
926
+ "loss": 0.7129,
927
+ "step": 3275
928
+ },
929
+ {
930
+ "epoch": 0.48768210146651,
931
+ "grad_norm": 0.5618935227394104,
932
+ "learning_rate": 7.795977449337195e-05,
933
+ "loss": 0.6993,
934
+ "step": 3300
935
+ },
936
+ {
937
+ "epoch": 0.49137666284125625,
938
+ "grad_norm": 0.6251245737075806,
939
+ "learning_rate": 7.776931281426178e-05,
940
+ "loss": 0.7132,
941
+ "step": 3325
942
+ },
943
+ {
944
+ "epoch": 0.4950712242160025,
945
+ "grad_norm": 0.5123202800750732,
946
+ "learning_rate": 7.757885113515161e-05,
947
+ "loss": 0.7218,
948
+ "step": 3350
949
+ },
950
+ {
951
+ "epoch": 0.4987657855907488,
952
+ "grad_norm": 0.5818086862564087,
953
+ "learning_rate": 7.738838945604144e-05,
954
+ "loss": 0.7154,
955
+ "step": 3375
956
+ },
957
+ {
958
+ "epoch": 0.5024603469654951,
959
+ "grad_norm": 0.5861947536468506,
960
+ "learning_rate": 7.719792777693129e-05,
961
+ "loss": 0.7013,
962
+ "step": 3400
963
+ },
964
+ {
965
+ "epoch": 0.5061549083402413,
966
+ "grad_norm": 0.4849907457828522,
967
+ "learning_rate": 7.700746609782112e-05,
968
+ "loss": 0.6902,
969
+ "step": 3425
970
+ },
971
+ {
972
+ "epoch": 0.5098494697149877,
973
+ "grad_norm": 0.5476916432380676,
974
+ "learning_rate": 7.681700441871096e-05,
975
+ "loss": 0.7147,
976
+ "step": 3450
977
+ },
978
+ {
979
+ "epoch": 0.513544031089734,
980
+ "grad_norm": 0.5822548866271973,
981
+ "learning_rate": 7.662654273960079e-05,
982
+ "loss": 0.7431,
983
+ "step": 3475
984
+ },
985
+ {
986
+ "epoch": 0.5172385924644802,
987
+ "grad_norm": 0.44818004965782166,
988
+ "learning_rate": 7.643608106049063e-05,
989
+ "loss": 0.718,
990
+ "step": 3500
991
+ },
992
+ {
993
+ "epoch": 0.5209331538392266,
994
+ "grad_norm": 0.544068455696106,
995
+ "learning_rate": 7.624561938138047e-05,
996
+ "loss": 0.7201,
997
+ "step": 3525
998
+ },
999
+ {
1000
+ "epoch": 0.5246277152139728,
1001
+ "grad_norm": 0.5535098910331726,
1002
+ "learning_rate": 7.605515770227031e-05,
1003
+ "loss": 0.6998,
1004
+ "step": 3550
1005
+ },
1006
+ {
1007
+ "epoch": 0.5283222765887191,
1008
+ "grad_norm": 0.5754445195198059,
1009
+ "learning_rate": 7.586469602316015e-05,
1010
+ "loss": 0.6918,
1011
+ "step": 3575
1012
+ },
1013
+ {
1014
+ "epoch": 0.5320168379634654,
1015
+ "grad_norm": 0.5976133942604065,
1016
+ "learning_rate": 7.567423434404998e-05,
1017
+ "loss": 0.693,
1018
+ "step": 3600
1019
+ },
1020
+ {
1021
+ "epoch": 0.5357113993382117,
1022
+ "grad_norm": 0.4844263195991516,
1023
+ "learning_rate": 7.548377266493982e-05,
1024
+ "loss": 0.68,
1025
+ "step": 3625
1026
+ },
1027
+ {
1028
+ "epoch": 0.539405960712958,
1029
+ "grad_norm": 0.5436462163925171,
1030
+ "learning_rate": 7.529331098582966e-05,
1031
+ "loss": 0.7075,
1032
+ "step": 3650
1033
+ },
1034
+ {
1035
+ "epoch": 0.5431005220877043,
1036
+ "grad_norm": 0.6490929126739502,
1037
+ "learning_rate": 7.510284930671949e-05,
1038
+ "loss": 0.6956,
1039
+ "step": 3675
1040
+ },
1041
+ {
1042
+ "epoch": 0.5467950834624505,
1043
+ "grad_norm": 0.47479814291000366,
1044
+ "learning_rate": 7.491238762760932e-05,
1045
+ "loss": 0.7026,
1046
+ "step": 3700
1047
+ },
1048
+ {
1049
+ "epoch": 0.5504896448371969,
1050
+ "grad_norm": 0.590874969959259,
1051
+ "learning_rate": 7.472192594849915e-05,
1052
+ "loss": 0.7117,
1053
+ "step": 3725
1054
+ },
1055
+ {
1056
+ "epoch": 0.5541842062119431,
1057
+ "grad_norm": 0.46487829089164734,
1058
+ "learning_rate": 7.4531464269389e-05,
1059
+ "loss": 0.6919,
1060
+ "step": 3750
1061
+ },
1062
+ {
1063
+ "epoch": 0.5578787675866894,
1064
+ "grad_norm": 0.6609780192375183,
1065
+ "learning_rate": 7.434100259027885e-05,
1066
+ "loss": 0.7089,
1067
+ "step": 3775
1068
+ },
1069
+ {
1070
+ "epoch": 0.5615733289614357,
1071
+ "grad_norm": 0.6165657639503479,
1072
+ "learning_rate": 7.415054091116868e-05,
1073
+ "loss": 0.7444,
1074
+ "step": 3800
1075
+ },
1076
+ {
1077
+ "epoch": 0.565267890336182,
1078
+ "grad_norm": 0.5194655656814575,
1079
+ "learning_rate": 7.396007923205851e-05,
1080
+ "loss": 0.7114,
1081
+ "step": 3825
1082
+ },
1083
+ {
1084
+ "epoch": 0.5689624517109283,
1085
+ "grad_norm": 0.4813441336154938,
1086
+ "learning_rate": 7.376961755294836e-05,
1087
+ "loss": 0.6953,
1088
+ "step": 3850
1089
+ },
1090
+ {
1091
+ "epoch": 0.5726570130856745,
1092
+ "grad_norm": 0.7607313990592957,
1093
+ "learning_rate": 7.357915587383819e-05,
1094
+ "loss": 0.7058,
1095
+ "step": 3875
1096
+ },
1097
+ {
1098
+ "epoch": 0.5763515744604208,
1099
+ "grad_norm": 0.48498719930648804,
1100
+ "learning_rate": 7.338869419472802e-05,
1101
+ "loss": 0.6866,
1102
+ "step": 3900
1103
+ },
1104
+ {
1105
+ "epoch": 0.5800461358351672,
1106
+ "grad_norm": 0.5969393253326416,
1107
+ "learning_rate": 7.319823251561786e-05,
1108
+ "loss": 0.6951,
1109
+ "step": 3925
1110
+ },
1111
+ {
1112
+ "epoch": 0.5837406972099134,
1113
+ "grad_norm": 0.6178887486457825,
1114
+ "learning_rate": 7.300777083650769e-05,
1115
+ "loss": 0.7036,
1116
+ "step": 3950
1117
+ },
1118
+ {
1119
+ "epoch": 0.5874352585846597,
1120
+ "grad_norm": 0.5318612456321716,
1121
+ "learning_rate": 7.281730915739754e-05,
1122
+ "loss": 0.6856,
1123
+ "step": 3975
1124
+ },
1125
+ {
1126
+ "epoch": 0.591129819959406,
1127
+ "grad_norm": 0.6101936101913452,
1128
+ "learning_rate": 7.262684747828737e-05,
1129
+ "loss": 0.7103,
1130
+ "step": 4000
1131
+ },
1132
+ {
1133
+ "epoch": 0.5948243813341523,
1134
+ "grad_norm": 0.5605831742286682,
1135
+ "learning_rate": 7.243638579917721e-05,
1136
+ "loss": 0.6684,
1137
+ "step": 4025
1138
+ },
1139
+ {
1140
+ "epoch": 0.5985189427088986,
1141
+ "grad_norm": 0.6576380133628845,
1142
+ "learning_rate": 7.224592412006705e-05,
1143
+ "loss": 0.6955,
1144
+ "step": 4050
1145
+ },
1146
+ {
1147
+ "epoch": 0.6022135040836448,
1148
+ "grad_norm": 0.49083924293518066,
1149
+ "learning_rate": 7.205546244095688e-05,
1150
+ "loss": 0.7089,
1151
+ "step": 4075
1152
+ },
1153
+ {
1154
+ "epoch": 0.6059080654583912,
1155
+ "grad_norm": 0.4783398509025574,
1156
+ "learning_rate": 7.186500076184673e-05,
1157
+ "loss": 0.6766,
1158
+ "step": 4100
1159
+ },
1160
+ {
1161
+ "epoch": 0.6096026268331375,
1162
+ "grad_norm": 0.5773366689682007,
1163
+ "learning_rate": 7.167453908273656e-05,
1164
+ "loss": 0.666,
1165
+ "step": 4125
1166
+ },
1167
+ {
1168
+ "epoch": 0.6132971882078837,
1169
+ "grad_norm": 0.5449897050857544,
1170
+ "learning_rate": 7.148407740362639e-05,
1171
+ "loss": 0.6795,
1172
+ "step": 4150
1173
+ },
1174
+ {
1175
+ "epoch": 0.61699174958263,
1176
+ "grad_norm": 0.519882082939148,
1177
+ "learning_rate": 7.129361572451622e-05,
1178
+ "loss": 0.6892,
1179
+ "step": 4175
1180
+ },
1181
+ {
1182
+ "epoch": 0.6206863109573763,
1183
+ "grad_norm": 0.5653222799301147,
1184
+ "learning_rate": 7.110315404540607e-05,
1185
+ "loss": 0.7029,
1186
+ "step": 4200
1187
+ },
1188
+ {
1189
+ "epoch": 0.6243808723321226,
1190
+ "grad_norm": 0.542448878288269,
1191
+ "learning_rate": 7.09126923662959e-05,
1192
+ "loss": 0.6885,
1193
+ "step": 4225
1194
+ },
1195
+ {
1196
+ "epoch": 0.6280754337068689,
1197
+ "grad_norm": 0.5602554082870483,
1198
+ "learning_rate": 7.072223068718575e-05,
1199
+ "loss": 0.6811,
1200
+ "step": 4250
1201
+ },
1202
+ {
1203
+ "epoch": 0.6317699950816151,
1204
+ "grad_norm": 0.5326575636863708,
1205
+ "learning_rate": 7.053176900807558e-05,
1206
+ "loss": 0.7032,
1207
+ "step": 4275
1208
+ },
1209
+ {
1210
+ "epoch": 0.6354645564563615,
1211
+ "grad_norm": 0.5822186470031738,
1212
+ "learning_rate": 7.034130732896541e-05,
1213
+ "loss": 0.6951,
1214
+ "step": 4300
1215
+ },
1216
+ {
1217
+ "epoch": 0.6391591178311078,
1218
+ "grad_norm": 0.5309107899665833,
1219
+ "learning_rate": 7.015084564985526e-05,
1220
+ "loss": 0.6891,
1221
+ "step": 4325
1222
+ },
1223
+ {
1224
+ "epoch": 0.642853679205854,
1225
+ "grad_norm": 0.6958228349685669,
1226
+ "learning_rate": 6.996038397074509e-05,
1227
+ "loss": 0.6932,
1228
+ "step": 4350
1229
+ },
1230
+ {
1231
+ "epoch": 0.6465482405806003,
1232
+ "grad_norm": 0.4864750802516937,
1233
+ "learning_rate": 6.976992229163493e-05,
1234
+ "loss": 0.6897,
1235
+ "step": 4375
1236
+ },
1237
+ {
1238
+ "epoch": 0.6502428019553466,
1239
+ "grad_norm": 0.5077944993972778,
1240
+ "learning_rate": 6.957946061252476e-05,
1241
+ "loss": 0.7067,
1242
+ "step": 4400
1243
+ },
1244
+ {
1245
+ "epoch": 0.6539373633300929,
1246
+ "grad_norm": 0.5589050054550171,
1247
+ "learning_rate": 6.938899893341459e-05,
1248
+ "loss": 0.6927,
1249
+ "step": 4425
1250
+ },
1251
+ {
1252
+ "epoch": 0.6576319247048392,
1253
+ "grad_norm": 0.6064692735671997,
1254
+ "learning_rate": 6.919853725430444e-05,
1255
+ "loss": 0.7186,
1256
+ "step": 4450
1257
+ },
1258
+ {
1259
+ "epoch": 0.6613264860795854,
1260
+ "grad_norm": 0.5546572208404541,
1261
+ "learning_rate": 6.900807557519427e-05,
1262
+ "loss": 0.6865,
1263
+ "step": 4475
1264
+ },
1265
+ {
1266
+ "epoch": 0.6650210474543318,
1267
+ "grad_norm": 0.6032342314720154,
1268
+ "learning_rate": 6.881761389608412e-05,
1269
+ "loss": 0.6999,
1270
+ "step": 4500
1271
+ },
1272
+ {
1273
+ "epoch": 0.668715608829078,
1274
+ "grad_norm": 0.5067450404167175,
1275
+ "learning_rate": 6.862715221697395e-05,
1276
+ "loss": 0.7068,
1277
+ "step": 4525
1278
+ },
1279
+ {
1280
+ "epoch": 0.6724101702038243,
1281
+ "grad_norm": 0.6697527170181274,
1282
+ "learning_rate": 6.84366905378638e-05,
1283
+ "loss": 0.7075,
1284
+ "step": 4550
1285
+ },
1286
+ {
1287
+ "epoch": 0.6761047315785707,
1288
+ "grad_norm": 0.48360082507133484,
1289
+ "learning_rate": 6.824622885875363e-05,
1290
+ "loss": 0.7076,
1291
+ "step": 4575
1292
+ },
1293
+ {
1294
+ "epoch": 0.6797992929533169,
1295
+ "grad_norm": 0.6387288570404053,
1296
+ "learning_rate": 6.805576717964346e-05,
1297
+ "loss": 0.6871,
1298
+ "step": 4600
1299
+ },
1300
+ {
1301
+ "epoch": 0.6834938543280632,
1302
+ "grad_norm": 0.6431862115859985,
1303
+ "learning_rate": 6.786530550053329e-05,
1304
+ "loss": 0.7138,
1305
+ "step": 4625
1306
+ },
1307
+ {
1308
+ "epoch": 0.6871884157028095,
1309
+ "grad_norm": 0.6050564050674438,
1310
+ "learning_rate": 6.767484382142313e-05,
1311
+ "loss": 0.6978,
1312
+ "step": 4650
1313
+ },
1314
+ {
1315
+ "epoch": 0.6908829770775557,
1316
+ "grad_norm": 0.7160177230834961,
1317
+ "learning_rate": 6.748438214231297e-05,
1318
+ "loss": 0.6813,
1319
+ "step": 4675
1320
+ },
1321
+ {
1322
+ "epoch": 0.6945775384523021,
1323
+ "grad_norm": 0.6984575986862183,
1324
+ "learning_rate": 6.72939204632028e-05,
1325
+ "loss": 0.7155,
1326
+ "step": 4700
1327
+ },
1328
+ {
1329
+ "epoch": 0.6982720998270483,
1330
+ "grad_norm": 0.5910038352012634,
1331
+ "learning_rate": 6.710345878409264e-05,
1332
+ "loss": 0.6689,
1333
+ "step": 4725
1334
+ },
1335
+ {
1336
+ "epoch": 0.7019666612017946,
1337
+ "grad_norm": 0.5897320508956909,
1338
+ "learning_rate": 6.691299710498248e-05,
1339
+ "loss": 0.7169,
1340
+ "step": 4750
1341
+ },
1342
+ {
1343
+ "epoch": 0.705661222576541,
1344
+ "grad_norm": 0.5735405683517456,
1345
+ "learning_rate": 6.672253542587232e-05,
1346
+ "loss": 0.6779,
1347
+ "step": 4775
1348
+ },
1349
+ {
1350
+ "epoch": 0.7093557839512872,
1351
+ "grad_norm": 0.6408699750900269,
1352
+ "learning_rate": 6.653207374676216e-05,
1353
+ "loss": 0.7069,
1354
+ "step": 4800
1355
+ },
1356
+ {
1357
+ "epoch": 0.7130503453260335,
1358
+ "grad_norm": 0.6292117834091187,
1359
+ "learning_rate": 6.6341612067652e-05,
1360
+ "loss": 0.698,
1361
+ "step": 4825
1362
+ },
1363
+ {
1364
+ "epoch": 0.7167449067007798,
1365
+ "grad_norm": 0.6101416349411011,
1366
+ "learning_rate": 6.615115038854183e-05,
1367
+ "loss": 0.6708,
1368
+ "step": 4850
1369
+ },
1370
+ {
1371
+ "epoch": 0.7204394680755261,
1372
+ "grad_norm": 0.6805480122566223,
1373
+ "learning_rate": 6.596068870943166e-05,
1374
+ "loss": 0.7115,
1375
+ "step": 4875
1376
+ },
1377
+ {
1378
+ "epoch": 0.7241340294502724,
1379
+ "grad_norm": 0.6465732455253601,
1380
+ "learning_rate": 6.57702270303215e-05,
1381
+ "loss": 0.688,
1382
+ "step": 4900
1383
+ },
1384
+ {
1385
+ "epoch": 0.7278285908250186,
1386
+ "grad_norm": 0.5873344540596008,
1387
+ "learning_rate": 6.557976535121134e-05,
1388
+ "loss": 0.7032,
1389
+ "step": 4925
1390
+ },
1391
+ {
1392
+ "epoch": 0.7315231521997649,
1393
+ "grad_norm": 0.5717042088508606,
1394
+ "learning_rate": 6.538930367210117e-05,
1395
+ "loss": 0.6907,
1396
+ "step": 4950
1397
+ },
1398
+ {
1399
+ "epoch": 0.7352177135745113,
1400
+ "grad_norm": 0.6366106867790222,
1401
+ "learning_rate": 6.519884199299102e-05,
1402
+ "loss": 0.7061,
1403
+ "step": 4975
1404
+ },
1405
+ {
1406
+ "epoch": 0.7389122749492575,
1407
+ "grad_norm": 0.7421902418136597,
1408
+ "learning_rate": 6.500838031388085e-05,
1409
+ "loss": 0.7267,
1410
+ "step": 5000
1411
+ },
1412
+ {
1413
+ "epoch": 0.7426068363240038,
1414
+ "grad_norm": 0.5897513031959534,
1415
+ "learning_rate": 6.48179186347707e-05,
1416
+ "loss": 0.7089,
1417
+ "step": 5025
1418
+ },
1419
+ {
1420
+ "epoch": 0.74630139769875,
1421
+ "grad_norm": 0.6692824959754944,
1422
+ "learning_rate": 6.462745695566053e-05,
1423
+ "loss": 0.7059,
1424
+ "step": 5050
1425
+ },
1426
+ {
1427
+ "epoch": 0.7499959590734964,
1428
+ "grad_norm": 0.5818034410476685,
1429
+ "learning_rate": 6.443699527655036e-05,
1430
+ "loss": 0.6734,
1431
+ "step": 5075
1432
+ },
1433
+ {
1434
+ "epoch": 0.7536905204482427,
1435
+ "grad_norm": 0.5975498557090759,
1436
+ "learning_rate": 6.42465335974402e-05,
1437
+ "loss": 0.6857,
1438
+ "step": 5100
1439
+ },
1440
+ {
1441
+ "epoch": 0.7573850818229889,
1442
+ "grad_norm": 0.5827130675315857,
1443
+ "learning_rate": 6.405607191833003e-05,
1444
+ "loss": 0.7156,
1445
+ "step": 5125
1446
+ },
1447
+ {
1448
+ "epoch": 0.7610796431977352,
1449
+ "grad_norm": 0.660932719707489,
1450
+ "learning_rate": 6.386561023921987e-05,
1451
+ "loss": 0.688,
1452
+ "step": 5150
1453
+ },
1454
+ {
1455
+ "epoch": 0.7647742045724816,
1456
+ "grad_norm": 0.5963577628135681,
1457
+ "learning_rate": 6.36751485601097e-05,
1458
+ "loss": 0.709,
1459
+ "step": 5175
1460
+ },
1461
+ {
1462
+ "epoch": 0.7684687659472278,
1463
+ "grad_norm": 0.6608302593231201,
1464
+ "learning_rate": 6.348468688099954e-05,
1465
+ "loss": 0.6761,
1466
+ "step": 5200
1467
+ },
1468
+ {
1469
+ "epoch": 0.7721633273219741,
1470
+ "grad_norm": 0.6137542724609375,
1471
+ "learning_rate": 6.329422520188938e-05,
1472
+ "loss": 0.6845,
1473
+ "step": 5225
1474
+ },
1475
+ {
1476
+ "epoch": 0.7758578886967203,
1477
+ "grad_norm": 0.6861995458602905,
1478
+ "learning_rate": 6.310376352277923e-05,
1479
+ "loss": 0.6746,
1480
+ "step": 5250
1481
+ },
1482
+ {
1483
+ "epoch": 0.7795524500714667,
1484
+ "grad_norm": 0.6537772417068481,
1485
+ "learning_rate": 6.291330184366906e-05,
1486
+ "loss": 0.6777,
1487
+ "step": 5275
1488
+ },
1489
+ {
1490
+ "epoch": 0.783247011446213,
1491
+ "grad_norm": 0.6634919047355652,
1492
+ "learning_rate": 6.27228401645589e-05,
1493
+ "loss": 0.6945,
1494
+ "step": 5300
1495
+ },
1496
+ {
1497
+ "epoch": 0.7869415728209592,
1498
+ "grad_norm": 0.610098123550415,
1499
+ "learning_rate": 6.253237848544873e-05,
1500
+ "loss": 0.6909,
1501
+ "step": 5325
1502
+ },
1503
+ {
1504
+ "epoch": 0.7906361341957056,
1505
+ "grad_norm": 0.6167535185813904,
1506
+ "learning_rate": 6.234191680633856e-05,
1507
+ "loss": 0.6988,
1508
+ "step": 5350
1509
+ },
1510
+ {
1511
+ "epoch": 0.7943306955704518,
1512
+ "grad_norm": 0.6502842903137207,
1513
+ "learning_rate": 6.215145512722841e-05,
1514
+ "loss": 0.6937,
1515
+ "step": 5375
1516
+ },
1517
+ {
1518
+ "epoch": 0.7980252569451981,
1519
+ "grad_norm": 0.5586534142494202,
1520
+ "learning_rate": 6.196099344811824e-05,
1521
+ "loss": 0.6891,
1522
+ "step": 5400
1523
+ },
1524
+ {
1525
+ "epoch": 0.8017198183199444,
1526
+ "grad_norm": 0.577847957611084,
1527
+ "learning_rate": 6.177053176900807e-05,
1528
+ "loss": 0.7111,
1529
+ "step": 5425
1530
+ },
1531
+ {
1532
+ "epoch": 0.8054143796946907,
1533
+ "grad_norm": 0.5086051225662231,
1534
+ "learning_rate": 6.158007008989792e-05,
1535
+ "loss": 0.6892,
1536
+ "step": 5450
1537
+ },
1538
+ {
1539
+ "epoch": 0.809108941069437,
1540
+ "grad_norm": 0.6650702953338623,
1541
+ "learning_rate": 6.138960841078775e-05,
1542
+ "loss": 0.6853,
1543
+ "step": 5475
1544
+ },
1545
+ {
1546
+ "epoch": 0.8128035024441833,
1547
+ "grad_norm": 0.730775773525238,
1548
+ "learning_rate": 6.11991467316776e-05,
1549
+ "loss": 0.6972,
1550
+ "step": 5500
1551
+ },
1552
+ {
1553
+ "epoch": 0.8164980638189295,
1554
+ "grad_norm": 0.6812962293624878,
1555
+ "learning_rate": 6.100868505256743e-05,
1556
+ "loss": 0.7179,
1557
+ "step": 5525
1558
+ },
1559
+ {
1560
+ "epoch": 0.8201926251936759,
1561
+ "grad_norm": 0.6698195934295654,
1562
+ "learning_rate": 6.081822337345726e-05,
1563
+ "loss": 0.6935,
1564
+ "step": 5550
1565
+ },
1566
+ {
1567
+ "epoch": 0.8238871865684221,
1568
+ "grad_norm": 0.7661596536636353,
1569
+ "learning_rate": 6.0627761694347096e-05,
1570
+ "loss": 0.7081,
1571
+ "step": 5575
1572
+ },
1573
+ {
1574
+ "epoch": 0.8275817479431684,
1575
+ "grad_norm": 0.63306725025177,
1576
+ "learning_rate": 6.043730001523694e-05,
1577
+ "loss": 0.6814,
1578
+ "step": 5600
1579
+ },
1580
+ {
1581
+ "epoch": 0.8312763093179147,
1582
+ "grad_norm": 0.638088047504425,
1583
+ "learning_rate": 6.0246838336126774e-05,
1584
+ "loss": 0.7162,
1585
+ "step": 5625
1586
+ },
1587
+ {
1588
+ "epoch": 0.834970870692661,
1589
+ "grad_norm": 0.6416764259338379,
1590
+ "learning_rate": 6.0056376657016614e-05,
1591
+ "loss": 0.6935,
1592
+ "step": 5650
1593
+ },
1594
+ {
1595
+ "epoch": 0.8386654320674073,
1596
+ "grad_norm": 0.6060255169868469,
1597
+ "learning_rate": 5.9865914977906447e-05,
1598
+ "loss": 0.6935,
1599
+ "step": 5675
1600
+ },
1601
+ {
1602
+ "epoch": 0.8423599934421535,
1603
+ "grad_norm": 0.6919652223587036,
1604
+ "learning_rate": 5.967545329879628e-05,
1605
+ "loss": 0.6781,
1606
+ "step": 5700
1607
+ },
1608
+ {
1609
+ "epoch": 0.8460545548168998,
1610
+ "grad_norm": 0.5610880851745605,
1611
+ "learning_rate": 5.9484991619686125e-05,
1612
+ "loss": 0.6924,
1613
+ "step": 5725
1614
+ },
1615
+ {
1616
+ "epoch": 0.8497491161916462,
1617
+ "grad_norm": 0.6481006145477295,
1618
+ "learning_rate": 5.929452994057596e-05,
1619
+ "loss": 0.6708,
1620
+ "step": 5750
1621
+ },
1622
+ {
1623
+ "epoch": 0.8534436775663924,
1624
+ "grad_norm": 0.618869423866272,
1625
+ "learning_rate": 5.91040682614658e-05,
1626
+ "loss": 0.6801,
1627
+ "step": 5775
1628
+ },
1629
+ {
1630
+ "epoch": 0.8571382389411387,
1631
+ "grad_norm": 0.5622214674949646,
1632
+ "learning_rate": 5.891360658235563e-05,
1633
+ "loss": 0.6932,
1634
+ "step": 5800
1635
+ },
1636
+ {
1637
+ "epoch": 0.860832800315885,
1638
+ "grad_norm": 0.6936132311820984,
1639
+ "learning_rate": 5.8723144903245476e-05,
1640
+ "loss": 0.6932,
1641
+ "step": 5825
1642
+ },
1643
+ {
1644
+ "epoch": 0.8645273616906313,
1645
+ "grad_norm": 0.6182092428207397,
1646
+ "learning_rate": 5.853268322413531e-05,
1647
+ "loss": 0.6767,
1648
+ "step": 5850
1649
+ },
1650
+ {
1651
+ "epoch": 0.8682219230653776,
1652
+ "grad_norm": 0.6932141184806824,
1653
+ "learning_rate": 5.834222154502514e-05,
1654
+ "loss": 0.694,
1655
+ "step": 5875
1656
+ },
1657
+ {
1658
+ "epoch": 0.8719164844401238,
1659
+ "grad_norm": 0.4943319261074066,
1660
+ "learning_rate": 5.815175986591498e-05,
1661
+ "loss": 0.6884,
1662
+ "step": 5900
1663
+ },
1664
+ {
1665
+ "epoch": 0.8756110458148701,
1666
+ "grad_norm": 0.730697512626648,
1667
+ "learning_rate": 5.7961298186804814e-05,
1668
+ "loss": 0.6906,
1669
+ "step": 5925
1670
+ },
1671
+ {
1672
+ "epoch": 0.8793056071896165,
1673
+ "grad_norm": 0.5535916090011597,
1674
+ "learning_rate": 5.777083650769466e-05,
1675
+ "loss": 0.6992,
1676
+ "step": 5950
1677
+ },
1678
+ {
1679
+ "epoch": 0.8830001685643627,
1680
+ "grad_norm": 0.6035041809082031,
1681
+ "learning_rate": 5.758037482858449e-05,
1682
+ "loss": 0.6637,
1683
+ "step": 5975
1684
+ },
1685
+ {
1686
+ "epoch": 0.886694729939109,
1687
+ "grad_norm": 0.6580167412757874,
1688
+ "learning_rate": 5.7389913149474325e-05,
1689
+ "loss": 0.7056,
1690
+ "step": 6000
1691
+ },
1692
+ {
1693
+ "epoch": 0.8903892913138552,
1694
+ "grad_norm": 0.5391905903816223,
1695
+ "learning_rate": 5.7199451470364165e-05,
1696
+ "loss": 0.7169,
1697
+ "step": 6025
1698
+ },
1699
+ {
1700
+ "epoch": 0.8940838526886016,
1701
+ "grad_norm": 0.7833768725395203,
1702
+ "learning_rate": 5.7008989791254e-05,
1703
+ "loss": 0.682,
1704
+ "step": 6050
1705
+ },
1706
+ {
1707
+ "epoch": 0.8977784140633479,
1708
+ "grad_norm": 0.6040502190589905,
1709
+ "learning_rate": 5.681852811214384e-05,
1710
+ "loss": 0.6893,
1711
+ "step": 6075
1712
+ },
1713
+ {
1714
+ "epoch": 0.9014729754380941,
1715
+ "grad_norm": 0.5723184943199158,
1716
+ "learning_rate": 5.6628066433033676e-05,
1717
+ "loss": 0.7041,
1718
+ "step": 6100
1719
+ },
1720
+ {
1721
+ "epoch": 0.9051675368128405,
1722
+ "grad_norm": 0.7001731395721436,
1723
+ "learning_rate": 5.643760475392351e-05,
1724
+ "loss": 0.69,
1725
+ "step": 6125
1726
+ },
1727
+ {
1728
+ "epoch": 0.9088620981875868,
1729
+ "grad_norm": 0.6454519629478455,
1730
+ "learning_rate": 5.624714307481335e-05,
1731
+ "loss": 0.6777,
1732
+ "step": 6150
1733
+ },
1734
+ {
1735
+ "epoch": 0.912556659562333,
1736
+ "grad_norm": 0.6187843680381775,
1737
+ "learning_rate": 5.6056681395703194e-05,
1738
+ "loss": 0.7069,
1739
+ "step": 6175
1740
+ },
1741
+ {
1742
+ "epoch": 0.9162512209370793,
1743
+ "grad_norm": 0.6245271563529968,
1744
+ "learning_rate": 5.586621971659303e-05,
1745
+ "loss": 0.6735,
1746
+ "step": 6200
1747
+ },
1748
+ {
1749
+ "epoch": 0.9199457823118256,
1750
+ "grad_norm": 0.513124406337738,
1751
+ "learning_rate": 5.567575803748286e-05,
1752
+ "loss": 0.6859,
1753
+ "step": 6225
1754
+ },
1755
+ {
1756
+ "epoch": 0.9236403436865719,
1757
+ "grad_norm": 0.5510721206665039,
1758
+ "learning_rate": 5.54852963583727e-05,
1759
+ "loss": 0.7195,
1760
+ "step": 6250
1761
+ },
1762
+ {
1763
+ "epoch": 0.9273349050613182,
1764
+ "grad_norm": 0.7087464332580566,
1765
+ "learning_rate": 5.529483467926253e-05,
1766
+ "loss": 0.6761,
1767
+ "step": 6275
1768
+ },
1769
+ {
1770
+ "epoch": 0.9310294664360644,
1771
+ "grad_norm": 0.6695664525032043,
1772
+ "learning_rate": 5.510437300015238e-05,
1773
+ "loss": 0.7013,
1774
+ "step": 6300
1775
+ },
1776
+ {
1777
+ "epoch": 0.9347240278108108,
1778
+ "grad_norm": 0.6182588934898376,
1779
+ "learning_rate": 5.491391132104221e-05,
1780
+ "loss": 0.6793,
1781
+ "step": 6325
1782
+ },
1783
+ {
1784
+ "epoch": 0.938418589185557,
1785
+ "grad_norm": 0.7019252181053162,
1786
+ "learning_rate": 5.472344964193204e-05,
1787
+ "loss": 0.7122,
1788
+ "step": 6350
1789
+ },
1790
+ {
1791
+ "epoch": 0.9421131505603033,
1792
+ "grad_norm": 0.772847592830658,
1793
+ "learning_rate": 5.453298796282188e-05,
1794
+ "loss": 0.6991,
1795
+ "step": 6375
1796
+ },
1797
+ {
1798
+ "epoch": 0.9458077119350496,
1799
+ "grad_norm": 0.7126289010047913,
1800
+ "learning_rate": 5.4342526283711715e-05,
1801
+ "loss": 0.6992,
1802
+ "step": 6400
1803
+ },
1804
+ {
1805
+ "epoch": 0.9495022733097959,
1806
+ "grad_norm": 0.7134938836097717,
1807
+ "learning_rate": 5.415206460460156e-05,
1808
+ "loss": 0.7091,
1809
+ "step": 6425
1810
+ },
1811
+ {
1812
+ "epoch": 0.9531968346845422,
1813
+ "grad_norm": 0.7651578187942505,
1814
+ "learning_rate": 5.3961602925491394e-05,
1815
+ "loss": 0.6829,
1816
+ "step": 6450
1817
+ },
1818
+ {
1819
+ "epoch": 0.9568913960592885,
1820
+ "grad_norm": 0.6493939161300659,
1821
+ "learning_rate": 5.377114124638123e-05,
1822
+ "loss": 0.6831,
1823
+ "step": 6475
1824
+ },
1825
+ {
1826
+ "epoch": 0.9605859574340347,
1827
+ "grad_norm": 0.5992809534072876,
1828
+ "learning_rate": 5.3580679567271066e-05,
1829
+ "loss": 0.6984,
1830
+ "step": 6500
1831
+ },
1832
+ {
1833
+ "epoch": 0.9642805188087811,
1834
+ "grad_norm": 0.6597899794578552,
1835
+ "learning_rate": 5.339021788816091e-05,
1836
+ "loss": 0.6893,
1837
+ "step": 6525
1838
+ },
1839
+ {
1840
+ "epoch": 0.9679750801835273,
1841
+ "grad_norm": 0.6459916234016418,
1842
+ "learning_rate": 5.3199756209050745e-05,
1843
+ "loss": 0.6935,
1844
+ "step": 6550
1845
+ },
1846
+ {
1847
+ "epoch": 0.9716696415582736,
1848
+ "grad_norm": 0.7714385986328125,
1849
+ "learning_rate": 5.300929452994058e-05,
1850
+ "loss": 0.6883,
1851
+ "step": 6575
1852
+ },
1853
+ {
1854
+ "epoch": 0.97536420293302,
1855
+ "grad_norm": 0.5793107748031616,
1856
+ "learning_rate": 5.281883285083041e-05,
1857
+ "loss": 0.6795,
1858
+ "step": 6600
1859
+ },
1860
+ {
1861
+ "epoch": 0.9790587643077662,
1862
+ "grad_norm": 0.5452476739883423,
1863
+ "learning_rate": 5.262837117172025e-05,
1864
+ "loss": 0.6809,
1865
+ "step": 6625
1866
+ },
1867
+ {
1868
+ "epoch": 0.9827533256825125,
1869
+ "grad_norm": 0.6292601823806763,
1870
+ "learning_rate": 5.2437909492610096e-05,
1871
+ "loss": 0.7021,
1872
+ "step": 6650
1873
+ },
1874
+ {
1875
+ "epoch": 0.9864478870572587,
1876
+ "grad_norm": 0.6509853601455688,
1877
+ "learning_rate": 5.224744781349993e-05,
1878
+ "loss": 0.6808,
1879
+ "step": 6675
1880
+ },
1881
+ {
1882
+ "epoch": 0.990142448432005,
1883
+ "grad_norm": 0.6169773936271667,
1884
+ "learning_rate": 5.205698613438976e-05,
1885
+ "loss": 0.677,
1886
+ "step": 6700
1887
+ },
1888
+ {
1889
+ "epoch": 0.9938370098067514,
1890
+ "grad_norm": 0.6769931316375732,
1891
+ "learning_rate": 5.1866524455279594e-05,
1892
+ "loss": 0.7188,
1893
+ "step": 6725
1894
+ },
1895
+ {
1896
+ "epoch": 0.9975315711814976,
1897
+ "grad_norm": 0.6493127346038818,
1898
+ "learning_rate": 5.167606277616944e-05,
1899
+ "loss": 0.68,
1900
+ "step": 6750
1901
+ },
1902
+ {
1903
+ "epoch": 1.001182259639919,
1904
+ "grad_norm": 0.6528682708740234,
1905
+ "learning_rate": 5.148560109705928e-05,
1906
+ "loss": 0.6982,
1907
+ "step": 6775
1908
+ },
1909
+ {
1910
+ "epoch": 1.004876821014665,
1911
+ "grad_norm": 0.6537097692489624,
1912
+ "learning_rate": 5.129513941794911e-05,
1913
+ "loss": 0.6513,
1914
+ "step": 6800
1915
+ },
1916
+ {
1917
+ "epoch": 1.0085713823894114,
1918
+ "grad_norm": 0.6426008939743042,
1919
+ "learning_rate": 5.1104677738838945e-05,
1920
+ "loss": 0.668,
1921
+ "step": 6825
1922
+ },
1923
+ {
1924
+ "epoch": 1.0122659437641577,
1925
+ "grad_norm": 0.5742406249046326,
1926
+ "learning_rate": 5.0914216059728784e-05,
1927
+ "loss": 0.67,
1928
+ "step": 6850
1929
+ },
1930
+ {
1931
+ "epoch": 1.015960505138904,
1932
+ "grad_norm": 0.7166649103164673,
1933
+ "learning_rate": 5.0723754380618623e-05,
1934
+ "loss": 0.6602,
1935
+ "step": 6875
1936
+ },
1937
+ {
1938
+ "epoch": 1.0196550665136503,
1939
+ "grad_norm": 0.7485601305961609,
1940
+ "learning_rate": 5.053329270150846e-05,
1941
+ "loss": 0.6567,
1942
+ "step": 6900
1943
+ },
1944
+ {
1945
+ "epoch": 1.0233496278883965,
1946
+ "grad_norm": 0.7126789689064026,
1947
+ "learning_rate": 5.0342831022398296e-05,
1948
+ "loss": 0.6624,
1949
+ "step": 6925
1950
+ },
1951
+ {
1952
+ "epoch": 1.0270441892631428,
1953
+ "grad_norm": 0.7238374948501587,
1954
+ "learning_rate": 5.015236934328813e-05,
1955
+ "loss": 0.6613,
1956
+ "step": 6950
1957
+ },
1958
+ {
1959
+ "epoch": 1.0307387506378891,
1960
+ "grad_norm": 0.6505608558654785,
1961
+ "learning_rate": 4.996190766417797e-05,
1962
+ "loss": 0.6554,
1963
+ "step": 6975
1964
+ },
1965
+ {
1966
+ "epoch": 1.0344333120126354,
1967
+ "grad_norm": 0.6918332576751709,
1968
+ "learning_rate": 4.977144598506781e-05,
1969
+ "loss": 0.6645,
1970
+ "step": 7000
1971
+ },
1972
+ {
1973
+ "epoch": 1.0381278733873818,
1974
+ "grad_norm": 0.5876255035400391,
1975
+ "learning_rate": 4.9580984305957646e-05,
1976
+ "loss": 0.6638,
1977
+ "step": 7025
1978
+ },
1979
+ {
1980
+ "epoch": 1.0418224347621279,
1981
+ "grad_norm": 0.7554610967636108,
1982
+ "learning_rate": 4.939052262684748e-05,
1983
+ "loss": 0.6742,
1984
+ "step": 7050
1985
+ },
1986
+ {
1987
+ "epoch": 1.0455169961368742,
1988
+ "grad_norm": 0.6300481557846069,
1989
+ "learning_rate": 4.920006094773732e-05,
1990
+ "loss": 0.6409,
1991
+ "step": 7075
1992
+ },
1993
+ {
1994
+ "epoch": 1.0492115575116205,
1995
+ "grad_norm": 0.5924395322799683,
1996
+ "learning_rate": 4.900959926862715e-05,
1997
+ "loss": 0.668,
1998
+ "step": 7100
1999
+ },
2000
+ {
2001
+ "epoch": 1.0529061188863669,
2002
+ "grad_norm": 0.6832597851753235,
2003
+ "learning_rate": 4.881913758951699e-05,
2004
+ "loss": 0.6431,
2005
+ "step": 7125
2006
+ },
2007
+ {
2008
+ "epoch": 1.0566006802611132,
2009
+ "grad_norm": 0.702418863773346,
2010
+ "learning_rate": 4.862867591040683e-05,
2011
+ "loss": 0.6463,
2012
+ "step": 7150
2013
+ },
2014
+ {
2015
+ "epoch": 1.0602952416358593,
2016
+ "grad_norm": 0.6264967918395996,
2017
+ "learning_rate": 4.843821423129666e-05,
2018
+ "loss": 0.653,
2019
+ "step": 7175
2020
+ },
2021
+ {
2022
+ "epoch": 1.0639898030106056,
2023
+ "grad_norm": 0.6441030502319336,
2024
+ "learning_rate": 4.82477525521865e-05,
2025
+ "loss": 0.6415,
2026
+ "step": 7200
2027
+ },
2028
+ {
2029
+ "epoch": 1.067684364385352,
2030
+ "grad_norm": 0.5445654392242432,
2031
+ "learning_rate": 4.805729087307634e-05,
2032
+ "loss": 0.6516,
2033
+ "step": 7225
2034
+ },
2035
+ {
2036
+ "epoch": 1.0713789257600983,
2037
+ "grad_norm": 0.634982168674469,
2038
+ "learning_rate": 4.786682919396618e-05,
2039
+ "loss": 0.6617,
2040
+ "step": 7250
2041
+ },
2042
+ {
2043
+ "epoch": 1.0750734871348446,
2044
+ "grad_norm": 0.5670004487037659,
2045
+ "learning_rate": 4.7676367514856013e-05,
2046
+ "loss": 0.644,
2047
+ "step": 7275
2048
+ },
2049
+ {
2050
+ "epoch": 1.0787680485095907,
2051
+ "grad_norm": 0.6136172413825989,
2052
+ "learning_rate": 4.7485905835745846e-05,
2053
+ "loss": 0.6404,
2054
+ "step": 7300
2055
+ },
2056
+ {
2057
+ "epoch": 1.082462609884337,
2058
+ "grad_norm": 0.6087863445281982,
2059
+ "learning_rate": 4.7295444156635686e-05,
2060
+ "loss": 0.666,
2061
+ "step": 7325
2062
+ },
2063
+ {
2064
+ "epoch": 1.0861571712590834,
2065
+ "grad_norm": 0.54926997423172,
2066
+ "learning_rate": 4.7104982477525525e-05,
2067
+ "loss": 0.6157,
2068
+ "step": 7350
2069
+ },
2070
+ {
2071
+ "epoch": 1.0898517326338297,
2072
+ "grad_norm": 0.6426320672035217,
2073
+ "learning_rate": 4.6914520798415364e-05,
2074
+ "loss": 0.6349,
2075
+ "step": 7375
2076
+ },
2077
+ {
2078
+ "epoch": 1.093546294008576,
2079
+ "grad_norm": 0.5854539275169373,
2080
+ "learning_rate": 4.67240591193052e-05,
2081
+ "loss": 0.6583,
2082
+ "step": 7400
2083
+ },
2084
+ {
2085
+ "epoch": 1.0972408553833224,
2086
+ "grad_norm": 0.7021641731262207,
2087
+ "learning_rate": 4.6533597440195036e-05,
2088
+ "loss": 0.6682,
2089
+ "step": 7425
2090
+ },
2091
+ {
2092
+ "epoch": 1.1009354167580685,
2093
+ "grad_norm": 0.7356472611427307,
2094
+ "learning_rate": 4.634313576108487e-05,
2095
+ "loss": 0.6563,
2096
+ "step": 7450
2097
+ },
2098
+ {
2099
+ "epoch": 1.1046299781328148,
2100
+ "grad_norm": 0.6147669553756714,
2101
+ "learning_rate": 4.615267408197471e-05,
2102
+ "loss": 0.667,
2103
+ "step": 7475
2104
+ },
2105
+ {
2106
+ "epoch": 1.1083245395075612,
2107
+ "grad_norm": 0.6394315958023071,
2108
+ "learning_rate": 4.596221240286455e-05,
2109
+ "loss": 0.6737,
2110
+ "step": 7500
2111
+ },
2112
+ {
2113
+ "epoch": 1.1120191008823075,
2114
+ "grad_norm": 0.7234614491462708,
2115
+ "learning_rate": 4.577175072375438e-05,
2116
+ "loss": 0.6556,
2117
+ "step": 7525
2118
+ },
2119
+ {
2120
+ "epoch": 1.1157136622570538,
2121
+ "grad_norm": 0.6812229156494141,
2122
+ "learning_rate": 4.558128904464422e-05,
2123
+ "loss": 0.6544,
2124
+ "step": 7550
2125
+ },
2126
+ {
2127
+ "epoch": 1.1194082236318,
2128
+ "grad_norm": 0.6218217611312866,
2129
+ "learning_rate": 4.539082736553405e-05,
2130
+ "loss": 0.668,
2131
+ "step": 7575
2132
+ },
2133
+ {
2134
+ "epoch": 1.1231027850065463,
2135
+ "grad_norm": 0.8202681541442871,
2136
+ "learning_rate": 4.52003656864239e-05,
2137
+ "loss": 0.679,
2138
+ "step": 7600
2139
+ },
2140
+ {
2141
+ "epoch": 1.1267973463812926,
2142
+ "grad_norm": 0.5360725522041321,
2143
+ "learning_rate": 4.500990400731373e-05,
2144
+ "loss": 0.6463,
2145
+ "step": 7625
2146
+ },
2147
+ {
2148
+ "epoch": 1.130491907756039,
2149
+ "grad_norm": 0.6142716407775879,
2150
+ "learning_rate": 4.481944232820357e-05,
2151
+ "loss": 0.659,
2152
+ "step": 7650
2153
+ },
2154
+ {
2155
+ "epoch": 1.1341864691307852,
2156
+ "grad_norm": 0.619349479675293,
2157
+ "learning_rate": 4.4628980649093404e-05,
2158
+ "loss": 0.6724,
2159
+ "step": 7675
2160
+ },
2161
+ {
2162
+ "epoch": 1.1378810305055314,
2163
+ "grad_norm": 0.6891987323760986,
2164
+ "learning_rate": 4.4438518969983236e-05,
2165
+ "loss": 0.6509,
2166
+ "step": 7700
2167
+ },
2168
+ {
2169
+ "epoch": 1.1415755918802777,
2170
+ "grad_norm": 0.7174720168113708,
2171
+ "learning_rate": 4.424805729087308e-05,
2172
+ "loss": 0.6715,
2173
+ "step": 7725
2174
+ },
2175
+ {
2176
+ "epoch": 1.145270153255024,
2177
+ "grad_norm": 0.7424497008323669,
2178
+ "learning_rate": 4.4057595611762915e-05,
2179
+ "loss": 0.6449,
2180
+ "step": 7750
2181
+ },
2182
+ {
2183
+ "epoch": 1.1489647146297703,
2184
+ "grad_norm": 0.6533998847007751,
2185
+ "learning_rate": 4.3867133932652754e-05,
2186
+ "loss": 0.6528,
2187
+ "step": 7775
2188
+ },
2189
+ {
2190
+ "epoch": 1.1526592760045167,
2191
+ "grad_norm": 0.7500383853912354,
2192
+ "learning_rate": 4.367667225354259e-05,
2193
+ "loss": 0.6592,
2194
+ "step": 7800
2195
+ },
2196
+ {
2197
+ "epoch": 1.156353837379263,
2198
+ "grad_norm": 0.6293950080871582,
2199
+ "learning_rate": 4.3486210574432427e-05,
2200
+ "loss": 0.6584,
2201
+ "step": 7825
2202
+ },
2203
+ {
2204
+ "epoch": 1.1600483987540091,
2205
+ "grad_norm": 0.8463473320007324,
2206
+ "learning_rate": 4.3295748895322266e-05,
2207
+ "loss": 0.6656,
2208
+ "step": 7850
2209
+ },
2210
+ {
2211
+ "epoch": 1.1637429601287554,
2212
+ "grad_norm": 0.6918061971664429,
2213
+ "learning_rate": 4.31052872162121e-05,
2214
+ "loss": 0.6603,
2215
+ "step": 7875
2216
+ },
2217
+ {
2218
+ "epoch": 1.1674375215035018,
2219
+ "grad_norm": 0.5433516502380371,
2220
+ "learning_rate": 4.291482553710194e-05,
2221
+ "loss": 0.6422,
2222
+ "step": 7900
2223
+ },
2224
+ {
2225
+ "epoch": 1.171132082878248,
2226
+ "grad_norm": 0.6414408087730408,
2227
+ "learning_rate": 4.272436385799177e-05,
2228
+ "loss": 0.6279,
2229
+ "step": 7925
2230
+ },
2231
+ {
2232
+ "epoch": 1.1748266442529944,
2233
+ "grad_norm": 0.814218282699585,
2234
+ "learning_rate": 4.253390217888161e-05,
2235
+ "loss": 0.6673,
2236
+ "step": 7950
2237
+ },
2238
+ {
2239
+ "epoch": 1.1785212056277405,
2240
+ "grad_norm": 0.7378386855125427,
2241
+ "learning_rate": 4.234344049977145e-05,
2242
+ "loss": 0.6651,
2243
+ "step": 7975
2244
+ },
2245
+ {
2246
+ "epoch": 1.1822157670024869,
2247
+ "grad_norm": 0.6620386242866516,
2248
+ "learning_rate": 4.215297882066129e-05,
2249
+ "loss": 0.6984,
2250
+ "step": 8000
2251
+ },
2252
+ {
2253
+ "epoch": 1.1859103283772332,
2254
+ "grad_norm": 0.6845581531524658,
2255
+ "learning_rate": 4.196251714155112e-05,
2256
+ "loss": 0.6524,
2257
+ "step": 8025
2258
+ },
2259
+ {
2260
+ "epoch": 1.1896048897519795,
2261
+ "grad_norm": 0.7139785289764404,
2262
+ "learning_rate": 4.1772055462440954e-05,
2263
+ "loss": 0.6453,
2264
+ "step": 8050
2265
+ },
2266
+ {
2267
+ "epoch": 1.1932994511267259,
2268
+ "grad_norm": 0.6536353230476379,
2269
+ "learning_rate": 4.1581593783330794e-05,
2270
+ "loss": 0.6456,
2271
+ "step": 8075
2272
+ },
2273
+ {
2274
+ "epoch": 1.196994012501472,
2275
+ "grad_norm": 0.6225493550300598,
2276
+ "learning_rate": 4.139113210422063e-05,
2277
+ "loss": 0.6192,
2278
+ "step": 8100
2279
+ },
2280
+ {
2281
+ "epoch": 1.2006885738762183,
2282
+ "grad_norm": 0.6810159683227539,
2283
+ "learning_rate": 4.120067042511047e-05,
2284
+ "loss": 0.6634,
2285
+ "step": 8125
2286
+ },
2287
+ {
2288
+ "epoch": 1.2043831352509646,
2289
+ "grad_norm": 0.5847315788269043,
2290
+ "learning_rate": 4.1010208746000305e-05,
2291
+ "loss": 0.6231,
2292
+ "step": 8150
2293
+ },
2294
+ {
2295
+ "epoch": 1.208077696625711,
2296
+ "grad_norm": 0.6385469436645508,
2297
+ "learning_rate": 4.0819747066890144e-05,
2298
+ "loss": 0.6619,
2299
+ "step": 8175
2300
+ },
2301
+ {
2302
+ "epoch": 1.2117722580004573,
2303
+ "grad_norm": 0.7124472260475159,
2304
+ "learning_rate": 4.0629285387779984e-05,
2305
+ "loss": 0.6626,
2306
+ "step": 8200
2307
+ },
2308
+ {
2309
+ "epoch": 1.2154668193752034,
2310
+ "grad_norm": 0.658824622631073,
2311
+ "learning_rate": 4.0438823708669817e-05,
2312
+ "loss": 0.6653,
2313
+ "step": 8225
2314
+ },
2315
+ {
2316
+ "epoch": 1.2191613807499497,
2317
+ "grad_norm": 0.6626468300819397,
2318
+ "learning_rate": 4.0248362029559656e-05,
2319
+ "loss": 0.6777,
2320
+ "step": 8250
2321
+ },
2322
+ {
2323
+ "epoch": 1.222855942124696,
2324
+ "grad_norm": 0.6238393783569336,
2325
+ "learning_rate": 4.005790035044949e-05,
2326
+ "loss": 0.6622,
2327
+ "step": 8275
2328
+ },
2329
+ {
2330
+ "epoch": 1.2265505034994424,
2331
+ "grad_norm": 0.685213565826416,
2332
+ "learning_rate": 3.986743867133933e-05,
2333
+ "loss": 0.6423,
2334
+ "step": 8300
2335
+ },
2336
+ {
2337
+ "epoch": 1.2302450648741887,
2338
+ "grad_norm": 0.7486940622329712,
2339
+ "learning_rate": 3.967697699222917e-05,
2340
+ "loss": 0.6631,
2341
+ "step": 8325
2342
+ },
2343
+ {
2344
+ "epoch": 1.2339396262489348,
2345
+ "grad_norm": 0.7994277477264404,
2346
+ "learning_rate": 3.948651531311901e-05,
2347
+ "loss": 0.6725,
2348
+ "step": 8350
2349
+ },
2350
+ {
2351
+ "epoch": 1.2376341876236812,
2352
+ "grad_norm": 0.6204445958137512,
2353
+ "learning_rate": 3.929605363400884e-05,
2354
+ "loss": 0.6411,
2355
+ "step": 8375
2356
+ },
2357
+ {
2358
+ "epoch": 1.2413287489984275,
2359
+ "grad_norm": 0.7625504732131958,
2360
+ "learning_rate": 3.910559195489867e-05,
2361
+ "loss": 0.6819,
2362
+ "step": 8400
2363
+ },
2364
+ {
2365
+ "epoch": 1.2450233103731738,
2366
+ "grad_norm": 0.6892343163490295,
2367
+ "learning_rate": 3.891513027578851e-05,
2368
+ "loss": 0.6614,
2369
+ "step": 8425
2370
+ },
2371
+ {
2372
+ "epoch": 1.2487178717479201,
2373
+ "grad_norm": 0.6849514245986938,
2374
+ "learning_rate": 3.872466859667835e-05,
2375
+ "loss": 0.6442,
2376
+ "step": 8450
2377
+ },
2378
+ {
2379
+ "epoch": 1.2524124331226663,
2380
+ "grad_norm": 0.7257765531539917,
2381
+ "learning_rate": 3.853420691756819e-05,
2382
+ "loss": 0.6475,
2383
+ "step": 8475
2384
+ },
2385
+ {
2386
+ "epoch": 1.2561069944974126,
2387
+ "grad_norm": 0.7827818393707275,
2388
+ "learning_rate": 3.834374523845802e-05,
2389
+ "loss": 0.6317,
2390
+ "step": 8500
2391
+ },
2392
+ {
2393
+ "epoch": 1.259801555872159,
2394
+ "grad_norm": 0.7970981597900391,
2395
+ "learning_rate": 3.815328355934786e-05,
2396
+ "loss": 0.6585,
2397
+ "step": 8525
2398
+ },
2399
+ {
2400
+ "epoch": 1.2634961172469052,
2401
+ "grad_norm": 0.7086262106895447,
2402
+ "learning_rate": 3.7962821880237695e-05,
2403
+ "loss": 0.6499,
2404
+ "step": 8550
2405
+ },
2406
+ {
2407
+ "epoch": 1.2671906786216516,
2408
+ "grad_norm": 0.654151439666748,
2409
+ "learning_rate": 3.7772360201127535e-05,
2410
+ "loss": 0.6587,
2411
+ "step": 8575
2412
+ },
2413
+ {
2414
+ "epoch": 1.2708852399963977,
2415
+ "grad_norm": 0.6484542489051819,
2416
+ "learning_rate": 3.7581898522017374e-05,
2417
+ "loss": 0.6533,
2418
+ "step": 8600
2419
+ },
2420
+ {
2421
+ "epoch": 1.274579801371144,
2422
+ "grad_norm": 0.5822983384132385,
2423
+ "learning_rate": 3.7391436842907207e-05,
2424
+ "loss": 0.6535,
2425
+ "step": 8625
2426
+ },
2427
+ {
2428
+ "epoch": 1.2782743627458903,
2429
+ "grad_norm": 0.6506041884422302,
2430
+ "learning_rate": 3.7200975163797046e-05,
2431
+ "loss": 0.6527,
2432
+ "step": 8650
2433
+ },
2434
+ {
2435
+ "epoch": 1.2819689241206367,
2436
+ "grad_norm": 0.6804136037826538,
2437
+ "learning_rate": 3.701051348468688e-05,
2438
+ "loss": 0.642,
2439
+ "step": 8675
2440
+ },
2441
+ {
2442
+ "epoch": 1.285663485495383,
2443
+ "grad_norm": 0.7997829914093018,
2444
+ "learning_rate": 3.6820051805576725e-05,
2445
+ "loss": 0.6489,
2446
+ "step": 8700
2447
+ },
2448
+ {
2449
+ "epoch": 1.2893580468701291,
2450
+ "grad_norm": 0.7355867028236389,
2451
+ "learning_rate": 3.662959012646656e-05,
2452
+ "loss": 0.6777,
2453
+ "step": 8725
2454
+ },
2455
+ {
2456
+ "epoch": 1.2930526082448754,
2457
+ "grad_norm": 9.047796249389648,
2458
+ "learning_rate": 3.643912844735639e-05,
2459
+ "loss": 0.6777,
2460
+ "step": 8750
2461
+ },
2462
+ {
2463
+ "epoch": 1.2967471696196218,
2464
+ "grad_norm": 0.7236223220825195,
2465
+ "learning_rate": 3.624866676824623e-05,
2466
+ "loss": 0.6777,
2467
+ "step": 8775
2468
+ },
2469
+ {
2470
+ "epoch": 1.300441730994368,
2471
+ "grad_norm": 0.6845753192901611,
2472
+ "learning_rate": 3.605820508913607e-05,
2473
+ "loss": 0.6284,
2474
+ "step": 8800
2475
+ },
2476
+ {
2477
+ "epoch": 1.3041362923691144,
2478
+ "grad_norm": 0.7639452815055847,
2479
+ "learning_rate": 3.586774341002591e-05,
2480
+ "loss": 0.6822,
2481
+ "step": 8825
2482
+ },
2483
+ {
2484
+ "epoch": 1.3078308537438605,
2485
+ "grad_norm": 0.6909865736961365,
2486
+ "learning_rate": 3.567728173091574e-05,
2487
+ "loss": 0.6737,
2488
+ "step": 8850
2489
+ },
2490
+ {
2491
+ "epoch": 1.311525415118607,
2492
+ "grad_norm": 0.6128563284873962,
2493
+ "learning_rate": 3.548682005180558e-05,
2494
+ "loss": 0.666,
2495
+ "step": 8875
2496
+ },
2497
+ {
2498
+ "epoch": 1.3152199764933532,
2499
+ "grad_norm": 0.7517656087875366,
2500
+ "learning_rate": 3.529635837269541e-05,
2501
+ "loss": 0.6389,
2502
+ "step": 8900
2503
+ },
2504
+ {
2505
+ "epoch": 1.3189145378680995,
2506
+ "grad_norm": 0.7127660512924194,
2507
+ "learning_rate": 3.510589669358525e-05,
2508
+ "loss": 0.6334,
2509
+ "step": 8925
2510
+ },
2511
+ {
2512
+ "epoch": 1.3226090992428459,
2513
+ "grad_norm": 0.7129451632499695,
2514
+ "learning_rate": 3.491543501447509e-05,
2515
+ "loss": 0.6545,
2516
+ "step": 8950
2517
+ },
2518
+ {
2519
+ "epoch": 1.3263036606175922,
2520
+ "grad_norm": 0.7367307543754578,
2521
+ "learning_rate": 3.4724973335364925e-05,
2522
+ "loss": 0.6329,
2523
+ "step": 8975
2524
+ },
2525
+ {
2526
+ "epoch": 1.3299982219923385,
2527
+ "grad_norm": 0.7707272171974182,
2528
+ "learning_rate": 3.4534511656254764e-05,
2529
+ "loss": 0.6469,
2530
+ "step": 9000
2531
+ },
2532
+ {
2533
+ "epoch": 1.3336927833670846,
2534
+ "grad_norm": 0.5796623826026917,
2535
+ "learning_rate": 3.43440499771446e-05,
2536
+ "loss": 0.6533,
2537
+ "step": 9025
2538
+ },
2539
+ {
2540
+ "epoch": 1.337387344741831,
2541
+ "grad_norm": 210.8633270263672,
2542
+ "learning_rate": 3.4153588298034436e-05,
2543
+ "loss": 0.663,
2544
+ "step": 9050
2545
+ },
2546
+ {
2547
+ "epoch": 1.3410819061165773,
2548
+ "grad_norm": 0.6077564358711243,
2549
+ "learning_rate": 3.3963126618924275e-05,
2550
+ "loss": 0.6529,
2551
+ "step": 9075
2552
+ },
2553
+ {
2554
+ "epoch": 1.3447764674913236,
2555
+ "grad_norm": 0.5756903290748596,
2556
+ "learning_rate": 3.3772664939814115e-05,
2557
+ "loss": 0.6379,
2558
+ "step": 9100
2559
+ },
2560
+ {
2561
+ "epoch": 1.34847102886607,
2562
+ "grad_norm": 0.6951320171356201,
2563
+ "learning_rate": 3.358220326070395e-05,
2564
+ "loss": 0.6572,
2565
+ "step": 9125
2566
+ },
2567
+ {
2568
+ "epoch": 1.352165590240816,
2569
+ "grad_norm": 0.654563307762146,
2570
+ "learning_rate": 3.339174158159378e-05,
2571
+ "loss": 0.6571,
2572
+ "step": 9150
2573
+ },
2574
+ {
2575
+ "epoch": 1.3558601516155624,
2576
+ "grad_norm": 0.8268250823020935,
2577
+ "learning_rate": 3.320127990248362e-05,
2578
+ "loss": 0.6952,
2579
+ "step": 9175
2580
+ },
2581
+ {
2582
+ "epoch": 1.3595547129903087,
2583
+ "grad_norm": 0.7915245890617371,
2584
+ "learning_rate": 3.301081822337346e-05,
2585
+ "loss": 0.6442,
2586
+ "step": 9200
2587
+ },
2588
+ {
2589
+ "epoch": 1.363249274365055,
2590
+ "grad_norm": 0.7299513816833496,
2591
+ "learning_rate": 3.28203565442633e-05,
2592
+ "loss": 0.6347,
2593
+ "step": 9225
2594
+ },
2595
+ {
2596
+ "epoch": 1.3669438357398014,
2597
+ "grad_norm": 0.6474806070327759,
2598
+ "learning_rate": 3.262989486515313e-05,
2599
+ "loss": 0.6604,
2600
+ "step": 9250
2601
+ },
2602
+ {
2603
+ "epoch": 1.3706383971145475,
2604
+ "grad_norm": 0.6813268661499023,
2605
+ "learning_rate": 3.243943318604297e-05,
2606
+ "loss": 0.66,
2607
+ "step": 9275
2608
+ },
2609
+ {
2610
+ "epoch": 1.3743329584892938,
2611
+ "grad_norm": 0.7166799306869507,
2612
+ "learning_rate": 3.224897150693281e-05,
2613
+ "loss": 0.6689,
2614
+ "step": 9300
2615
+ },
2616
+ {
2617
+ "epoch": 1.3780275198640402,
2618
+ "grad_norm": 0.6958301663398743,
2619
+ "learning_rate": 3.205850982782264e-05,
2620
+ "loss": 0.6512,
2621
+ "step": 9325
2622
+ },
2623
+ {
2624
+ "epoch": 1.3817220812387865,
2625
+ "grad_norm": 0.8137691617012024,
2626
+ "learning_rate": 3.186804814871248e-05,
2627
+ "loss": 0.6691,
2628
+ "step": 9350
2629
+ },
2630
+ {
2631
+ "epoch": 1.3854166426135328,
2632
+ "grad_norm": 0.6115707159042358,
2633
+ "learning_rate": 3.1677586469602315e-05,
2634
+ "loss": 0.6733,
2635
+ "step": 9375
2636
+ },
2637
+ {
2638
+ "epoch": 1.389111203988279,
2639
+ "grad_norm": 0.7478678822517395,
2640
+ "learning_rate": 3.1487124790492154e-05,
2641
+ "loss": 0.6514,
2642
+ "step": 9400
2643
+ },
2644
+ {
2645
+ "epoch": 1.3928057653630252,
2646
+ "grad_norm": 0.7280460000038147,
2647
+ "learning_rate": 3.1296663111381993e-05,
2648
+ "loss": 0.6375,
2649
+ "step": 9425
2650
+ },
2651
+ {
2652
+ "epoch": 1.3965003267377716,
2653
+ "grad_norm": 0.6709932088851929,
2654
+ "learning_rate": 3.110620143227183e-05,
2655
+ "loss": 0.6843,
2656
+ "step": 9450
2657
+ },
2658
+ {
2659
+ "epoch": 1.400194888112518,
2660
+ "grad_norm": 0.6445898413658142,
2661
+ "learning_rate": 3.0915739753161666e-05,
2662
+ "loss": 0.6395,
2663
+ "step": 9475
2664
+ },
2665
+ {
2666
+ "epoch": 1.4038894494872642,
2667
+ "grad_norm": 0.6072065830230713,
2668
+ "learning_rate": 3.07252780740515e-05,
2669
+ "loss": 0.6615,
2670
+ "step": 9500
2671
+ },
2672
+ {
2673
+ "epoch": 1.4075840108620103,
2674
+ "grad_norm": 0.7841944098472595,
2675
+ "learning_rate": 3.053481639494134e-05,
2676
+ "loss": 0.6388,
2677
+ "step": 9525
2678
+ },
2679
+ {
2680
+ "epoch": 1.4112785722367567,
2681
+ "grad_norm": 0.7215288281440735,
2682
+ "learning_rate": 3.0344354715831174e-05,
2683
+ "loss": 0.6694,
2684
+ "step": 9550
2685
+ },
2686
+ {
2687
+ "epoch": 1.414973133611503,
2688
+ "grad_norm": 0.5916579961776733,
2689
+ "learning_rate": 3.0153893036721016e-05,
2690
+ "loss": 0.7004,
2691
+ "step": 9575
2692
+ },
2693
+ {
2694
+ "epoch": 1.4186676949862493,
2695
+ "grad_norm": 0.6357461214065552,
2696
+ "learning_rate": 2.996343135761085e-05,
2697
+ "loss": 0.6416,
2698
+ "step": 9600
2699
+ },
2700
+ {
2701
+ "epoch": 1.4223622563609957,
2702
+ "grad_norm": 0.735261857509613,
2703
+ "learning_rate": 2.977296967850069e-05,
2704
+ "loss": 0.6374,
2705
+ "step": 9625
2706
+ },
2707
+ {
2708
+ "epoch": 1.4260568177357418,
2709
+ "grad_norm": 0.7285844087600708,
2710
+ "learning_rate": 2.9582507999390525e-05,
2711
+ "loss": 0.6448,
2712
+ "step": 9650
2713
+ },
2714
+ {
2715
+ "epoch": 1.429751379110488,
2716
+ "grad_norm": 0.7573617100715637,
2717
+ "learning_rate": 2.9392046320280357e-05,
2718
+ "loss": 0.6672,
2719
+ "step": 9675
2720
+ },
2721
+ {
2722
+ "epoch": 1.4334459404852344,
2723
+ "grad_norm": 0.5082629919052124,
2724
+ "learning_rate": 2.92015846411702e-05,
2725
+ "loss": 0.6514,
2726
+ "step": 9700
2727
+ },
2728
+ {
2729
+ "epoch": 1.4371405018599808,
2730
+ "grad_norm": 0.6786466836929321,
2731
+ "learning_rate": 2.9011122962060033e-05,
2732
+ "loss": 0.6542,
2733
+ "step": 9725
2734
+ },
2735
+ {
2736
+ "epoch": 1.440835063234727,
2737
+ "grad_norm": 0.6085937023162842,
2738
+ "learning_rate": 2.8820661282949872e-05,
2739
+ "loss": 0.6581,
2740
+ "step": 9750
2741
+ },
2742
+ {
2743
+ "epoch": 1.4445296246094732,
2744
+ "grad_norm": 0.6520203351974487,
2745
+ "learning_rate": 2.8630199603839708e-05,
2746
+ "loss": 0.6469,
2747
+ "step": 9775
2748
+ },
2749
+ {
2750
+ "epoch": 1.4482241859842195,
2751
+ "grad_norm": 0.5597354769706726,
2752
+ "learning_rate": 2.8439737924729548e-05,
2753
+ "loss": 0.6418,
2754
+ "step": 9800
2755
+ },
2756
+ {
2757
+ "epoch": 1.4519187473589659,
2758
+ "grad_norm": 0.6233022809028625,
2759
+ "learning_rate": 2.8249276245619384e-05,
2760
+ "loss": 0.6371,
2761
+ "step": 9825
2762
+ },
2763
+ {
2764
+ "epoch": 1.4556133087337122,
2765
+ "grad_norm": 0.880703866481781,
2766
+ "learning_rate": 2.8058814566509216e-05,
2767
+ "loss": 0.6647,
2768
+ "step": 9850
2769
+ },
2770
+ {
2771
+ "epoch": 1.4593078701084585,
2772
+ "grad_norm": 0.6821489334106445,
2773
+ "learning_rate": 2.786835288739906e-05,
2774
+ "loss": 0.6545,
2775
+ "step": 9875
2776
+ },
2777
+ {
2778
+ "epoch": 1.4630024314832046,
2779
+ "grad_norm": 0.6734182834625244,
2780
+ "learning_rate": 2.767789120828889e-05,
2781
+ "loss": 0.6385,
2782
+ "step": 9900
2783
+ },
2784
+ {
2785
+ "epoch": 1.466696992857951,
2786
+ "grad_norm": 0.8161661028862,
2787
+ "learning_rate": 2.748742952917873e-05,
2788
+ "loss": 0.6526,
2789
+ "step": 9925
2790
+ },
2791
+ {
2792
+ "epoch": 1.4703915542326973,
2793
+ "grad_norm": 0.6308382153511047,
2794
+ "learning_rate": 2.7296967850068567e-05,
2795
+ "loss": 0.6561,
2796
+ "step": 9950
2797
+ },
2798
+ {
2799
+ "epoch": 1.4740861156074436,
2800
+ "grad_norm": 0.791493833065033,
2801
+ "learning_rate": 2.7106506170958406e-05,
2802
+ "loss": 0.6607,
2803
+ "step": 9975
2804
+ },
2805
+ {
2806
+ "epoch": 1.47778067698219,
2807
+ "grad_norm": 0.7888880372047424,
2808
+ "learning_rate": 2.6916044491848243e-05,
2809
+ "loss": 0.6511,
2810
+ "step": 10000
2811
+ },
2812
+ {
2813
+ "epoch": 1.481475238356936,
2814
+ "grad_norm": 0.7792957425117493,
2815
+ "learning_rate": 2.6725582812738075e-05,
2816
+ "loss": 0.6522,
2817
+ "step": 10025
2818
+ },
2819
+ {
2820
+ "epoch": 1.4851697997316826,
2821
+ "grad_norm": 0.6947233080863953,
2822
+ "learning_rate": 2.6535121133627915e-05,
2823
+ "loss": 0.6412,
2824
+ "step": 10050
2825
+ },
2826
+ {
2827
+ "epoch": 1.4888643611064287,
2828
+ "grad_norm": 0.6176926493644714,
2829
+ "learning_rate": 2.634465945451775e-05,
2830
+ "loss": 0.6486,
2831
+ "step": 10075
2832
+ },
2833
+ {
2834
+ "epoch": 1.492558922481175,
2835
+ "grad_norm": 0.700943112373352,
2836
+ "learning_rate": 2.615419777540759e-05,
2837
+ "loss": 0.6475,
2838
+ "step": 10100
2839
+ },
2840
+ {
2841
+ "epoch": 1.4962534838559214,
2842
+ "grad_norm": 0.6516005396842957,
2843
+ "learning_rate": 2.5963736096297426e-05,
2844
+ "loss": 0.6589,
2845
+ "step": 10125
2846
+ },
2847
+ {
2848
+ "epoch": 1.4999480452306675,
2849
+ "grad_norm": 0.8346360921859741,
2850
+ "learning_rate": 2.5773274417187265e-05,
2851
+ "loss": 0.6444,
2852
+ "step": 10150
2853
+ },
2854
+ {
2855
+ "epoch": 1.503642606605414,
2856
+ "grad_norm": 0.6748323440551758,
2857
+ "learning_rate": 2.55828127380771e-05,
2858
+ "loss": 0.6539,
2859
+ "step": 10175
2860
+ },
2861
+ {
2862
+ "epoch": 1.5073371679801602,
2863
+ "grad_norm": 0.6239715814590454,
2864
+ "learning_rate": 2.5392351058966934e-05,
2865
+ "loss": 0.6137,
2866
+ "step": 10200
2867
+ },
2868
+ {
2869
+ "epoch": 1.5110317293549065,
2870
+ "grad_norm": 0.7011853456497192,
2871
+ "learning_rate": 2.5201889379856774e-05,
2872
+ "loss": 0.6415,
2873
+ "step": 10225
2874
+ },
2875
+ {
2876
+ "epoch": 1.5147262907296528,
2877
+ "grad_norm": 0.6292597055435181,
2878
+ "learning_rate": 2.501142770074661e-05,
2879
+ "loss": 0.6341,
2880
+ "step": 10250
2881
+ },
2882
+ {
2883
+ "epoch": 1.518420852104399,
2884
+ "grad_norm": 0.7244909405708313,
2885
+ "learning_rate": 2.482096602163645e-05,
2886
+ "loss": 0.658,
2887
+ "step": 10275
2888
+ },
2889
+ {
2890
+ "epoch": 1.5221154134791455,
2891
+ "grad_norm": 0.6337189674377441,
2892
+ "learning_rate": 2.4630504342526285e-05,
2893
+ "loss": 0.6804,
2894
+ "step": 10300
2895
+ },
2896
+ {
2897
+ "epoch": 1.5258099748538916,
2898
+ "grad_norm": 0.720902681350708,
2899
+ "learning_rate": 2.444004266341612e-05,
2900
+ "loss": 0.6819,
2901
+ "step": 10325
2902
+ },
2903
+ {
2904
+ "epoch": 1.529504536228638,
2905
+ "grad_norm": 0.5961156487464905,
2906
+ "learning_rate": 2.4249580984305957e-05,
2907
+ "loss": 0.6417,
2908
+ "step": 10350
2909
+ },
2910
+ {
2911
+ "epoch": 1.5331990976033842,
2912
+ "grad_norm": 0.8305853605270386,
2913
+ "learning_rate": 2.4059119305195797e-05,
2914
+ "loss": 0.6694,
2915
+ "step": 10375
2916
+ },
2917
+ {
2918
+ "epoch": 1.5368936589781304,
2919
+ "grad_norm": 0.7062313556671143,
2920
+ "learning_rate": 2.3868657626085633e-05,
2921
+ "loss": 0.6587,
2922
+ "step": 10400
2923
+ },
2924
+ {
2925
+ "epoch": 1.540588220352877,
2926
+ "grad_norm": 0.6674323081970215,
2927
+ "learning_rate": 2.3678195946975472e-05,
2928
+ "loss": 0.6557,
2929
+ "step": 10425
2930
+ },
2931
+ {
2932
+ "epoch": 1.544282781727623,
2933
+ "grad_norm": 0.7407240271568298,
2934
+ "learning_rate": 2.3487734267865308e-05,
2935
+ "loss": 0.6599,
2936
+ "step": 10450
2937
+ },
2938
+ {
2939
+ "epoch": 1.5479773431023693,
2940
+ "grad_norm": 0.783926248550415,
2941
+ "learning_rate": 2.3297272588755144e-05,
2942
+ "loss": 0.6616,
2943
+ "step": 10475
2944
+ },
2945
+ {
2946
+ "epoch": 1.5516719044771157,
2947
+ "grad_norm": 0.6342896819114685,
2948
+ "learning_rate": 2.310681090964498e-05,
2949
+ "loss": 0.6747,
2950
+ "step": 10500
2951
+ },
2952
+ {
2953
+ "epoch": 1.5553664658518618,
2954
+ "grad_norm": 0.6193211674690247,
2955
+ "learning_rate": 2.2916349230534816e-05,
2956
+ "loss": 0.6294,
2957
+ "step": 10525
2958
+ },
2959
+ {
2960
+ "epoch": 1.5590610272266083,
2961
+ "grad_norm": 0.6950103640556335,
2962
+ "learning_rate": 2.2725887551424656e-05,
2963
+ "loss": 0.6483,
2964
+ "step": 10550
2965
+ },
2966
+ {
2967
+ "epoch": 1.5627555886013544,
2968
+ "grad_norm": 0.7468893527984619,
2969
+ "learning_rate": 2.253542587231449e-05,
2970
+ "loss": 0.6542,
2971
+ "step": 10575
2972
+ },
2973
+ {
2974
+ "epoch": 1.5664501499761008,
2975
+ "grad_norm": 0.6315162777900696,
2976
+ "learning_rate": 2.2344964193204328e-05,
2977
+ "loss": 0.6576,
2978
+ "step": 10600
2979
+ },
2980
+ {
2981
+ "epoch": 1.570144711350847,
2982
+ "grad_norm": 0.7328910231590271,
2983
+ "learning_rate": 2.2154502514094167e-05,
2984
+ "loss": 0.6643,
2985
+ "step": 10625
2986
+ },
2987
+ {
2988
+ "epoch": 1.5738392727255934,
2989
+ "grad_norm": 0.7641509771347046,
2990
+ "learning_rate": 2.1964040834984e-05,
2991
+ "loss": 0.6406,
2992
+ "step": 10650
2993
+ },
2994
+ {
2995
+ "epoch": 1.5775338341003398,
2996
+ "grad_norm": 0.6303021311759949,
2997
+ "learning_rate": 2.177357915587384e-05,
2998
+ "loss": 0.6414,
2999
+ "step": 10675
3000
+ },
3001
+ {
3002
+ "epoch": 1.5812283954750859,
3003
+ "grad_norm": 0.7340176701545715,
3004
+ "learning_rate": 2.1583117476763675e-05,
3005
+ "loss": 0.6676,
3006
+ "step": 10700
3007
+ },
3008
+ {
3009
+ "epoch": 1.5849229568498322,
3010
+ "grad_norm": 0.7646533846855164,
3011
+ "learning_rate": 2.1392655797653515e-05,
3012
+ "loss": 0.6595,
3013
+ "step": 10725
3014
+ },
3015
+ {
3016
+ "epoch": 1.5886175182245785,
3017
+ "grad_norm": 0.6361941695213318,
3018
+ "learning_rate": 2.120219411854335e-05,
3019
+ "loss": 0.6683,
3020
+ "step": 10750
3021
+ },
3022
+ {
3023
+ "epoch": 1.5923120795993249,
3024
+ "grad_norm": 0.7954297065734863,
3025
+ "learning_rate": 2.1011732439433187e-05,
3026
+ "loss": 0.6389,
3027
+ "step": 10775
3028
+ },
3029
+ {
3030
+ "epoch": 1.5960066409740712,
3031
+ "grad_norm": 0.6926315426826477,
3032
+ "learning_rate": 2.0821270760323026e-05,
3033
+ "loss": 0.6377,
3034
+ "step": 10800
3035
+ },
3036
+ {
3037
+ "epoch": 1.5997012023488173,
3038
+ "grad_norm": 0.7757145762443542,
3039
+ "learning_rate": 2.063080908121286e-05,
3040
+ "loss": 0.6499,
3041
+ "step": 10825
3042
+ },
3043
+ {
3044
+ "epoch": 1.6033957637235636,
3045
+ "grad_norm": 0.6862484812736511,
3046
+ "learning_rate": 2.0440347402102698e-05,
3047
+ "loss": 0.6465,
3048
+ "step": 10850
3049
+ },
3050
+ {
3051
+ "epoch": 1.60709032509831,
3052
+ "grad_norm": 0.7413581013679504,
3053
+ "learning_rate": 2.0249885722992534e-05,
3054
+ "loss": 0.628,
3055
+ "step": 10875
3056
+ },
3057
+ {
3058
+ "epoch": 1.6107848864730563,
3059
+ "grad_norm": 0.7850485444068909,
3060
+ "learning_rate": 2.005942404388237e-05,
3061
+ "loss": 0.6648,
3062
+ "step": 10900
3063
+ },
3064
+ {
3065
+ "epoch": 1.6144794478478026,
3066
+ "grad_norm": 0.6554867029190063,
3067
+ "learning_rate": 1.986896236477221e-05,
3068
+ "loss": 0.6386,
3069
+ "step": 10925
3070
+ },
3071
+ {
3072
+ "epoch": 1.6181740092225487,
3073
+ "grad_norm": 0.6911448836326599,
3074
+ "learning_rate": 1.9678500685662046e-05,
3075
+ "loss": 0.6474,
3076
+ "step": 10950
3077
+ },
3078
+ {
3079
+ "epoch": 1.6218685705972953,
3080
+ "grad_norm": 0.838879406452179,
3081
+ "learning_rate": 1.9488039006551885e-05,
3082
+ "loss": 0.6406,
3083
+ "step": 10975
3084
+ },
3085
+ {
3086
+ "epoch": 1.6255631319720414,
3087
+ "grad_norm": 0.678164005279541,
3088
+ "learning_rate": 1.929757732744172e-05,
3089
+ "loss": 0.6462,
3090
+ "step": 11000
3091
+ },
3092
+ {
3093
+ "epoch": 1.6292576933467877,
3094
+ "grad_norm": 0.631232500076294,
3095
+ "learning_rate": 1.9107115648331557e-05,
3096
+ "loss": 0.6585,
3097
+ "step": 11025
3098
+ },
3099
+ {
3100
+ "epoch": 1.632952254721534,
3101
+ "grad_norm": 1.6280548572540283,
3102
+ "learning_rate": 1.8916653969221393e-05,
3103
+ "loss": 0.6653,
3104
+ "step": 11050
3105
+ },
3106
+ {
3107
+ "epoch": 1.6366468160962802,
3108
+ "grad_norm": 0.8536248207092285,
3109
+ "learning_rate": 1.872619229011123e-05,
3110
+ "loss": 0.6638,
3111
+ "step": 11075
3112
+ },
3113
+ {
3114
+ "epoch": 1.6403413774710267,
3115
+ "grad_norm": 0.7218347191810608,
3116
+ "learning_rate": 1.853573061100107e-05,
3117
+ "loss": 0.6563,
3118
+ "step": 11100
3119
+ },
3120
+ {
3121
+ "epoch": 1.6440359388457728,
3122
+ "grad_norm": 0.8350931406021118,
3123
+ "learning_rate": 1.8345268931890905e-05,
3124
+ "loss": 0.6678,
3125
+ "step": 11125
3126
+ },
3127
+ {
3128
+ "epoch": 1.6477305002205191,
3129
+ "grad_norm": 1.3850131034851074,
3130
+ "learning_rate": 1.815480725278074e-05,
3131
+ "loss": 0.6555,
3132
+ "step": 11150
3133
+ },
3134
+ {
3135
+ "epoch": 1.6514250615952655,
3136
+ "grad_norm": 0.7521851658821106,
3137
+ "learning_rate": 1.796434557367058e-05,
3138
+ "loss": 0.6323,
3139
+ "step": 11175
3140
+ },
3141
+ {
3142
+ "epoch": 1.6551196229700116,
3143
+ "grad_norm": 0.702224612236023,
3144
+ "learning_rate": 1.7773883894560413e-05,
3145
+ "loss": 0.6556,
3146
+ "step": 11200
3147
+ },
3148
+ {
3149
+ "epoch": 1.6588141843447581,
3150
+ "grad_norm": 0.7224965691566467,
3151
+ "learning_rate": 1.7583422215450252e-05,
3152
+ "loss": 0.6762,
3153
+ "step": 11225
3154
+ },
3155
+ {
3156
+ "epoch": 1.6625087457195042,
3157
+ "grad_norm": 0.7941840291023254,
3158
+ "learning_rate": 1.7392960536340088e-05,
3159
+ "loss": 0.6327,
3160
+ "step": 11250
3161
+ },
3162
+ {
3163
+ "epoch": 1.6662033070942506,
3164
+ "grad_norm": 0.708652138710022,
3165
+ "learning_rate": 1.7202498857229928e-05,
3166
+ "loss": 0.6487,
3167
+ "step": 11275
3168
+ },
3169
+ {
3170
+ "epoch": 1.669897868468997,
3171
+ "grad_norm": 0.8155368566513062,
3172
+ "learning_rate": 1.7012037178119764e-05,
3173
+ "loss": 0.6683,
3174
+ "step": 11300
3175
+ },
3176
+ {
3177
+ "epoch": 1.673592429843743,
3178
+ "grad_norm": 0.670620858669281,
3179
+ "learning_rate": 1.68215754990096e-05,
3180
+ "loss": 0.6585,
3181
+ "step": 11325
3182
+ },
3183
+ {
3184
+ "epoch": 1.6772869912184896,
3185
+ "grad_norm": 0.8028390407562256,
3186
+ "learning_rate": 1.663111381989944e-05,
3187
+ "loss": 0.6455,
3188
+ "step": 11350
3189
+ },
3190
+ {
3191
+ "epoch": 1.6809815525932357,
3192
+ "grad_norm": 0.7525009512901306,
3193
+ "learning_rate": 1.644065214078927e-05,
3194
+ "loss": 0.6543,
3195
+ "step": 11375
3196
+ },
3197
+ {
3198
+ "epoch": 1.684676113967982,
3199
+ "grad_norm": 0.7528089284896851,
3200
+ "learning_rate": 1.625019046167911e-05,
3201
+ "loss": 0.6513,
3202
+ "step": 11400
3203
+ },
3204
+ {
3205
+ "epoch": 1.6883706753427283,
3206
+ "grad_norm": 0.7208414077758789,
3207
+ "learning_rate": 1.6059728782568947e-05,
3208
+ "loss": 0.6307,
3209
+ "step": 11425
3210
+ },
3211
+ {
3212
+ "epoch": 1.6920652367174744,
3213
+ "grad_norm": 0.7996485829353333,
3214
+ "learning_rate": 1.5869267103458783e-05,
3215
+ "loss": 0.6273,
3216
+ "step": 11450
3217
+ },
3218
+ {
3219
+ "epoch": 1.695759798092221,
3220
+ "grad_norm": 0.6856933832168579,
3221
+ "learning_rate": 1.5678805424348623e-05,
3222
+ "loss": 0.6662,
3223
+ "step": 11475
3224
+ },
3225
+ {
3226
+ "epoch": 1.699454359466967,
3227
+ "grad_norm": 0.7587810158729553,
3228
+ "learning_rate": 1.548834374523846e-05,
3229
+ "loss": 0.668,
3230
+ "step": 11500
3231
+ },
3232
+ {
3233
+ "epoch": 1.7031489208417134,
3234
+ "grad_norm": 0.7210506200790405,
3235
+ "learning_rate": 1.5297882066128298e-05,
3236
+ "loss": 0.6477,
3237
+ "step": 11525
3238
+ },
3239
+ {
3240
+ "epoch": 1.7068434822164598,
3241
+ "grad_norm": 0.6589523553848267,
3242
+ "learning_rate": 1.510742038701813e-05,
3243
+ "loss": 0.6611,
3244
+ "step": 11550
3245
+ },
3246
+ {
3247
+ "epoch": 1.7105380435912059,
3248
+ "grad_norm": 0.6659300923347473,
3249
+ "learning_rate": 1.4916958707907968e-05,
3250
+ "loss": 0.6529,
3251
+ "step": 11575
3252
+ },
3253
+ {
3254
+ "epoch": 1.7142326049659524,
3255
+ "grad_norm": 0.7367228269577026,
3256
+ "learning_rate": 1.4726497028797806e-05,
3257
+ "loss": 0.6601,
3258
+ "step": 11600
3259
+ },
3260
+ {
3261
+ "epoch": 1.7179271663406985,
3262
+ "grad_norm": 0.7335773706436157,
3263
+ "learning_rate": 1.4536035349687644e-05,
3264
+ "loss": 0.6413,
3265
+ "step": 11625
3266
+ },
3267
+ {
3268
+ "epoch": 1.7216217277154449,
3269
+ "grad_norm": 0.7640318274497986,
3270
+ "learning_rate": 1.434557367057748e-05,
3271
+ "loss": 0.6602,
3272
+ "step": 11650
3273
+ },
3274
+ {
3275
+ "epoch": 1.7253162890901912,
3276
+ "grad_norm": 0.6898975968360901,
3277
+ "learning_rate": 1.4155111991467318e-05,
3278
+ "loss": 0.6365,
3279
+ "step": 11675
3280
+ },
3281
+ {
3282
+ "epoch": 1.7290108504649373,
3283
+ "grad_norm": 0.7251124978065491,
3284
+ "learning_rate": 1.3964650312357155e-05,
3285
+ "loss": 0.6294,
3286
+ "step": 11700
3287
+ },
3288
+ {
3289
+ "epoch": 1.7327054118396839,
3290
+ "grad_norm": 0.6592761278152466,
3291
+ "learning_rate": 1.3774188633246993e-05,
3292
+ "loss": 0.6788,
3293
+ "step": 11725
3294
+ },
3295
+ {
3296
+ "epoch": 1.73639997321443,
3297
+ "grad_norm": 0.667373776435852,
3298
+ "learning_rate": 1.3583726954136827e-05,
3299
+ "loss": 0.6357,
3300
+ "step": 11750
3301
+ },
3302
+ {
3303
+ "epoch": 1.7400945345891763,
3304
+ "grad_norm": 0.6673570871353149,
3305
+ "learning_rate": 1.3393265275026665e-05,
3306
+ "loss": 0.655,
3307
+ "step": 11775
3308
+ },
3309
+ {
3310
+ "epoch": 1.7437890959639226,
3311
+ "grad_norm": 0.7344043254852295,
3312
+ "learning_rate": 1.3202803595916501e-05,
3313
+ "loss": 0.6527,
3314
+ "step": 11800
3315
+ },
3316
+ {
3317
+ "epoch": 1.747483657338669,
3318
+ "grad_norm": 0.7692918181419373,
3319
+ "learning_rate": 1.3012341916806339e-05,
3320
+ "loss": 0.6587,
3321
+ "step": 11825
3322
+ },
3323
+ {
3324
+ "epoch": 1.7511782187134153,
3325
+ "grad_norm": 0.7446296811103821,
3326
+ "learning_rate": 1.2821880237696177e-05,
3327
+ "loss": 0.6758,
3328
+ "step": 11850
3329
+ },
3330
+ {
3331
+ "epoch": 1.7548727800881614,
3332
+ "grad_norm": 0.712960422039032,
3333
+ "learning_rate": 1.2631418558586014e-05,
3334
+ "loss": 0.6436,
3335
+ "step": 11875
3336
+ },
3337
+ {
3338
+ "epoch": 1.7585673414629077,
3339
+ "grad_norm": 0.9338545799255371,
3340
+ "learning_rate": 1.244095687947585e-05,
3341
+ "loss": 0.684,
3342
+ "step": 11900
3343
+ },
3344
+ {
3345
+ "epoch": 1.762261902837654,
3346
+ "grad_norm": 0.844122588634491,
3347
+ "learning_rate": 1.2250495200365688e-05,
3348
+ "loss": 0.6728,
3349
+ "step": 11925
3350
+ },
3351
+ {
3352
+ "epoch": 1.7659564642124004,
3353
+ "grad_norm": 0.7671127915382385,
3354
+ "learning_rate": 1.2060033521255524e-05,
3355
+ "loss": 0.6519,
3356
+ "step": 11950
3357
+ },
3358
+ {
3359
+ "epoch": 1.7696510255871467,
3360
+ "grad_norm": 0.6529008150100708,
3361
+ "learning_rate": 1.186957184214536e-05,
3362
+ "loss": 0.646,
3363
+ "step": 11975
3364
+ },
3365
+ {
3366
+ "epoch": 1.7733455869618928,
3367
+ "grad_norm": 0.7962942123413086,
3368
+ "learning_rate": 1.1679110163035198e-05,
3369
+ "loss": 0.6378,
3370
+ "step": 12000
3371
+ }
3372
+ ],
3373
+ "logging_steps": 25,
3374
+ "max_steps": 13532,
3375
+ "num_input_tokens_seen": 0,
3376
+ "num_train_epochs": 2,
3377
+ "save_steps": 1000,
3378
+ "stateful_callbacks": {
3379
+ "TrainerControl": {
3380
+ "args": {
3381
+ "should_epoch_stop": false,
3382
+ "should_evaluate": false,
3383
+ "should_log": false,
3384
+ "should_save": true,
3385
+ "should_training_stop": false
3386
+ },
3387
+ "attributes": {}
3388
+ }
3389
+ },
3390
+ "total_flos": 4.800279870658046e+19,
3391
+ "train_batch_size": 1,
3392
+ "trial_name": null,
3393
+ "trial_params": null
3394
+ }
checkpoint-12000/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ddec6eef92f76dd21b66ba65fc3f8486e2d925551fb3a26f493b39225b02363f
3
+ size 5969
checkpoint-12000/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-13000/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: unsloth/Qwen3-8B-Base
3
+ library_name: peft
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.15.2
checkpoint-13000/adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "unsloth/Qwen3-8B-Base",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": [
22
+ "lm_head",
23
+ "embed_tokens"
24
+ ],
25
+ "peft_type": "LORA",
26
+ "r": 32,
27
+ "rank_pattern": {},
28
+ "revision": null,
29
+ "target_modules": [
30
+ "down_proj",
31
+ "gate_proj",
32
+ "k_proj",
33
+ "o_proj",
34
+ "q_proj",
35
+ "v_proj",
36
+ "up_proj"
37
+ ],
38
+ "task_type": "CAUSAL_LM",
39
+ "trainable_token_indices": null,
40
+ "use_dora": false,
41
+ "use_rslora": false
42
+ }
checkpoint-13000/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3a9abbfe49044532fb1112f8320ad852e1a0c9d560fc3291536dbe863d66459b
3
+ size 2838563408
checkpoint-13000/added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
checkpoint-13000/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
checkpoint-13000/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:210da07cb0972568522d38c59b1420a0e798fe143000ebdc456fbacda013d756
3
+ size 2706136909
checkpoint-13000/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de69a2834426ff9ef8199d077e00892579278af31d8969d77f98235b5cfc010a
3
+ size 14645