--- license: llama3 library_name: peft tags: - generated_from_trainer base_model: meta-llama/Meta-Llama-3-8B-Instruct datasets: - sahil2801/CodeAlpaca-20k model-index: - name: outputs/llama-3-8b-codestruct-v1/ results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: meta-llama/Meta-Llama-3-8B-Instruct model_type: LlamaForCausalLM tokenizer_type: AutoTokenizer # PreTrainedTokenizerFast load_in_8bit: false load_in_4bit: true strict: false chat_template: llama3 datasets: - path: sahil2801/CodeAlpaca-20k type: alpaca dataset_prepared_path: last_run_prepared val_set_size: 0.05 output_dir: ./outputs/llama-3-8b-codestruct-v1/ adapter: qlora lora_model_dir: sequence_len: 512 sample_packing: false pad_to_sequence_len: true lora_r: 8 lora_alpha: 16 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true lora_fan_in_fan_out: wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 16 num_epochs: 1 optimizer: adamw_torch lr_scheduler: cosine learning_rate: 0.00002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 evals_per_epoch: 4 eval_table_size: saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: - full_shard - auto_wrap fsdp_config: fsdp_limit_all_gathers: true fsdp_sync_module_states: true fsdp_offload_params: true fsdp_use_orig_params: false fsdp_cpu_ram_efficient_loading: true fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer fsdp_state_dict_type: FULL_STATE_DICT fsdp_sharding_strategy: FULL_SHARD special_tokens: pad_token: <|end_of_text|> ```

# outputs/llama-3-8b-codestruct-v1/ This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on the [sahil2801/CodeAlpaca-20k](https://huggingface.co/datasets/sahil2801/CodeAlpaca-20k) dataset. It achieves the following results on the evaluation set: - Loss: 0.5117 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - total_train_batch_size: 32 - total_eval_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9362 | 0.0017 | 1 | 0.9783 | | 0.5812 | 0.2508 | 149 | 0.5325 | | 0.4651 | 0.5017 | 298 | 0.5170 | | 0.5264 | 0.7525 | 447 | 0.5117 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.3.0 - Datasets 2.19.1 - Tokenizers 0.19.1