File size: 2,984 Bytes
cc71e69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 |
---
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
- generated_from_trainer
datasets:
- biobert_json
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: bert-base-uncased-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: biobert_json
type: biobert_json
config: Biobert_json
split: validation
args: Biobert_json
metrics:
- name: Precision
type: precision
value: 0.942891335567257
- name: Recall
type: recall
value: 0.9658232813572619
- name: F1
type: f1
value: 0.9542195523689565
- name: Accuracy
type: accuracy
value: 0.9763595874355369
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-base-uncased-finetuned-ner
This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on the biobert_json dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1204
- Precision: 0.9429
- Recall: 0.9658
- F1: 0.9542
- Accuracy: 0.9764
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.1823 | 1.0 | 1224 | 0.1059 | 0.9301 | 0.9628 | 0.9462 | 0.9731 |
| 0.1142 | 2.0 | 2448 | 0.1163 | 0.9203 | 0.9717 | 0.9453 | 0.9698 |
| 0.0812 | 3.0 | 3672 | 0.1000 | 0.9427 | 0.9705 | 0.9564 | 0.9773 |
| 0.0603 | 4.0 | 4896 | 0.0970 | 0.9424 | 0.9717 | 0.9568 | 0.9773 |
| 0.0516 | 5.0 | 6120 | 0.1018 | 0.9416 | 0.9720 | 0.9566 | 0.9772 |
| 0.0418 | 6.0 | 7344 | 0.1044 | 0.9446 | 0.9704 | 0.9574 | 0.9778 |
| 0.0361 | 7.0 | 8568 | 0.1070 | 0.9422 | 0.9725 | 0.9571 | 0.9775 |
| 0.0296 | 8.0 | 9792 | 0.1166 | 0.9438 | 0.9708 | 0.9571 | 0.9776 |
| 0.0242 | 9.0 | 11016 | 0.1174 | 0.9437 | 0.9671 | 0.9553 | 0.9767 |
| 0.0231 | 10.0 | 12240 | 0.1204 | 0.9429 | 0.9658 | 0.9542 | 0.9764 |
### Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0
|