{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f83440ec900>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 131072, "_total_timesteps": 100000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688605663568360112, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAFMUib6/v84+GihZvmFabL/6jcA9Em6kvgAAAAAAAAAAAOoCPvhMwD8rGTk+UtR6vst8lT1Y5a27AAAAAAAAAACw5am+revgPujdzTpmFCq/V9CTvj6xKz4AAAAAAAAAAKYxp73fBrQ/WvwMvfxZ6r7XoKG+fUXCvQAAAAAAAAAAMleKvsSPIj/2mxO/221Jv4AzwT1Y4FC9AAAAAAAAAABNYBy+ZoWfP+ExI79dG9i+OSbCvYzPMb4AAAAAAAAAAEZ+l74p1gI+o1LgPcwudb/7y0m+2hZ+PgAAAAAAAAAADbXsvUeowz/A7v6+jLY0vfNNjz2aVe09AAAAAAAAAABNGLo9JJ+6P6Z+LT/r0YA9MUSnvenIgrwAAAAAAAAAABBBxj4ngSw/oLZ7PswIR79NbZM+qBJCOwAAAAAAAAAARdM+v/CaEz8O77u+lnREv0fbubzdWso9AAAAAAAAAACm6rm9TQa8P6No0L4cTEa70M25PObL07sAAAAAAAAAADMCYD17b8o/GhFSPs/dhj5cxMs9fob8PQAAAAAAAAAAM4CQvLIQuz/abGG+b18/PhvXsbmlsQ27AAAAAAAAAABm2EK8XkqxP+JTG788WRa/XUF7PIyuLT4AAAAAAAAAAABYEDzc7bc/IuxWPjO5fz6qO5m7W9G9PAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.3107200000000001, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFK/DSPU8V6MAWyUS2CMAXSUR0BuAP6O5rgwdX2UKGgGR8BJHJ8F6iTMaAdLdGgIR0BuAkXLvCuVdX2UKGgGR8BEBxkd3jdYaAdLcmgIR0BuAlwgkka/dX2UKGgGR8BTaWUGFBY3aAdLgWgIR0BuBAaHbh3rdX2UKGgGR8BSjhkiD/VBaAdLUWgIR0BuBEAo5PuYdX2UKGgGR8Bv0K0MPSUkaAdLWWgIR0BuBMQ2/BWQdX2UKGgGR8BFXNWMju8caAdLn2gIR0BuBc29+PRzdX2UKGgGR8BPY4pDu0CzaAdLZWgIR0BuBcNtqHoHdX2UKGgGR8BSljG1hLGraAdLg2gIR0BuBlaQmu1XdX2UKGgGR8BRbjHbRF7VaAdLTmgIR0BuCZAbADaHdX2UKGgGR8BK6/s/pt78aAdLiGgIR0BuC5bnoxHodX2UKGgGR8Am6vbGm1pkaAdLXGgIR0BuC5DRc/t6dX2UKGgGR8BTX0EovzvraAdLVGgIR0BuDHw5NoJzdX2UKGgGR8BQifnfVI7OaAdLY2gIR0BuDPPC2tuDdX2UKGgGR8Az+bdJrcj8aAdLc2gIR0BuDlMwlByCdX2UKGgGR8BY5rS3LFGYaAdLu2gIR0BuDwsI3R5UdX2UKGgGR8BOogbZOBUaaAdLYWgIR0BuEeeSSvC/dX2UKGgGR8BbDg9/z8P4aAdLa2gIR0BuFOHi3ocJdX2UKGgGR8BCBFw1ivxIaAdLdWgIR0BuFVy7wrlOdX2UKGgGR8BZ7OERJ2+xaAdLcWgIR0BuFeAf+0gKdX2UKGgGR8BQ5aq0dBBzaAdLSmgIR0BuFyF9KEnLdX2UKGgGR8BadDO5avA5aAdLUGgIR0BuFy5d4VyndX2UKGgGR8BjOjB68g6maAdLm2gIR0BuGFtCRfWudX2UKGgGR8BGvKKxcE/0aAdLRWgIR0BuGNYuCf6HdX2UKGgGR8BS5vgm7aqTaAdLWGgIR0BuGaTwDvE1dX2UKGgGR8BqFc+NcW0raAdLsWgIR0BuGiVlf7aadX2UKGgGR8BO8KZlWfbsaAdLnmgIR0BuGo/NZ/0/dX2UKGgGR8BQEXq/ub7TaAdLr2gIR0BuGye9SMtLdX2UKGgGR8BawkwSJ0nxaAdLa2gIR0BuGwJZ4fOldX2UKGgGR8BX40ZaV2RraAdLmWgIR0BuHCfthNM5dX2UKGgGR8BQsg9V3ljmaAdLjGgIR0BuHVWCEpRXdX2UKGgGR8BYB+tOmBOIaAdLY2gIR0BuI1B2OhkBdX2UKGgGR8BdPzcdo372aAdLXmgIR0BuI/HaN+9bdX2UKGgGR8BRj2MGX5WSaAdLiGgIR0BuJMaGYa5xdX2UKGgGR8BNWb7sOXmeaAdLV2gIR0BuJWI0qH45dX2UKGgGR8BX3BMJx//eaAdLWGgIR0BuJgwZflZHdX2UKGgGR8BW0V/tpmEoaAdLV2gIR0BuJkRxtHhCdX2UKGgGR8BRWcbFS88LaAdLe2gIR0BuJlIEr5IpdX2UKGgGR8BZib3Cbc46aAdLr2gIR0BuJo/PgNwzdX2UKGgGR8BJfh2nsLOSaAdLiWgIR0BuJ8awUxmDdX2UKGgGR8BCfQlSjxkNaAdLcGgIR0BuJ5XnyNGWdX2UKGgGR8BeqfM4cWCVaAdLYmgIR0BuKUONHYpVdX2UKGgGR8BRT/DDTBqLaAdLcGgIR0BuKhBE8aGYdX2UKGgGR8BcbfZ/Tb35aAdLXmgIR0BuKgxSHdoGdX2UKGgGR8BHv2Vu76HkaAdLgGgIR0BuKga72+PBdX2UKGgGR8A0GCo0hvBKaAdLdWgIR0BuKoRNATqTdX2UKGgGR8BFcYI8hcJMaAdLqmgIR0BuLc0FbFCLdX2UKGgGR8BQm4mTkhicaAdLYWgIR0BuMDDVH4GmdX2UKGgGR8BTstkz41xbaAdLSWgIR0BuMS4Ds+mndX2UKGgGR8AxZUu+RHPNaAdLSWgIR0BuMQEKVpsXdX2UKGgGR8BXvsDGLk0aaAdLaWgIR0BuMcwFkhA4dX2UKGgGR8BRe27jDKoyaAdLamgIR0BuM02WIGhVdX2UKGgGR8BYul3dKujiaAdLaWgIR0BuM9YuCf6HdX2UKGgGR8AZF4RmK64EaAdLcGgIR0BuNPZdv864dX2UKGgGR8Av+jRD1GsnaAdLVmgIR0BuNVdxAB1cdX2UKGgGR8BBSU7Sy+pPaAdLTWgIR0BuODHdXT3JdX2UKGgGR8BQQcTBZZB+aAdLkmgIR0BuOBFiKBNFdX2UKGgGR8BI/gfMfRu1aAdLh2gIR0BuOEaS9ugpdX2UKGgGR8Bd6NmcvugIaAdLd2gIR0BuOPSF49owdX2UKGgGR8BR9l4X40uUaAdLmGgIR0BuOjKkl/pddX2UKGgGR8BBAH5rP+n7aAdLUWgIR0BuOvXZoPCmdX2UKGgGR8BSVBwdbPhRaAdLfGgIR0BuOtspG4I9dX2UKGgGR8BRuhwl0HQhaAdLUWgIR0BuO+ZNO/L1dX2UKGgGR8BMm/6GgzxgaAdLk2gIR0BuPT7ZWaMKdX2UKGgGR8BaRi7TUiIMaAdLX2gIR0BuPXAwfyPNdX2UKGgGR8BSlri2lVLjaAdLXmgIR0BuPhArxy4ndX2UKGgGR8BMyoYNy5qeaAdLn2gIR0BuPsBMi8nNdX2UKGgGR8BC7xsdkrf+aAdLYGgIR0BuP7j7yhBadX2UKGgGR8BFBnFPznRtaAdLZWgIR0BuQNIVdonKdX2UKGgGR8BaemWY4Qz2aAdLQ2gIR0BuQYo9cKPXdX2UKGgGR8A9qVxS5y2haAdLTWgIR0BuQik43m3fdX2UKGgGR8BQRfp6hQFcaAdLXGgIR0BuRANZvDP4dX2UKGgGR8Bi/a28Zk08aAdLTWgIR0BuRh9Tgl4UdX2UKGgGR8A4Kj0th/iHaAdLiWgIR0BuRxEDyOJddX2UKGgGR8A/5W/ag261aAdLdWgIR0BuR6tknTiLdX2UKGgGR8BAH8er+5vtaAdLi2gIR0BuR7yJ9AoodX2UKGgGR8BYY6SHM2WIaAdLZ2gIR0BuSLBGhEjPdX2UKGgGR8BGYwokRjBmaAdLdWgIR0BuSbeCTUy6dX2UKGgGR8BXC2Kl54W2aAdLQWgIR0BuSwIWxhUjdX2UKGgGR8BhTGIhyKekaAdLaGgIR0BuTMI7eVLSdX2UKGgGR8BPbDsMRYigaAdLcmgIR0BuTV9a2WpqdX2UKGgGR8BGTGmUGFBZaAdLVmgIR0BuTTHQyAQQdX2UKGgGR8BLBSAxzq8laAdLhGgIR0BuTv/HYHxCdX2UKGgGR8Badw3974SIaAdLcmgIR0BuT0cbR4QjdX2UKGgGR8BXN3889wFUaAdLh2gIR0BuT7gjyFwldX2UKGgGR8BfJUCeVcD9aAdLnWgIR0BuT+C7K7qZdX2UKGgGR8BLqqbrkbPyaAdLRGgIR0BuUNzdUKiPdX2UKGgGR8BYe65byH2zaAdLf2gIR0BuUgzvZyuIdX2UKGgGR8BBAHWjGkvcaAdLVWgIR0BuUnUWl/H6dX2UKGgGR8BKcw2MsH0LaAdLemgIR0BuVqgZjx0/dX2UKGgGR8BLvfBeokzHaAdLcmgIR0BuV0xwhnrZdX2UKGgGR8BTkE4JeE7GaAdLZGgIR0BuV6pHZsbedX2UKGgGR8BYjWfGuLaVaAdLqGgIR0BuXTx5LRKIdX2UKGgGR8Bcvyon8baRaAdLdGgIR0BuXTakAPupdX2UKGgGR8BcNedwvQF+aAdLUmgIR0BuXTnq3VkMdX2UKGgGR8BYFAUL2HtXaAdLV2gIR0BuXYv38GcGdX2UKGgGR8BCf28IzFdcaAdLYmgIR0BuX5JI1+AmdX2UKGgGR8BVlKVY6nzhaAdLc2gIR0BuYGI0qH45dX2UKGgGR8BXWd3r2QGOaAdLXGgIR0BuYR8UmD15dX2UKGgGR8BTDQQpWmxdaAdLZmgIR0BuYYF3Y+SsdWUu"}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 40, "observation_space": {":type:": "", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}