# Simple Inference Example from transformers import AutoTokenizer, AutoModelForSequenceClassification import torch import re # Load model tokenizer = AutoTokenizer.from_pretrained("junaid1993/distilroberta-bot-detection") model = AutoModelForSequenceClassification.from_pretrained("junaid1993/distilroberta-bot-detection") def preprocess_text(text): if not isinstance(text, str): return "" text = re.sub(r'http\S+|www\.\S+', '', text) text = re.sub(r'[@#]', '', text) text = re.sub(r'[^\w\s]', '', text) text = re.sub(r'\d+', '', text) text = re.sub(r'\s+', ' ', text).strip() return text.lower() def predict_bot(text): clean_text = preprocess_text(text) inputs = tokenizer(clean_text, return_tensors="pt", truncation=True, max_length=512) with torch.no_grad(): outputs = model(**inputs) probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) bot_prob = probabilities[0][1].item() prediction = "Bot" if bot_prob > 0.5 else "Human" return {"prediction": prediction, "bot_probability": bot_prob} # Example usage examples = [ "🔥 AMAZING DEAL! Get 90% OFF now!", "Just finished reading a great book about AI." ] for text in examples: result = predict_bot(text) print(f"Text: {text}") print(f"Prediction: {result['prediction']} ({result['bot_probability']:.3f})") print("-" * 50)