--- library_name: transformers license: mit base_model: openai/whisper-large-v3-turbo tags: - generated_from_trainer metrics: - wer - bleu model-index: - name: whisper-large-v3-turbo-FLEURS-GL-EN results: [] --- # whisper-large-v3-turbo-FLEURS-GL-EN This model is a fine-tuned version of [openai/whisper-large-v3-turbo](https://huggingface.co/openai/whisper-large-v3-turbo) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 2.0422 - Wer: 99.1150 - Bleu: 15.6996 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 32 - total_eval_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Bleu | |:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:| | 4.2758 | 1.0 | 5 | 3.8844 | 76.6962 | 17.9438 | | 2.3967 | 2.0 | 10 | 2.6969 | 96.4602 | 13.4436 | | 1.4928 | 3.0 | 15 | 2.2290 | 71.0914 | 19.0116 | | 1.2668 | 4.0 | 20 | 2.0422 | 99.1150 | 15.6996 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.1+cu121 - Datasets 3.0.1 - Tokenizers 0.20.0