--- library_name: peft license: apache-2.0 base_model: Qwen/Qwen2.5-0.5B tags: - axolotl - generated_from_trainer model-index: - name: 78b783c9-ea82-44d9-b6b7-e5c0bbcf9fc2 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.6.0` ```yaml adapter: lora base_model: Qwen/Qwen2.5-0.5B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 0b0c28256225a32d_train_data.json ds_type: json format: custom path: /workspace/input_data/0b0c28256225a32d_train_data.json type: field_input: subset field_instruction: rejected field_output: chosen format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 4 flash_attention: false fp16: false fsdp: null fsdp_config: null gradient_accumulation_steps: 8 gradient_checkpointing: false group_by_length: true hub_model_id: jssky/78b783c9-ea82-44d9-b6b7-e5c0bbcf9fc2 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0002 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 16 lora_dropout: 0.05 lora_fan_in_fan_out: false lora_inference_mode: true lora_model_dir: null lora_modules_to_save: - lm_head lora_r: 8 lora_target_linear: true lr_scheduler: cosine max_grad_norm: 1.0 max_memory: 0: 75GB max_steps: 1500 micro_batch_size: 2 mlflow_experiment_name: /tmp/0b0c28256225a32d_train_data.json model_type: AutoModelForCausalLM num_epochs: 1 optim_args: adam_beta1: 0.9 adam_beta2: 0.95 adam_epsilon: 1e-5 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true peft_use_rslora: true resume_from_checkpoint: null s2_attention: null sample_packing: false saves_per_epoch: 4 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 11187e7b-67f3-4222-931e-3d02d180fd91 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 11187e7b-67f3-4222-931e-3d02d180fd91 warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 78b783c9-ea82-44d9-b6b7-e5c0bbcf9fc2 This model is a fine-tuned version of [Qwen/Qwen2.5-0.5B](https://huggingface.co/Qwen/Qwen2.5-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.8476 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 1500 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8691 | 0.1470 | 375 | 2.1598 | | 2.0272 | 0.2939 | 750 | 1.9827 | | 1.8621 | 0.4409 | 1125 | 1.8709 | | 1.5 | 0.5879 | 1500 | 1.8476 | ### Framework versions - PEFT 0.14.0 - Transformers 4.46.3 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3