Improve model card: Add library_name, update paper link, and expand usage info (#1)
Browse files- Improve model card: Add library_name, update paper link, and expand usage info (f066b4dbca5573a2ee4d299770faf86d98b76e7a)
Co-authored-by: Niels Rogge <[email protected]>
README.md
CHANGED
@@ -1,9 +1,9 @@
|
|
1 |
---
|
2 |
-
license: apache-2.0
|
3 |
-
datasets:
|
4 |
-
- julien31/soar_arc_train_5M
|
5 |
base_model:
|
6 |
- Qwen/Qwen2.5-Coder-7B-Instruct
|
|
|
|
|
|
|
7 |
pipeline_tag: text-generation
|
8 |
tags:
|
9 |
- text-generation
|
@@ -13,16 +13,18 @@ tags:
|
|
13 |
- arc
|
14 |
- arc-agi
|
15 |
- soar
|
|
|
16 |
---
|
|
|
17 |
# SOAR-ARC Models: Self-Improving Language Models for Program Synthesis
|
18 |
|
19 |
<p align="center">
|
20 |
-
🤗 <a href="https://huggingface.co/collections/julien31/soar-arc-6856d27681fce01d9af4c4a3">Hugging Face (data and model)</a>   |    📑 <a href="https://
|
21 |
</p>
|
22 |
|
23 |
This repository contains one of the models fine-tuned using the **SOAR** (**S**elf-improving **O**perators for **A**utomated program **R**efinements) framework, as presented in the paper:
|
24 |
|
25 |
-
> [**Self-Improving Language Models for Evolutionary Program Synthesis: A Case Study on ARC-AGI**](https://
|
26 |
>
|
27 |
> Julien Pourcel, Cédric Colas, Pierre-Yves Oudeyer.
|
28 |
> *Proceedings of the 42nd International Conference on Machine Learning (ICML), 2025.*
|
@@ -64,9 +66,95 @@ This process creates a powerful feedback loop: the fine-tuned model becomes bett
|
|
64 |
|
65 |
The primary use of this model is to generate a Python function that solves an ARC task. The input to the model should be a formatted prompt containing the training and test examples of the ARC task.
|
66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
For a complete, end-to-end example of how to format the prompt, run inference, execute the generated code, and visualize the results, please refer to the official repository and notebook:
|
68 |
|
69 |
* **Official SOAR GitHub Repository**: [https://github.com/flowersteam/SOAR](https://github.com/flowersteam/SOAR)
|
70 |
* **Inference & Visualization Notebook**: [https://github.com/flowersteam/SOAR/blob/main/notebook/inference_visualisation.ipynb](https://github.com/flowersteam/SOAR/blob/main/notebook/inference_visualisation.ipynb)
|
71 |
|
72 |
-
<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/made with unsloth.png" width="20%" />
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
|
|
|
|
|
|
2 |
base_model:
|
3 |
- Qwen/Qwen2.5-Coder-7B-Instruct
|
4 |
+
datasets:
|
5 |
+
- julien31/soar_arc_train_5M
|
6 |
+
license: apache-2.0
|
7 |
pipeline_tag: text-generation
|
8 |
tags:
|
9 |
- text-generation
|
|
|
13 |
- arc
|
14 |
- arc-agi
|
15 |
- soar
|
16 |
+
library_name: transformers
|
17 |
---
|
18 |
+
|
19 |
# SOAR-ARC Models: Self-Improving Language Models for Program Synthesis
|
20 |
|
21 |
<p align="center">
|
22 |
+
🤗 <a href="https://huggingface.co/collections/julien31/soar-arc-6856d27681fce01d9af4c4a3">Hugging Face (data and model)</a>   |    📑 <a href="https://huggingface.co/papers/2507.14172">Paper</a>    |    📑 <a href="https://julienp.netlify.app/posts/soar/">Blog</a>
|
23 |
</p>
|
24 |
|
25 |
This repository contains one of the models fine-tuned using the **SOAR** (**S**elf-improving **O**perators for **A**utomated program **R**efinements) framework, as presented in the paper:
|
26 |
|
27 |
+
> [**Self-Improving Language Models for Evolutionary Program Synthesis: A Case Study on ARC-AGI**](https://huggingface.co/papers/2507.14172)
|
28 |
>
|
29 |
> Julien Pourcel, Cédric Colas, Pierre-Yves Oudeyer.
|
30 |
> *Proceedings of the 42nd International Conference on Machine Learning (ICML), 2025.*
|
|
|
66 |
|
67 |
The primary use of this model is to generate a Python function that solves an ARC task. The input to the model should be a formatted prompt containing the training and test examples of the ARC task.
|
68 |
|
69 |
+
Here's a quick example to get started:
|
70 |
+
|
71 |
+
```python
|
72 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
73 |
+
import torch
|
74 |
+
|
75 |
+
model_id = "julien31/Soar-qwen-7b" # or any other Soar-qwen model
|
76 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
77 |
+
model = AutoModelForCausalLM.from_pretrained(
|
78 |
+
model_id,
|
79 |
+
torch_dtype=torch.bfloat16, # Use torch.float16 for GPUs that don't support bfloat16
|
80 |
+
device_map="auto",
|
81 |
+
)
|
82 |
+
|
83 |
+
prompt = "def solve_arc_task(input_grid, output_grid):\
|
84 |
+
\\\"\\\"\\\"Given an ARC-AGI task, transform the input grid to the output grid by applying a series of operations.\
|
85 |
+
\\\"\\\"\\\""
|
86 |
+
|
87 |
+
messages = [
|
88 |
+
{"role": "user", "content": prompt}
|
89 |
+
]
|
90 |
+
|
91 |
+
text = tokenizer.apply_chat_template(
|
92 |
+
messages,
|
93 |
+
tokenize=False,
|
94 |
+
add_generation_prompt=True
|
95 |
+
)
|
96 |
+
|
97 |
+
model_inputs = tokenizer(text, return_tensors="pt").to(model.device)
|
98 |
+
|
99 |
+
generated_ids = model.generate(
|
100 |
+
model_inputs.input_ids,
|
101 |
+
max_new_tokens=256,
|
102 |
+
do_sample=True,
|
103 |
+
temperature=0.7,
|
104 |
+
top_p=0.8,
|
105 |
+
repetition_penalty=1.1,
|
106 |
+
eos_token_id=tokenizer.eos_token_id,
|
107 |
+
pad_token_id=tokenizer.pad_token_id, # This is often the same as eos_token_id for Qwen models
|
108 |
+
)
|
109 |
+
|
110 |
+
# Decode only the newly generated text
|
111 |
+
decoded_output = tokenizer.decode(generated_ids[0, model_inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
112 |
+
print(decoded_output)
|
113 |
+
```
|
114 |
+
|
115 |
For a complete, end-to-end example of how to format the prompt, run inference, execute the generated code, and visualize the results, please refer to the official repository and notebook:
|
116 |
|
117 |
* **Official SOAR GitHub Repository**: [https://github.com/flowersteam/SOAR](https://github.com/flowersteam/SOAR)
|
118 |
* **Inference & Visualization Notebook**: [https://github.com/flowersteam/SOAR/blob/main/notebook/inference_visualisation.ipynb](https://github.com/flowersteam/SOAR/blob/main/notebook/inference_visualisation.ipynb)
|
119 |
|
120 |
+
<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/made with unsloth.png" width="20%" />
|
121 |
+
|
122 |
+
## Installation
|
123 |
+
|
124 |
+
### Conda inference environment
|
125 |
+
```
|
126 |
+
pip install --upgrade pip
|
127 |
+
|
128 |
+
git clone https://github.com/flowersteam/SOAR
|
129 |
+
cd SOAR
|
130 |
+
conda create --name sglang47 \
|
131 |
+
python=3.11 \
|
132 |
+
-y
|
133 |
+
conda activate sglang47
|
134 |
+
|
135 |
+
pip install "sglang[all]>=0.4.7"
|
136 |
+
|
137 |
+
pip install -e .
|
138 |
+
pip install -r requirements
|
139 |
+
|
140 |
+
```
|
141 |
+
|
142 |
+
### Conda training environment
|
143 |
+
```
|
144 |
+
conda create --name unsloth_env \
|
145 |
+
python=3.11 \
|
146 |
+
pytorch-cuda=12.1 \
|
147 |
+
pytorch cudatoolkit xformers -c pytorch -c nvidia -c xformers \
|
148 |
+
-y
|
149 |
+
conda activate unsloth_env
|
150 |
+
|
151 |
+
pip install unsloth
|
152 |
+
cd SOAR
|
153 |
+
pip install -e .
|
154 |
+
pip install -r requirements.txt
|
155 |
+
```
|
156 |
+
|
157 |
+
## Run SOAR
|
158 |
+
To run SOAR, please refer to execution instructions located in the experience folder.
|
159 |
+
|
160 |
+
For simple instructions on running sampling and refinement with SOAR, as well as exploring the dataset, please see the Jupyter notebooks provided in the `notebook` folder. These notebooks walk through the basic SOAR step, including how to generate candidate solutions, perform refinement, and analyze results. This hands-on guide will help you get started quickly and understand each step of the SOAR process.
|