uyiosa commited on
Commit
348dbf5
·
verified ·
1 Parent(s): 9520704

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +41 -1
README.md CHANGED
@@ -5,4 +5,44 @@ base_model:
5
  library_name: transformers
6
  ---
7
 
8
- The [deepseek-ai/DeepSeek-R1-Distill-Llama-70B](https://huggingface.co/perplexity-ai/r1-1776-distill-llama-70b) model quantized to fp8.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  library_name: transformers
6
  ---
7
 
8
+ The [deepseek-ai/DeepSeek-R1-Distill-Llama-70B](https://huggingface.co/perplexity-ai/r1-1776-distill-llama-70b) model quantized to fp8.
9
+
10
+ # quantization using llm_compressor
11
+ ```python
12
+ from transformers import AutoTokenizer, AutoModelForCausalLM
13
+ from llmcompressor.transformers import oneshot
14
+ from llmcompressor.modifiers.quantization import QuantizationModifier
15
+
16
+ # Define the model ID for the model you want to quantize
17
+ MODEL_ID = "perplexity-ai/r1-1776-distill-llama-70b"
18
+
19
+ # Load the model and tokenizer with appropriate parameters
20
+ model = AutoModelForCausalLM.from_pretrained(
21
+ MODEL_ID,
22
+ device_map="auto",
23
+ torch_dtype="auto",
24
+ trust_remote_code=True, # Add this to automatically trust remote code
25
+ low_cpu_mem_usage=True, # Help with memory issues during loading
26
+ offload_folder="offload" # Use disk offloading for large models
27
+ )
28
+
29
+ tokenizer = AutoTokenizer.from_pretrained(
30
+ MODEL_ID,
31
+ trust_remote_code=True # Also need this for tokenizer
32
+ )
33
+
34
+ # Configure the quantization recipe
35
+ recipe = QuantizationModifier(targets="Linear", scheme="FP8_DYNAMIC", ignore=["lm_head"])
36
+
37
+ # Apply the quantization algorithm
38
+ oneshot(model=model, recipe=recipe)
39
+
40
+ # Define the directory to save the quantized model
41
+ SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-Dynamic"
42
+
43
+ # Save the quantized model and tokenizer
44
+ model.save_pretrained(SAVE_DIR)
45
+ tokenizer.save_pretrained(SAVE_DIR)
46
+
47
+ print(f"Quantized model saved to {SAVE_DIR}")
48
+ ```