--- license: apache-2.0 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: distilhubert-finetuned-gtzan results: [] --- # distilhubert-finetuned-gtzan This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6228 - Accuracy: 0.85 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 4e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.2841 | 0.98 | 28 | 2.2578 | 0.22 | | 2.108 | 2.0 | 57 | 2.0031 | 0.55 | | 1.7117 | 2.98 | 85 | 1.6220 | 0.65 | | 1.4624 | 4.0 | 114 | 1.4061 | 0.7 | | 1.2607 | 4.98 | 142 | 1.1969 | 0.69 | | 1.1162 | 6.0 | 171 | 1.0955 | 0.75 | | 1.0 | 6.98 | 199 | 0.9670 | 0.78 | | 0.8864 | 8.0 | 228 | 0.9192 | 0.77 | | 0.8583 | 8.98 | 256 | 0.8475 | 0.78 | | 0.8147 | 10.0 | 285 | 0.8214 | 0.77 | | 0.6572 | 10.98 | 313 | 0.7754 | 0.78 | | 0.5958 | 12.0 | 342 | 0.7187 | 0.79 | | 0.4196 | 12.98 | 370 | 0.6732 | 0.83 | | 0.4515 | 14.0 | 399 | 0.7272 | 0.8 | | 0.4256 | 14.98 | 427 | 0.6507 | 0.84 | | 0.3734 | 16.0 | 456 | 0.6587 | 0.83 | | 0.3541 | 16.98 | 484 | 0.6244 | 0.86 | | 0.312 | 18.0 | 513 | 0.6363 | 0.84 | | 0.3287 | 18.98 | 541 | 0.6226 | 0.86 | | 0.313 | 19.65 | 560 | 0.6228 | 0.85 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3