--- library_name: transformers license: cc-by-4.0 base_model: NazaGara/NER-fine-tuned-BETO tags: - generated_from_trainer datasets: - biobert_json metrics: - precision - recall - f1 - accuracy model-index: - name: NER-fine-tuned-BETO-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: biobert_json type: biobert_json config: Biobert_json split: validation args: Biobert_json metrics: - name: Precision type: precision value: 0.9501046193465315 - name: Recall type: recall value: 0.9622364703325365 - name: F1 type: f1 value: 0.9561320627378993 - name: Accuracy type: accuracy value: 0.9770695187165775 --- # NER-fine-tuned-BETO-finetuned-ner This model is a fine-tuned version of [NazaGara/NER-fine-tuned-BETO](https://huggingface.co/NazaGara/NER-fine-tuned-BETO) on the biobert_json dataset. It achieves the following results on the evaluation set: - Loss: 0.1398 - Precision: 0.9501 - Recall: 0.9622 - F1: 0.9561 - Accuracy: 0.9771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1451 | 1.0 | 1224 | 0.1089 | 0.9356 | 0.9579 | 0.9466 | 0.9726 | | 0.0963 | 2.0 | 2448 | 0.1152 | 0.9362 | 0.9701 | 0.9528 | 0.9751 | | 0.0658 | 3.0 | 3672 | 0.1096 | 0.9485 | 0.9620 | 0.9552 | 0.9763 | | 0.0481 | 4.0 | 4896 | 0.1050 | 0.9516 | 0.9683 | 0.9598 | 0.9785 | | 0.0389 | 5.0 | 6120 | 0.1098 | 0.9535 | 0.9636 | 0.9585 | 0.9779 | | 0.0348 | 6.0 | 7344 | 0.1205 | 0.9502 | 0.9631 | 0.9566 | 0.9772 | | 0.0274 | 7.0 | 8568 | 0.1250 | 0.9512 | 0.9629 | 0.9570 | 0.9776 | | 0.024 | 8.0 | 9792 | 0.1359 | 0.9499 | 0.9624 | 0.9561 | 0.9770 | | 0.0188 | 9.0 | 11016 | 0.1350 | 0.9507 | 0.9626 | 0.9566 | 0.9772 | | 0.0186 | 10.0 | 12240 | 0.1398 | 0.9501 | 0.9622 | 0.9561 | 0.9771 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0