Upload bot detection model - 2025-08-23 15:59
Browse files- README.md +205 -0
- config.json +27 -0
- inference_example.py +43 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- special_tokens_map.json +15 -0
- tokenizer.json +0 -0
- tokenizer_config.json +58 -0
- training_args.bin +3 -0
- training_info.json +75 -0
- vocab.json +0 -0
README.md
ADDED
|
@@ -0,0 +1,205 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
license: mit
|
| 4 |
+
tags:
|
| 5 |
+
- text-classification
|
| 6 |
+
- bot-detection
|
| 7 |
+
- social-media
|
| 8 |
+
- distilroberta
|
| 9 |
+
- pytorch
|
| 10 |
+
- transformers
|
| 11 |
+
datasets:
|
| 12 |
+
- custom
|
| 13 |
+
widget:
|
| 14 |
+
- text: "🔥 AMAZING DEAL! Get 90% OFF now! Limited time only! Click here: bit.ly/deal123"
|
| 15 |
+
example_title: "Promotional Bot Text"
|
| 16 |
+
- text: "Just finished reading an interesting article about machine learning applications in healthcare."
|
| 17 |
+
example_title: "Human-like Text"
|
| 18 |
+
- text: "Follow for follow? Like my posts and I'll like yours back! 💯"
|
| 19 |
+
example_title: "Social Media Bot"
|
| 20 |
+
- text: "Had a wonderful dinner with my family tonight. These moments are precious."
|
| 21 |
+
example_title: "Authentic Human Text"
|
| 22 |
+
metrics:
|
| 23 |
+
- accuracy
|
| 24 |
+
- f1
|
| 25 |
+
- precision
|
| 26 |
+
- recall
|
| 27 |
+
model-index:
|
| 28 |
+
- name: distilroberta-bot-detection
|
| 29 |
+
results:
|
| 30 |
+
- task:
|
| 31 |
+
type: text-classification
|
| 32 |
+
name: Bot Detection
|
| 33 |
+
metrics:
|
| 34 |
+
- type: accuracy
|
| 35 |
+
value: 0.9423
|
| 36 |
+
name: Test Accuracy
|
| 37 |
+
- type: f1
|
| 38 |
+
value: 0.9424
|
| 39 |
+
name: Test F1-Score (Weighted)
|
| 40 |
+
- type: precision
|
| 41 |
+
value: 0.9428
|
| 42 |
+
name: Test Precision (Weighted)
|
| 43 |
+
- type: recall
|
| 44 |
+
value: 0.9423
|
| 45 |
+
name: Test Recall (Weighted)
|
| 46 |
+
---
|
| 47 |
+
|
| 48 |
+
# Bot Detection Model - DistilRoBERTa
|
| 49 |
+
|
| 50 |
+
## Model Description
|
| 51 |
+
|
| 52 |
+
This model is a fine-tuned DistilRoBERTa-base model for binary classification of social media text to distinguish between human-authored and bot-generated content. The model uses class-weighted training to handle dataset imbalance and has been validated using 5-fold cross-validation.
|
| 53 |
+
|
| 54 |
+
## Performance
|
| 55 |
+
|
| 56 |
+
### Cross-Validation Results (5-Fold)
|
| 57 |
+
| Metric | Mean ± Std | Range |
|
| 58 |
+
|--------|------------|-------|
|
| 59 |
+
| **Accuracy** | 0.9433 ± 0.0052 | 0.9385 - 0.9497 |
|
| 60 |
+
| **F1-Score (Weighted)** | 0.9434 ± 0.0051 | 0.9387 - 0.9497 |
|
| 61 |
+
| **Precision (Weighted)** | 0.9444 ± 0.0045 | 0.9397 - 0.9498 |
|
| 62 |
+
|
| 63 |
+
### Test Set Performance
|
| 64 |
+
- **Accuracy**: 0.9423
|
| 65 |
+
- **F1-Score (Weighted)**: 0.9424
|
| 66 |
+
- **Precision (Weighted)**: 0.9428
|
| 67 |
+
- **Recall (Weighted)**: 0.9423
|
| 68 |
+
- **Inference Speed**: 232.83 samples/second
|
| 69 |
+
|
| 70 |
+
## Usage
|
| 71 |
+
|
| 72 |
+
### Quick Start
|
| 73 |
+
```python
|
| 74 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 75 |
+
import torch
|
| 76 |
+
import re
|
| 77 |
+
|
| 78 |
+
# Load model and tokenizer
|
| 79 |
+
model_name = "junaid1993/distilroberta-bot-detection"
|
| 80 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 81 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 82 |
+
|
| 83 |
+
def preprocess_text(text):
|
| 84 |
+
"""Clean text for bot detection"""
|
| 85 |
+
if not isinstance(text, str):
|
| 86 |
+
return ""
|
| 87 |
+
|
| 88 |
+
# Remove URLs
|
| 89 |
+
text = re.sub(r'http\S+|www\.\S+', '', text)
|
| 90 |
+
# Remove @ and # symbols
|
| 91 |
+
text = re.sub(r'[@#]', '', text)
|
| 92 |
+
# Remove punctuation and special characters
|
| 93 |
+
text = re.sub(r'[^\w\s]', '', text)
|
| 94 |
+
# Remove numbers
|
| 95 |
+
text = re.sub(r'\d+', '', text)
|
| 96 |
+
# Clean whitespace
|
| 97 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
| 98 |
+
|
| 99 |
+
return text.lower()
|
| 100 |
+
|
| 101 |
+
def predict_bot(text, threshold=0.5):
|
| 102 |
+
"""Predict if text is bot-generated"""
|
| 103 |
+
clean_text = preprocess_text(text)
|
| 104 |
+
|
| 105 |
+
if not clean_text:
|
| 106 |
+
return {"prediction": "unknown", "confidence": 0.5}
|
| 107 |
+
|
| 108 |
+
inputs = tokenizer(
|
| 109 |
+
clean_text,
|
| 110 |
+
return_tensors="pt",
|
| 111 |
+
truncation=True,
|
| 112 |
+
padding=True,
|
| 113 |
+
max_length=512
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
with torch.no_grad():
|
| 117 |
+
outputs = model(**inputs)
|
| 118 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 119 |
+
|
| 120 |
+
bot_prob = probabilities[0][1].item()
|
| 121 |
+
prediction = "bot" if bot_prob > threshold else "human"
|
| 122 |
+
|
| 123 |
+
return {
|
| 124 |
+
"prediction": prediction,
|
| 125 |
+
"bot_probability": round(bot_prob, 4),
|
| 126 |
+
"human_probability": round(probabilities[0][0].item(), 4)
|
| 127 |
+
}
|
| 128 |
+
|
| 129 |
+
# Example usage
|
| 130 |
+
text = "🔥 AMAZING DEAL! Click here now!"
|
| 131 |
+
result = predict_bot(text)
|
| 132 |
+
print(f"Prediction: {result['prediction']} (Bot: {result['bot_probability']})")
|
| 133 |
+
```
|
| 134 |
+
|
| 135 |
+
## Training Details
|
| 136 |
+
|
| 137 |
+
### Model Architecture
|
| 138 |
+
- **Base Model**: distilroberta-base
|
| 139 |
+
- **Task**: Binary sequence classification
|
| 140 |
+
- **Classes**: Human (0) vs Bot (1)
|
| 141 |
+
- **Parameters**: ~82M parameters
|
| 142 |
+
|
| 143 |
+
### Training Configuration
|
| 144 |
+
- **Epochs**: 10 (with early stopping)
|
| 145 |
+
- **Batch Size**: 2 per device, gradient accumulation steps: 8
|
| 146 |
+
- **Learning Rate**: Automatic (AdamW optimizer)
|
| 147 |
+
- **Weight Decay**: 0.01
|
| 148 |
+
- **Mixed Precision**: FP16
|
| 149 |
+
- **Class Weighting**: Applied to handle dataset imbalance
|
| 150 |
+
|
| 151 |
+
### Data Preprocessing
|
| 152 |
+
1. URL removal
|
| 153 |
+
2. Special character cleaning (@ symbols, hashtags)
|
| 154 |
+
3. Punctuation removal
|
| 155 |
+
4. Number removal
|
| 156 |
+
5. Whitespace normalization
|
| 157 |
+
6. Lowercase conversion
|
| 158 |
+
|
| 159 |
+
### Validation Methodology
|
| 160 |
+
- **Cross-Validation**: 5-fold Stratified K-Fold
|
| 161 |
+
- **Test Split**: 20% holdout set
|
| 162 |
+
- **Metrics**: Accuracy, Precision, Recall, F1-score (both weighted and macro)
|
| 163 |
+
|
| 164 |
+
## Limitations
|
| 165 |
+
|
| 166 |
+
- **Domain**: Primarily trained on social media text patterns
|
| 167 |
+
- **Language**: English text only
|
| 168 |
+
- **Temporal**: Bot patterns may evolve over time, requiring retraining
|
| 169 |
+
- **Context**: Performance may vary with text length and complexity
|
| 170 |
+
|
| 171 |
+
## Intended Use
|
| 172 |
+
|
| 173 |
+
This model is designed for:
|
| 174 |
+
- Social media content moderation
|
| 175 |
+
- Academic research on bot detection
|
| 176 |
+
- Content analysis and verification
|
| 177 |
+
|
| 178 |
+
## Ethical Considerations
|
| 179 |
+
|
| 180 |
+
- This model should be used responsibly and not for harassment
|
| 181 |
+
- Results should be interpreted with appropriate confidence thresholds
|
| 182 |
+
- Human oversight is recommended for critical decisions
|
| 183 |
+
- Regular model updates may be needed as bot techniques evolve
|
| 184 |
+
|
| 185 |
+
## Citation
|
| 186 |
+
|
| 187 |
+
```bibtex
|
| 188 |
+
@model{distilroberta-bot-detection-2024,
|
| 189 |
+
title={Bot Detection Model using DistilRoBERTa},
|
| 190 |
+
author={Junaid},
|
| 191 |
+
year={2024},
|
| 192 |
+
publisher={Hugging Face},
|
| 193 |
+
url={https://huggingface.co/junaid1993/distilroberta-bot-detection}
|
| 194 |
+
}
|
| 195 |
+
```
|
| 196 |
+
|
| 197 |
+
## License
|
| 198 |
+
|
| 199 |
+
MIT License
|
| 200 |
+
|
| 201 |
+
---
|
| 202 |
+
|
| 203 |
+
**Model Card Created**: 2025-08-23
|
| 204 |
+
**Framework**: PyTorch + Transformers
|
| 205 |
+
**Validation**: 5-Fold Cross-Validation with Class Weighting
|
config.json
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"RobertaForSequenceClassification"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.1,
|
| 6 |
+
"bos_token_id": 0,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"eos_token_id": 2,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 768,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 3072,
|
| 14 |
+
"layer_norm_eps": 1e-05,
|
| 15 |
+
"max_position_embeddings": 514,
|
| 16 |
+
"model_type": "roberta",
|
| 17 |
+
"num_attention_heads": 12,
|
| 18 |
+
"num_hidden_layers": 6,
|
| 19 |
+
"pad_token_id": 1,
|
| 20 |
+
"position_embedding_type": "absolute",
|
| 21 |
+
"problem_type": "single_label_classification",
|
| 22 |
+
"torch_dtype": "float32",
|
| 23 |
+
"transformers_version": "4.55.2",
|
| 24 |
+
"type_vocab_size": 1,
|
| 25 |
+
"use_cache": true,
|
| 26 |
+
"vocab_size": 50265
|
| 27 |
+
}
|
inference_example.py
ADDED
|
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Simple Inference Example
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
+
import torch
|
| 4 |
+
import re
|
| 5 |
+
|
| 6 |
+
# Load model
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained("junaid1993/distilroberta-bot-detection")
|
| 8 |
+
model = AutoModelForSequenceClassification.from_pretrained("junaid1993/distilroberta-bot-detection")
|
| 9 |
+
|
| 10 |
+
def preprocess_text(text):
|
| 11 |
+
if not isinstance(text, str):
|
| 12 |
+
return ""
|
| 13 |
+
text = re.sub(r'http\S+|www\.\S+', '', text)
|
| 14 |
+
text = re.sub(r'[@#]', '', text)
|
| 15 |
+
text = re.sub(r'[^\w\s]', '', text)
|
| 16 |
+
text = re.sub(r'\d+', '', text)
|
| 17 |
+
text = re.sub(r'\s+', ' ', text).strip()
|
| 18 |
+
return text.lower()
|
| 19 |
+
|
| 20 |
+
def predict_bot(text):
|
| 21 |
+
clean_text = preprocess_text(text)
|
| 22 |
+
inputs = tokenizer(clean_text, return_tensors="pt", truncation=True, max_length=512)
|
| 23 |
+
|
| 24 |
+
with torch.no_grad():
|
| 25 |
+
outputs = model(**inputs)
|
| 26 |
+
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 27 |
+
|
| 28 |
+
bot_prob = probabilities[0][1].item()
|
| 29 |
+
prediction = "Bot" if bot_prob > 0.5 else "Human"
|
| 30 |
+
|
| 31 |
+
return {"prediction": prediction, "bot_probability": bot_prob}
|
| 32 |
+
|
| 33 |
+
# Example usage
|
| 34 |
+
examples = [
|
| 35 |
+
"🔥 AMAZING DEAL! Get 90% OFF now!",
|
| 36 |
+
"Just finished reading a great book about AI."
|
| 37 |
+
]
|
| 38 |
+
|
| 39 |
+
for text in examples:
|
| 40 |
+
result = predict_bot(text)
|
| 41 |
+
print(f"Text: {text}")
|
| 42 |
+
print(f"Prediction: {result['prediction']} ({result['bot_probability']:.3f})")
|
| 43 |
+
print("-" * 50)
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fb6005d01fca73198876b7048d1d6cff380011e6a72779ce4285856951e1fa05
|
| 3 |
+
size 328492280
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<s>",
|
| 3 |
+
"cls_token": "<s>",
|
| 4 |
+
"eos_token": "</s>",
|
| 5 |
+
"mask_token": {
|
| 6 |
+
"content": "<mask>",
|
| 7 |
+
"lstrip": true,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false
|
| 11 |
+
},
|
| 12 |
+
"pad_token": "<pad>",
|
| 13 |
+
"sep_token": "</s>",
|
| 14 |
+
"unk_token": "<unk>"
|
| 15 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"0": {
|
| 5 |
+
"content": "<s>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": true,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"1": {
|
| 13 |
+
"content": "<pad>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": true,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"2": {
|
| 21 |
+
"content": "</s>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": true,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
},
|
| 28 |
+
"3": {
|
| 29 |
+
"content": "<unk>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": true,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": true
|
| 35 |
+
},
|
| 36 |
+
"50264": {
|
| 37 |
+
"content": "<mask>",
|
| 38 |
+
"lstrip": true,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"rstrip": false,
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"special": true
|
| 43 |
+
}
|
| 44 |
+
},
|
| 45 |
+
"bos_token": "<s>",
|
| 46 |
+
"clean_up_tokenization_spaces": false,
|
| 47 |
+
"cls_token": "<s>",
|
| 48 |
+
"eos_token": "</s>",
|
| 49 |
+
"errors": "replace",
|
| 50 |
+
"extra_special_tokens": {},
|
| 51 |
+
"mask_token": "<mask>",
|
| 52 |
+
"model_max_length": 512,
|
| 53 |
+
"pad_token": "<pad>",
|
| 54 |
+
"sep_token": "</s>",
|
| 55 |
+
"tokenizer_class": "RobertaTokenizer",
|
| 56 |
+
"trim_offsets": true,
|
| 57 |
+
"unk_token": "<unk>"
|
| 58 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f15cbd61cefd39e9a728c08ffcb3a729d0182a60e8d96281339f9800bbedc8e0
|
| 3 |
+
size 5368
|
training_info.json
ADDED
|
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_info": {
|
| 3 |
+
"model_type": "distilroberta-base",
|
| 4 |
+
"task": "binary_classification",
|
| 5 |
+
"classes": [
|
| 6 |
+
"human",
|
| 7 |
+
"bot"
|
| 8 |
+
],
|
| 9 |
+
"num_parameters": "82M",
|
| 10 |
+
"framework": "transformers",
|
| 11 |
+
"pytorch_version": ">=1.12.0"
|
| 12 |
+
},
|
| 13 |
+
"training_methodology": {
|
| 14 |
+
"method": "class_weighted_cross_validation",
|
| 15 |
+
"cv_folds": 5,
|
| 16 |
+
"cv_strategy": "stratified",
|
| 17 |
+
"early_stopping": true,
|
| 18 |
+
"early_stopping_patience": 3,
|
| 19 |
+
"mixed_precision": "fp16"
|
| 20 |
+
},
|
| 21 |
+
"hyperparameters": {
|
| 22 |
+
"batch_size_per_device": 2,
|
| 23 |
+
"gradient_accumulation_steps": 8,
|
| 24 |
+
"max_epochs": 10,
|
| 25 |
+
"weight_decay": 0.01,
|
| 26 |
+
"optimizer": "AdamW"
|
| 27 |
+
},
|
| 28 |
+
"performance_summary": {
|
| 29 |
+
"cv_metrics": {
|
| 30 |
+
"accuracy": {
|
| 31 |
+
"mean": 0.9433,
|
| 32 |
+
"std": 0.0052,
|
| 33 |
+
"min": 0.9385,
|
| 34 |
+
"max": 0.9497
|
| 35 |
+
},
|
| 36 |
+
"f1_weighted": {
|
| 37 |
+
"mean": 0.9434,
|
| 38 |
+
"std": 0.0051,
|
| 39 |
+
"min": 0.9387,
|
| 40 |
+
"max": 0.9497
|
| 41 |
+
},
|
| 42 |
+
"f1_macro": {
|
| 43 |
+
"mean": 0.9419,
|
| 44 |
+
"std": 0.0052,
|
| 45 |
+
"min": 0.9371,
|
| 46 |
+
"max": 0.9483
|
| 47 |
+
},
|
| 48 |
+
"precision_weighted": {
|
| 49 |
+
"mean": 0.9444,
|
| 50 |
+
"std": 0.0045,
|
| 51 |
+
"min": 0.9397,
|
| 52 |
+
"max": 0.9498
|
| 53 |
+
},
|
| 54 |
+
"recall_weighted": {
|
| 55 |
+
"mean": 0.9433,
|
| 56 |
+
"std": 0.0052,
|
| 57 |
+
"min": 0.9385,
|
| 58 |
+
"max": 0.9497
|
| 59 |
+
}
|
| 60 |
+
},
|
| 61 |
+
"test_metrics": {
|
| 62 |
+
"loss": 0.1511,
|
| 63 |
+
"accuracy": 0.9423,
|
| 64 |
+
"precision_weighted": 0.9428,
|
| 65 |
+
"recall_weighted": 0.9423,
|
| 66 |
+
"f1_weighted": 0.9424,
|
| 67 |
+
"precision_macro": 0.9393,
|
| 68 |
+
"recall_macro": 0.9427,
|
| 69 |
+
"f1_macro": 0.9409,
|
| 70 |
+
"runtime": 121.6927,
|
| 71 |
+
"samples_per_second": 232.832,
|
| 72 |
+
"steps_per_second": 8.316
|
| 73 |
+
}
|
| 74 |
+
}
|
| 75 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|