jzhang-x commited on
Commit
dbfc5c8
·
verified ·
1 Parent(s): b8d2252

Model save

Browse files
README.md CHANGED
@@ -1,5 +1,5 @@
1
  ---
2
- base_model: Qwen/Qwen2.5-Math-7B
3
  library_name: transformers
4
  model_name: Qwen-2.5-7B-Simple-RL
5
  tags:
@@ -11,7 +11,7 @@ licence: license
11
 
12
  # Model Card for Qwen-2.5-7B-Simple-RL
13
 
14
- This model is a fine-tuned version of [Qwen/Qwen2.5-Math-7B](https://huggingface.co/Qwen/Qwen2.5-Math-7B).
15
  It has been trained using [TRL](https://github.com/huggingface/trl).
16
 
17
  ## Quick start
@@ -27,7 +27,7 @@ print(output["generated_text"])
27
 
28
  ## Training procedure
29
 
30
- [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/jzhang-x-01/huggingface/runs/l1ih86fe)
31
 
32
 
33
  This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
 
1
  ---
2
+ base_model: Qwen/Qwen2.5-7B
3
  library_name: transformers
4
  model_name: Qwen-2.5-7B-Simple-RL
5
  tags:
 
11
 
12
  # Model Card for Qwen-2.5-7B-Simple-RL
13
 
14
+ This model is a fine-tuned version of [Qwen/Qwen2.5-7B](https://huggingface.co/Qwen/Qwen2.5-7B).
15
  It has been trained using [TRL](https://github.com/huggingface/trl).
16
 
17
  ## Quick start
 
27
 
28
  ## Training procedure
29
 
30
+ [<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="150" height="24"/>](https://wandb.ai/jzhang-x-01/huggingface/runs/38wymkvl)
31
 
32
 
33
  This model was trained with GRPO, a method introduced in [DeepSeekMath: Pushing the Limits of Mathematical Reasoning in Open Language Models](https://huggingface.co/papers/2402.03300).
all_results.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
  "total_flos": 0.0,
3
- "train_loss": 0.002154490305616204,
4
- "train_runtime": 8228.6792,
5
  "train_samples": 7500,
6
- "train_samples_per_second": 0.911,
7
  "train_steps_per_second": 0.007
8
  }
 
1
  {
2
  "total_flos": 0.0,
3
+ "train_loss": 0.0010652160639474098,
4
+ "train_runtime": 7821.2028,
5
  "train_samples": 7500,
6
+ "train_samples_per_second": 0.959,
7
  "train_steps_per_second": 0.007
8
  }
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "Qwen/Qwen2.5-Math-7B",
3
  "architectures": [
4
  "Qwen2ForCausalLM"
5
  ],
@@ -10,7 +10,7 @@
10
  "hidden_size": 3584,
11
  "initializer_range": 0.02,
12
  "intermediate_size": 18944,
13
- "max_position_embeddings": 4096,
14
  "max_window_layers": 28,
15
  "model_type": "qwen2",
16
  "num_attention_heads": 28,
@@ -18,8 +18,8 @@
18
  "num_key_value_heads": 4,
19
  "rms_norm_eps": 1e-06,
20
  "rope_scaling": null,
21
- "rope_theta": 10000,
22
- "sliding_window": 4096,
23
  "tie_word_embeddings": false,
24
  "torch_dtype": "bfloat16",
25
  "transformers_version": "4.49.0",
 
1
  {
2
+ "_name_or_path": "Qwen/Qwen2.5-7B",
3
  "architectures": [
4
  "Qwen2ForCausalLM"
5
  ],
 
10
  "hidden_size": 3584,
11
  "initializer_range": 0.02,
12
  "intermediate_size": 18944,
13
+ "max_position_embeddings": 131072,
14
  "max_window_layers": 28,
15
  "model_type": "qwen2",
16
  "num_attention_heads": 28,
 
18
  "num_key_value_heads": 4,
19
  "rms_norm_eps": 1e-06,
20
  "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": 131072,
23
  "tie_word_embeddings": false,
24
  "torch_dtype": "bfloat16",
25
  "transformers_version": "4.49.0",
model-00001-of-00004.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:da4320c5ba6d132b13e0697de200379e6696bb453e297dd29a845b6cf0a5ad11
3
  size 4877660776
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:971e4ddf8f15c63088fd84ae0519d21cefa81db02d1139bf166e145d3aa25c60
3
  size 4877660776
model-00002-of-00004.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:eb5180786ab5e7eb5c36cbfc486ba5d1a87942134f42b637939668da6e4b7b68
3
  size 4932751008
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80cd7a84698f060a90ab0265b51e4cf1a70c426458465b9eac5a921a40a7a8d7
3
  size 4932751008
model-00003-of-00004.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1c5df4aabc965da16054c18701d906c2afcfea880192d0a5ac4c9759ba58ae05
3
  size 4330865200
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e0a4d9f859f988abe01b85a737bbadad6b40346139099ffd99afc810b99388c1
3
  size 4330865200
model-00004-of-00004.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:aac5bbf08545411482d72b15e3233be68a3e299b0f204d9e15b514f68fa374df
3
  size 1089994880
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ad0dc1af500970bf866d1f09e280121d246b4c2e1cd22a99357bfaaa1ecd6c6
3
  size 1089994880
tokenizer_config.json CHANGED
@@ -195,7 +195,7 @@
195
  "<|video_pad|>"
196
  ],
197
  "bos_token": null,
198
- "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'Please reason step by step, and put your final answer within \\\\boxed{}.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nPlease reason step by step, and put your final answer within \\\\boxed{}.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
  "clean_up_tokenization_spaces": false,
200
  "eos_token": "<|endoftext|>",
201
  "errors": "replace",
 
195
  "<|video_pad|>"
196
  ],
197
  "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
  "clean_up_tokenization_spaces": false,
200
  "eos_token": "<|endoftext|>",
201
  "errors": "replace",
train_results.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
  "total_flos": 0.0,
3
- "train_loss": 0.002154490305616204,
4
- "train_runtime": 8228.6792,
5
  "train_samples": 7500,
6
- "train_samples_per_second": 0.911,
7
  "train_steps_per_second": 0.007
8
  }
 
1
  {
2
  "total_flos": 0.0,
3
+ "train_loss": 0.0010652160639474098,
4
+ "train_runtime": 7821.2028,
5
  "train_samples": 7500,
6
+ "train_samples_per_second": 0.959,
7
  "train_steps_per_second": 0.007
8
  }
trainer_state.json CHANGED
@@ -9,174 +9,174 @@
9
  "is_world_process_zero": true,
10
  "log_history": [
11
  {
12
- "completion_length": 606.5457763671875,
13
  "epoch": 0.017057569296375266,
14
- "grad_norm": 5.351304250136567,
15
  "kl": 0.0,
16
  "learning_rate": 5e-07,
17
  "loss": 0.0,
18
- "reward": 0.6216518133878708,
19
- "reward_std": 0.3478058036416769,
20
- "rewards/accuracy_reward": 0.6216518133878708,
21
  "rewards/format_reward": 0.0,
22
  "step": 1
23
  },
24
  {
25
- "completion_length": 607.6144218444824,
26
  "epoch": 0.08528784648187633,
27
- "grad_norm": 11.35565102634353,
28
- "kl": 0.00033593177795410156,
29
  "learning_rate": 2.5e-06,
30
  "loss": 0.0,
31
- "reward": 0.6026785979047418,
32
- "reward_std": 0.3518537702038884,
33
- "rewards/accuracy_reward": 0.6026785979047418,
34
- "rewards/format_reward": 0.0,
35
  "step": 5
36
  },
37
  {
38
- "completion_length": 622.7357368469238,
39
  "epoch": 0.17057569296375266,
40
- "grad_norm": 1.9080536354821958,
41
- "kl": 0.004211950302124024,
42
  "learning_rate": 2.956412726139078e-06,
43
- "loss": 0.0002,
44
- "reward": 0.6660714566707611,
45
- "reward_std": 0.31057145930826663,
46
- "rewards/accuracy_reward": 0.6660714566707611,
47
- "rewards/format_reward": 0.0,
48
  "step": 10
49
  },
50
  {
51
- "completion_length": 631.8491333007812,
52
  "epoch": 0.255863539445629,
53
- "grad_norm": 0.20168403792141756,
54
- "kl": 0.007109832763671875,
55
  "learning_rate": 2.7836719084521715e-06,
56
- "loss": 0.0003,
57
- "reward": 0.7424107462167739,
58
- "reward_std": 0.2543599892407656,
59
- "rewards/accuracy_reward": 0.7424107462167739,
60
  "rewards/format_reward": 0.0,
61
  "step": 15
62
  },
63
  {
64
- "completion_length": 622.2803810119628,
65
  "epoch": 0.3411513859275053,
66
- "grad_norm": 0.495428185088676,
67
- "kl": 0.02277984619140625,
68
  "learning_rate": 2.4946839873611927e-06,
69
- "loss": 0.0009,
70
- "reward": 0.7529018178582192,
71
- "reward_std": 0.23195756375789642,
72
- "rewards/accuracy_reward": 0.7529018178582192,
73
- "rewards/format_reward": 0.0,
74
  "step": 20
75
  },
76
  {
77
- "completion_length": 629.6663253784179,
78
  "epoch": 0.42643923240938164,
79
- "grad_norm": 0.2077076072198444,
80
- "kl": 0.0070018768310546875,
81
  "learning_rate": 2.1156192081791355e-06,
82
- "loss": 0.0003,
83
- "reward": 0.7497768178582191,
84
- "reward_std": 0.22464404683560132,
85
- "rewards/accuracy_reward": 0.7497768178582191,
86
- "rewards/format_reward": 0.0,
87
  "step": 25
88
  },
89
  {
90
- "completion_length": 628.7462333679199,
91
  "epoch": 0.511727078891258,
92
- "grad_norm": 223.6982144990451,
93
- "kl": 0.3876213073730469,
94
  "learning_rate": 1.6808050203829845e-06,
95
- "loss": 0.0155,
96
- "reward": 0.7379464656114578,
97
- "reward_std": 0.21265463214367628,
98
- "rewards/accuracy_reward": 0.7379464656114578,
99
- "rewards/format_reward": 0.0,
100
  "step": 30
101
  },
102
  {
103
- "completion_length": 614.8966758728027,
104
  "epoch": 0.5970149253731343,
105
- "grad_norm": 2.3665634575263748,
106
- "kl": 0.005752182006835938,
107
  "learning_rate": 1.2296174432791415e-06,
108
- "loss": 0.0002,
109
- "reward": 0.7314732424914837,
110
- "reward_std": 0.19922155924141408,
111
- "rewards/accuracy_reward": 0.7314732424914837,
112
- "rewards/format_reward": 0.0,
113
  "step": 35
114
  },
115
  {
116
- "completion_length": 603.5955581665039,
117
  "epoch": 0.6823027718550106,
118
- "grad_norm": 0.41861750967507205,
119
- "kl": 0.007678604125976563,
120
  "learning_rate": 8.029152419343472e-07,
121
- "loss": 0.0003,
122
- "reward": 0.7553571775555611,
123
- "reward_std": 0.20080968737602234,
124
- "rewards/accuracy_reward": 0.7553571775555611,
125
- "rewards/format_reward": 0.0,
126
  "step": 40
127
  },
128
  {
129
- "completion_length": 619.6895401000977,
130
  "epoch": 0.767590618336887,
131
- "grad_norm": 0.5526088012366769,
132
- "kl": 0.007487106323242188,
133
  "learning_rate": 4.3933982822017883e-07,
134
- "loss": 0.0003,
135
- "reward": 0.725000037252903,
136
- "reward_std": 0.23073445297777653,
137
- "rewards/accuracy_reward": 0.725000037252903,
138
- "rewards/format_reward": 0.0,
139
  "step": 45
140
  },
141
  {
142
- "completion_length": 613.0727882385254,
143
  "epoch": 0.8528784648187633,
144
- "grad_norm": 1.1048247702884233,
145
- "kl": 0.00660247802734375,
146
  "learning_rate": 1.718159615201853e-07,
147
- "loss": 0.0003,
148
- "reward": 0.7332589656114579,
149
- "reward_std": 0.19824975840747355,
150
- "rewards/accuracy_reward": 0.7332589656114579,
151
- "rewards/format_reward": 0.0,
152
  "step": 50
153
  },
154
  {
155
- "completion_length": 608.9152099609375,
156
  "epoch": 0.9381663113006397,
157
- "grad_norm": 0.688326952525324,
158
- "kl": 0.006847000122070313,
159
  "learning_rate": 2.4570139579284723e-08,
160
- "loss": 0.0003,
161
- "reward": 0.7656250342726707,
162
- "reward_std": 0.21631054822355508,
163
- "rewards/accuracy_reward": 0.7656250342726707,
164
- "rewards/format_reward": 0.0,
165
  "step": 55
166
  },
167
  {
168
- "completion_length": 603.1421381632487,
169
  "epoch": 0.9893390191897654,
170
- "kl": 0.0070037841796875,
171
- "reward": 0.751860149204731,
172
- "reward_std": 0.20624662407984337,
173
- "rewards/accuracy_reward": 0.751860149204731,
174
- "rewards/format_reward": 0.0,
175
  "step": 58,
176
  "total_flos": 0.0,
177
- "train_loss": 0.002154490305616204,
178
- "train_runtime": 8228.6792,
179
- "train_samples_per_second": 0.911,
180
  "train_steps_per_second": 0.007
181
  }
182
  ],
 
9
  "is_world_process_zero": true,
10
  "log_history": [
11
  {
12
+ "completion_length": 473.94757080078125,
13
  "epoch": 0.017057569296375266,
14
+ "grad_norm": 4.064376038455483,
15
  "kl": 0.0,
16
  "learning_rate": 5e-07,
17
  "loss": 0.0,
18
+ "reward": 0.1729910783469677,
19
+ "reward_std": 0.27430381812155247,
20
+ "rewards/accuracy_reward": 0.1729910783469677,
21
  "rewards/format_reward": 0.0,
22
  "step": 1
23
  },
24
  {
25
+ "completion_length": 485.79745292663574,
26
  "epoch": 0.08528784648187633,
27
+ "grad_norm": 1.1351739582457168,
28
+ "kl": 0.0002506077289581299,
29
  "learning_rate": 2.5e-06,
30
  "loss": 0.0,
31
+ "reward": 0.13504464970901608,
32
+ "reward_std": 0.21868262230418622,
33
+ "rewards/accuracy_reward": 0.1347656319849193,
34
+ "rewards/format_reward": 0.00027901786961592734,
35
  "step": 5
36
  },
37
  {
38
+ "completion_length": 568.8616348266602,
39
  "epoch": 0.17057569296375266,
40
+ "grad_norm": 0.5575129470407404,
41
+ "kl": 0.015078353881835937,
42
  "learning_rate": 2.956412726139078e-06,
43
+ "loss": 0.0006,
44
+ "reward": 0.3587053745985031,
45
+ "reward_std": 0.3362843289971352,
46
+ "rewards/accuracy_reward": 0.35848215967416763,
47
+ "rewards/format_reward": 0.00022321429569274187,
48
  "step": 10
49
  },
50
  {
51
+ "completion_length": 584.8319480895996,
52
  "epoch": 0.255863539445629,
53
+ "grad_norm": 0.2277859906277476,
54
+ "kl": 0.02491455078125,
55
  "learning_rate": 2.7836719084521715e-06,
56
+ "loss": 0.001,
57
+ "reward": 0.638169676065445,
58
+ "reward_std": 0.24866362921893598,
59
+ "rewards/accuracy_reward": 0.638169676065445,
60
  "rewards/format_reward": 0.0,
61
  "step": 15
62
  },
63
  {
64
+ "completion_length": 535.3618560791016,
65
  "epoch": 0.3411513859275053,
66
+ "grad_norm": 0.23887369640814476,
67
+ "kl": 0.0245208740234375,
68
  "learning_rate": 2.4946839873611927e-06,
69
+ "loss": 0.001,
70
+ "reward": 0.6774553880095482,
71
+ "reward_std": 0.2348104739561677,
72
+ "rewards/accuracy_reward": 0.6767857447266579,
73
+ "rewards/format_reward": 0.0006696428870782256,
74
  "step": 20
75
  },
76
  {
77
+ "completion_length": 542.0183288574219,
78
  "epoch": 0.42643923240938164,
79
+ "grad_norm": 0.3014825446189458,
80
+ "kl": 0.02587432861328125,
81
  "learning_rate": 2.1156192081791355e-06,
82
+ "loss": 0.001,
83
+ "reward": 0.6584821730852127,
84
+ "reward_std": 0.22855298295617105,
85
+ "rewards/accuracy_reward": 0.657589316368103,
86
+ "rewards/format_reward": 0.0008928571827709675,
87
  "step": 25
88
  },
89
  {
90
+ "completion_length": 536.8770370483398,
91
  "epoch": 0.511727078891258,
92
+ "grad_norm": 0.21529686209177487,
93
+ "kl": 0.0219482421875,
94
  "learning_rate": 1.6808050203829845e-06,
95
+ "loss": 0.0009,
96
+ "reward": 0.6495536014437675,
97
+ "reward_std": 0.2183901211246848,
98
+ "rewards/accuracy_reward": 0.6488839566707612,
99
+ "rewards/format_reward": 0.0006696428870782256,
100
  "step": 30
101
  },
102
  {
103
+ "completion_length": 528.6895355224609,
104
  "epoch": 0.5970149253731343,
105
+ "grad_norm": 0.16077481890595569,
106
+ "kl": 0.0267181396484375,
107
  "learning_rate": 1.2296174432791415e-06,
108
+ "loss": 0.0011,
109
+ "reward": 0.6448661029338837,
110
+ "reward_std": 0.2145981529727578,
111
+ "rewards/accuracy_reward": 0.6441964589059352,
112
+ "rewards/format_reward": 0.0006696428870782256,
113
  "step": 35
114
  },
115
  {
116
+ "completion_length": 514.0154296875,
117
  "epoch": 0.6823027718550106,
118
+ "grad_norm": 0.8368130250058291,
119
+ "kl": 0.02160186767578125,
120
  "learning_rate": 8.029152419343472e-07,
121
+ "loss": 0.0009,
122
+ "reward": 0.6649553939700127,
123
+ "reward_std": 0.20347560551017524,
124
+ "rewards/accuracy_reward": 0.6647321790456772,
125
+ "rewards/format_reward": 0.00022321429569274187,
126
  "step": 40
127
  },
128
  {
129
+ "completion_length": 528.3629722595215,
130
  "epoch": 0.767590618336887,
131
+ "grad_norm": 0.3144943865256562,
132
+ "kl": 0.0201324462890625,
133
  "learning_rate": 4.3933982822017883e-07,
134
+ "loss": 0.0008,
135
+ "reward": 0.6553571708500385,
136
+ "reward_std": 0.21330095445737243,
137
+ "rewards/accuracy_reward": 0.6542410992085934,
138
+ "rewards/format_reward": 0.0011160714784637094,
139
  "step": 45
140
  },
141
  {
142
+ "completion_length": 526.5335037231446,
143
  "epoch": 0.8528784648187633,
144
+ "grad_norm": 2.72821016556171,
145
+ "kl": 0.027325439453125,
146
  "learning_rate": 1.718159615201853e-07,
147
+ "loss": 0.0011,
148
+ "reward": 0.6439732402563095,
149
+ "reward_std": 0.22680639270693065,
150
+ "rewards/accuracy_reward": 0.6437500268220901,
151
+ "rewards/format_reward": 0.00022321429569274187,
152
  "step": 50
153
  },
154
  {
155
+ "completion_length": 523.5705612182617,
156
  "epoch": 0.9381663113006397,
157
+ "grad_norm": 0.41062600235384844,
158
+ "kl": 0.0195343017578125,
159
  "learning_rate": 2.4570139579284723e-08,
160
+ "loss": 0.0008,
161
+ "reward": 0.6685268178582191,
162
+ "reward_std": 0.23179882913827896,
163
+ "rewards/accuracy_reward": 0.6676339596509934,
164
+ "rewards/format_reward": 0.0008928571827709675,
165
  "step": 55
166
  },
167
  {
168
+ "completion_length": 517.845261891683,
169
  "epoch": 0.9893390191897654,
170
+ "kl": 0.021814982096354168,
171
+ "reward": 0.6592262188593546,
172
+ "reward_std": 0.20016193420936665,
173
+ "rewards/accuracy_reward": 0.6588541939854622,
174
+ "rewards/format_reward": 0.0003720238261545698,
175
  "step": 58,
176
  "total_flos": 0.0,
177
+ "train_loss": 0.0010652160639474098,
178
+ "train_runtime": 7821.2028,
179
+ "train_samples_per_second": 0.959,
180
  "train_steps_per_second": 0.007
181
  }
182
  ],
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:095c9ce79540846bb0717018dbf2b9b1f9126d535c416a479f2bd2e2f09039f3
3
  size 7928
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e9c97f93968e70f80d79d3367db73181a5a13edc4aad2638a46a6504eb5664cf
3
  size 7928