--- license: apache-2.0 base_model: google/bert_uncased_L-2_H-128_A-2 tags: - generated_from_trainer datasets: - glue model-index: - name: tiny-bert-sst2-distilled_original results: [] --- # tiny-bert-sst2-distilled_original This model is a fine-tuned version of [google/bert_uncased_L-2_H-128_A-2](https://huggingface.co/google/bert_uncased_L-2_H-128_A-2) on the glue dataset. It achieves the following results on the evaluation set: - eval_loss: 1.8486 - eval_accuracy: 0.7936 - eval_runtime: 2.677 - eval_samples_per_second: 325.739 - eval_steps_per_second: 2.615 - epoch: 1.0 - step: 527 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00023791117612513647 - train_batch_size: 128 - eval_batch_size: 128 - seed: 33 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0