upd org name
Browse files
README.md
CHANGED
@@ -10,7 +10,7 @@ tags:
|
|
10 |
- thinking
|
11 |
base_model: Qwen/Qwen3-4B-Thinking-2507
|
12 |
datasets:
|
13 |
-
-
|
14 |
language:
|
15 |
- en
|
16 |
- code
|
@@ -50,7 +50,7 @@ On the [DABStep benchmark](https://huggingface.co/spaces/adyen/DABstep) for data
|
|
50 |
## Model Sources
|
51 |
|
52 |
- **Repository:** [jupyter-agent](https://github.com/huggingface/jupyter-agent)
|
53 |
-
- **Dataset:** [jupyter-agent-dataset](https://huggingface.co/datasets/
|
54 |
- **Blog post:** [Jupyter Agents: training LLMs to reason with notebooks](https://huggingface.co/blog/jupyter-agent-2)
|
55 |
- **Demo:** [Jupyter Agent 2](https://huggingface.co/spaces/lvwerra/jupyter-agent-2)
|
56 |
|
@@ -61,7 +61,7 @@ On the [DABStep benchmark](https://huggingface.co/spaces/adyen/DABstep) for data
|
|
61 |
```python
|
62 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
63 |
|
64 |
-
model_name = "
|
65 |
|
66 |
# Load model and tokenizer
|
67 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
@@ -166,7 +166,7 @@ messages = [
|
|
166 |
|
167 |
### Training Data
|
168 |
|
169 |
-
The model was fine-tuned on the [Jupyter Agent Dataset](https://huggingface.co/datasets/
|
170 |
|
171 |
- **51,389 synthetic notebooks** (~0.2B tokens, total 1B tokens)
|
172 |
- **Dataset-grounded QA pairs** from real Kaggle notebooks
|
@@ -247,14 +247,14 @@ We can also see, that the hard score can increase too even though our dataset is
|
|
247 |
author={Baptiste Colle and Hanna Yukhymenko and Leandro von Werra},
|
248 |
year={2025},
|
249 |
publisher={Hugging Face},
|
250 |
-
url={https://huggingface.co/
|
251 |
}
|
252 |
```
|
253 |
|
254 |
## Related Work
|
255 |
|
256 |
-
- **Dataset:** [jupyter-agent-dataset](https://huggingface.co/datasets/
|
257 |
-
- **Non-thinking version:** [jupyter-agent-qwen3-4b-instruct](https://huggingface.co/
|
258 |
- **Base model:** [Qwen3-4B-Thinking-2507](https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507)
|
259 |
- **Benchmark:** [DABStep](https://huggingface.co/spaces/adyen/DABstep)
|
260 |
|
|
|
10 |
- thinking
|
11 |
base_model: Qwen/Qwen3-4B-Thinking-2507
|
12 |
datasets:
|
13 |
+
- jupyter-agent/jupyter-agent-dataset
|
14 |
language:
|
15 |
- en
|
16 |
- code
|
|
|
50 |
## Model Sources
|
51 |
|
52 |
- **Repository:** [jupyter-agent](https://github.com/huggingface/jupyter-agent)
|
53 |
+
- **Dataset:** [jupyter-agent-dataset](https://huggingface.co/datasets/jupyter-agent/jupyter-agent-dataset)
|
54 |
- **Blog post:** [Jupyter Agents: training LLMs to reason with notebooks](https://huggingface.co/blog/jupyter-agent-2)
|
55 |
- **Demo:** [Jupyter Agent 2](https://huggingface.co/spaces/lvwerra/jupyter-agent-2)
|
56 |
|
|
|
61 |
```python
|
62 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
63 |
|
64 |
+
model_name = "jupyter-agent/jupyter-agent-qwen3-4b-thinking"
|
65 |
|
66 |
# Load model and tokenizer
|
67 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
166 |
|
167 |
### Training Data
|
168 |
|
169 |
+
The model was fine-tuned on the [Jupyter Agent Dataset](https://huggingface.co/datasets/jupyter-agent/jupyter-agent-dataset), which contains:
|
170 |
|
171 |
- **51,389 synthetic notebooks** (~0.2B tokens, total 1B tokens)
|
172 |
- **Dataset-grounded QA pairs** from real Kaggle notebooks
|
|
|
247 |
author={Baptiste Colle and Hanna Yukhymenko and Leandro von Werra},
|
248 |
year={2025},
|
249 |
publisher={Hugging Face},
|
250 |
+
url={https://huggingface.co/jupyter-agent/jupyter-agent-qwen3-4b-thinking}
|
251 |
}
|
252 |
```
|
253 |
|
254 |
## Related Work
|
255 |
|
256 |
+
- **Dataset:** [jupyter-agent-dataset](https://huggingface.co/datasets/jupyter-agent/jupyter-agent-dataset)
|
257 |
+
- **Non-thinking version:** [jupyter-agent-qwen3-4b-instruct](https://huggingface.co/jupyter-agent/jupyter-agent-qwen3-4b-instruct)
|
258 |
- **Base model:** [Qwen3-4B-Thinking-2507](https://huggingface.co/Qwen/Qwen3-4B-Thinking-2507)
|
259 |
- **Benchmark:** [DABStep](https://huggingface.co/spaces/adyen/DABstep)
|
260 |
|