judithrosell commited on
Commit
1484c62
1 Parent(s): 4d4f572

End of training

Browse files
Files changed (1) hide show
  1. README.md +93 -0
README.md ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: allenai/scibert_scivocab_uncased
3
+ tags:
4
+ - generated_from_trainer
5
+ model-index:
6
+ - name: BC5CDR_SciBERT_NER
7
+ results: []
8
+ ---
9
+
10
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
+ should probably proofread and complete it, then remove this comment. -->
12
+
13
+ # BC5CDR_SciBERT_NER
14
+
15
+ This model is a fine-tuned version of [allenai/scibert_scivocab_uncased](https://huggingface.co/allenai/scibert_scivocab_uncased) on the None dataset.
16
+ It achieves the following results on the evaluation set:
17
+ - Loss: 0.0818
18
+ - Seqeval classification report: precision recall f1-score support
19
+
20
+ Chemical 0.92 0.94 0.93 7079
21
+ Disease 0.98 0.98 0.98 103426
22
+
23
+ micro avg 0.98 0.97 0.98 110505
24
+ macro avg 0.95 0.96 0.95 110505
25
+ weighted avg 0.98 0.97 0.98 110505
26
+
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 16
47
+ - eval_batch_size: 16
48
+ - seed: 42
49
+ - gradient_accumulation_steps: 2
50
+ - total_train_batch_size: 32
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - num_epochs: 3
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Seqeval classification report |
58
+ |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|
59
+ | No log | 1.0 | 143 | 0.0891 | precision recall f1-score support
60
+
61
+ Chemical 0.91 0.93 0.92 7079
62
+ Disease 0.98 0.97 0.97 103426
63
+
64
+ micro avg 0.97 0.97 0.97 110505
65
+ macro avg 0.94 0.95 0.95 110505
66
+ weighted avg 0.97 0.97 0.97 110505
67
+ |
68
+ | No log | 2.0 | 286 | 0.0830 | precision recall f1-score support
69
+
70
+ Chemical 0.93 0.93 0.93 7079
71
+ Disease 0.98 0.97 0.98 103426
72
+
73
+ micro avg 0.98 0.97 0.97 110505
74
+ macro avg 0.96 0.95 0.95 110505
75
+ weighted avg 0.98 0.97 0.97 110505
76
+ |
77
+ | No log | 3.0 | 429 | 0.0818 | precision recall f1-score support
78
+
79
+ Chemical 0.92 0.94 0.93 7079
80
+ Disease 0.98 0.98 0.98 103426
81
+
82
+ micro avg 0.98 0.97 0.98 110505
83
+ macro avg 0.95 0.96 0.95 110505
84
+ weighted avg 0.98 0.97 0.98 110505
85
+ |
86
+
87
+
88
+ ### Framework versions
89
+
90
+ - Transformers 4.35.2
91
+ - Pytorch 2.1.0+cu121
92
+ - Datasets 2.15.0
93
+ - Tokenizers 0.15.0